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Abstract—Successful remote operation requires a careful bal-
ance of human operation and robot autonomy, commonly re-
ferred to as the problem of shared autonomy, which remains an
open challenge for robotics where the perception of manipulation
affordances for shared autonomy is a critical bottleneck. Through
the use of spectrum of autonomy, we introduce a combination
of human-in-the-loop particle filtering-based pose estimator and
user initialization to achieve shared autonomy, followed by ma-
nipulation tasks execution using affordance template framework.
We further compare the performance of different pose estimation
methods and demonstrate the efficacy of our approach in three
scenes.

I. INTRODUCTION

Reliable operation of remote autonomous mobile manip-
ulators remains an open challenge for robotics where the
perception of manipulation affordances for shared autonomy
is a critical bottleneck. Within the well-known sense-plan-
act paradigm, truly autonomous robot manipulators need the
ability to perceive the world, reason over manipulation actions
afforded by objects towards a given goal, and carry out these
actions in terms of physical motion. As the complexity of
robotic systems and relevant tasks increases, full autonomy
and learning for dexterous robot manipulation is beyond the
foreseeable state-of-the-art, especially for tasks in remote,
unstructured environments. Conversely, direct teleoperation is
also not feasible in these scenarios, as deployed systems are
often highly complex (with multiple degrees of freedom and
high-resolution sensors) and are often controlled over sub-
optimal communication channels. As such, successful remote
operation requires a careful balance of human operation and
robot autonomy, commonly referred to as the problem of
shared autonomy.

With shared autonomy in mind, Hart et al. developed
affordance template framework [3] to enable mobile manip-
ulation and humanoid robot control, such as for robots in
the DARPA Robotics Challenge [4] and on the International
Space Station [1]. An affordance template is an adjustable
pairing of 3D object geometries and sequence of robot actions
represented in object-centric coordinates. However, robot op-
eration with affordance templates currently requires manual
placement/registration onto a 3D map (point cloud) and the
selection of appropriate command sequence (or strategy) rel-
evant to meet the demands of the context.

As a replacement for this manual registration, we present an
automated method to fit/register object geometries associated

Fig. 1: Top row: user gives a rough initial pose estimation,
after which a pose estimation method refines the pose to
register the affordance template. Bottom row: affordance
template framework performs a series of designed waypoints
to perform a task.

with an affordance onto a 3D geometric map as a “human-in-
the-loop” estimator. Since manual registration is often labor-
intensive, a human-in-the-loop estimator can alleviate cum-
bersome fine-tuning by the user. Instead, the user can perform
a coarse initialization first using the interactive tools and let
perception system take over and perform fine registration.
Once an object associated with an affordance is registered,
the action of the affordance can then be executed by a robot
as demonstrated in Figure 1.

Our contributions are three-fold: 1) we introduce our spec-
trum of autonomy used for human-in-the-loop affordance
registration and demonstrate its use in three scenes for using
a spray, pouring, and door opening; 2) we leverage spectrum
of autonomy with generative pose estimator to achieve shared
autonomy; 3) we compare three pose estimation methods and
shed insight on their registration qualities.

II. RELATED WORK

Shared autonomy is a popular method for robotic operation
due to its human-in-the-loop approach. Witzig et al. presented
a method to grasp planning in which the user provides
contextual information that the robot cannot perceive [6].
Shared autonomy grasping has been demonstrated with RViz
interactive markers by Gossow et al. [2].



Fig. 2: The top left block illustrates our spectrum of autonomy
and various pose estimators. The red arrow indicates the level
of autonomy (human registration being no autonomy, whereas
global search being full autonomy). The top right block
shows the components of affordance template framework for
executing object-centric manipulation tasks.

This paper builds on the Axiomatic Particle Filter proposed
by Sui et al. [5] for generative scene estimation to perform
goal-directed manipulation.

Our approach uses the affordance template framework [3, 4]
that defines tasks in terms of adjustable object geometries and
end effector sequences expressed in the coordinate systems of
those objects. The affordance template framework describes
tasks in such a way that they can easily be transferred to
different environmental contexts and different robot platforms.

III. APPROACH

In this section, we first describe the affordance template
framework and how it is registered to point cloud observations
as a pose estimation problem. Using different matching algo-
rithms for pose estimation, we further delineate spectrum of
autonomy that registers affordance templates utilizing different
modes of initialization. The overview of our approach is
illustrated in Figure 2.

A. Affordance template framework

An affordance template, A = {V, x,W}, consists of an
object with geometry V in a frame defined by a 6 degree-of-
freedom (DOF) pose x ∈ SE(3), where the robot can perform
action W on an object. As an implementation choice, action
W is often an ordered sequences of end-effector waypoints
Wee for that serve as goals for motion planning.

To represent an affordance template in the robot frame, we
express an object as vi, which has a 3D geometry model and
a Cartesian pose x = {pi, Ri}, where p expresses the position
of the object and R represents the orientation of the object in
SE(3), with respect to a fixed frame in robot frame. For each
waypoint wf ∈ Wee at frame f , there must exist a parent
object vi ∈ Vobj . Likewise, wf also has a Cartesian pose
(vipwf

,vi Rwf
) that express the end-effector’s pose. Between

wf and wf+1, a motion planner is needed to find a trajectory.
Each waypoint also consists of an end-effector configuration
(opened, closed, etc.) in addition to a spatial position.

Fig. 3: Convergence to the goal poses using PF of watering
and bowl scene. Each image represents the mean image of the
rendered scenes of all particles at time t. Columns one to four
correspond to iteration 0, 300, 600 or 1000. As the images
show, particles gradually converge to a final state.

The affordance template software is openly available as a
ROS package1

B. Spectrum of autonomy

Spectrum of autonomy is the representation of level of
human involvement in an operation, such as performing ob-
ject manipulation task. The following scenarios represent the
increasing order of autonomy on the spectrum.

Human registration: this scenario indicates no autonomy
on the spectrum. The entire registration procedure is done
by a user. Through a user interface widget, such as a ROS
interactive marker control, the user can move the object model
to the goal pose, (p̂g, R̂g), in the point cloud.

Snap-to-grid: to alleviate the need for manual registra-
tion, the user will provide a coarse pose instead of full registra-
tion. Using the interactive tool in RViz, the user can move the
object model to an intermediate pose xm = (pm, Rm), which
does not have to be accurate. Finally, a matching algorithm will
perform pose estimation using the provided pose (pm, Rm)
and produce the goal pose estimation (p̂g, R̂g).

Click initialization: to further increase the level of au-
tonomy, the user will click on the point cloud the retrieve a
position pm. Coupled with a random orientation Rm, a match-
ing algorithm will perform registration using the provided pose
xm.

Global search: in this scenario, the entire registration
process is done without any human input. Thus, given a
random initial pose xrand = (prand, Rrand), the goal pose
(p̂g, R̂g) will be solely determined by a matching algorithm.
This process indicates full autonomy.

C. Pose Estimation

We use three methods for pose estimation: particle filtering
(PF), Markov chain Monte Carlo (MCMC) and iterative closest
point (ICP).

1) Particle filtering: PF is a generative method that we
employ to estimate the object’s goal pose (p̂g, R̂g), which
generates a distribution over the possible scenes from the point
of view of robot’s depth camera using rendering engine and
produces the most likely state estimate of an objects goal pose.

The pose at time t, xt = (pt, Rt), is inferred from the
observed states z1:t as a sequential Bayesian filter, as those

1http://traclabs.com/projects/affordance-templates/



N weighted particles, {x(j)t , w
(j)
t }Nj=1, is used to approximate

this sequential Bayesian filter, thus:

p(xt|z1:t) ∝ p(zt|xt)
∑
j

w
(j)
t−1p(xt|x

(j)
t−1, ut−1) (1)

The re-sampling of particles xt with weight wt is performed
by importance sampling to generate a new set of scenes S,
which are rendered depth images ẑt. The pose of each object
in the scene is perturbed by normal distributions in the space
of DOF. In order to measure the difference between the current
observation zt and the rendered depth image, we use the sum
square of distance function SSD(I, I ′):

SSD(I, I ′) =
∑

(a,b)∈z

(I − I ′)2, (2)

where I is the current observation and I ′ is the rendered image.
Therefore, the likelihood term becomes

p(zt|xjt ) = e−λ·SSD(zt,ẑ
(j)
t ) (3)

with a constant scaling factor λ.
As the posterior distribution converges, the most likely

particle x̂t produces a scene Ŝt, which represents the best
goal pose estimation (p̂g, R̂g). Figure 3 illustrates the conver-
gence process of PF. Each image is the mean rendered scene
1

N

∑
j S

(j)
t of all particles at time t. The blurriness indicates

uncertainty of the distribution over the estimated scene. As
t increases, SSD decreases and the rendered scene becomes
more clear. We use 500 particles for all experiments.

2) MCMC: MCMC is another generative method that we
use as an alternative to PF. In particular, we use a single-
site Metropolis-Hastings algorithm to estimate the goal pose
(p̂g, R̂g) by approximating the target distribution p(x|z) as a
Markov chain.

3) ICP: contrary to the previous two methods, ICP is a
discriminative matching algorithm for aligning two templates.
In our case, ICP is used to find the transformation T ginit
between the initial pose (pinit, Rinit) and the goal pose
(pg, Rg) by matching the point cloud generated by the object
geometry model and point cloud in the scene. We use PCL
library2 for our ICP implementation.

IV. RESULTS

A. Experiments

In this section, we demonstrate pose estimation for registra-
tion of affordance templates as a viable approach to spectrum
of autonomy for object manipulation tasks. We additionally
present a pose estimation comparison among our matching
algorithms against human baseline.

2http://pointclouds.org/

1) Task scene: We further defined three affordance tem-
plates to accomplish three different tasks in three scenes:
• Using a spray: the robot must pick up the object spray

bottle, move the nozzle to point to a surface, and then
squeeze the trigger to spray that surface,

• Pouring: the robot must pick up the object waterpot,
move it over another object bowl, and pour its contents
into the bowl (Figure 4), and

• Door opening: robot must grab a door handle, turn it,
and pull open the door.

We assume that objects are standing on top of the table
surface and the door handle is attached to the door in a
standard location. Thus, our pose estimator allows three DOF
for each object.

2) Ground truth affordance registration: In order to obtain
the ground truth pose for each object in each scene, the
user manually registered each object’s affordance using ROS
interactive marker control. The registered pose is expressed as
(xgt, ygt, Y awgt) for using a spray and pouring scenes, while
(ygt, zgt, Rollgt) for door opening scene.

3) Spectrum of autonomy comparison: For each task, we
conduct snap-to-grid, click initialization and global search to
perform pose estimation and compare the result against human
registered ground truth. We denote snap-to-grid as STG, click
initialization as CI and global search as GS. For each scenario,
we perform 50 trials and collect the results. When conducting
STG, 50 initial poses (position and orientation) were given.
For CI, only 50 initial positions are given while orientations
are random. There’s no need to initialize for GS.

First, we compare registration quality using different sce-
narios on the spectrum. We choose PF as our pose estimation
method.

Figure 5 further shows the percentage of correct pose given
position error thresholds — 0.005, 0.01 and 0.05 meters. Both
STG and CI outperform GS since user reduce the search space
for our pose estimators and this would dramatically improve
pose registration quality.

Fig. 5: Spectrum of autonomy comparison of waterpot scene
using different initialization scenarios

4) Pose estimation methods comparison: We choose STG
as our scenario for pose estimation methods comparison.



Fig. 4: Pouring task; the first column shows the object models and task environments in RViz. The rest columns show a task’s
snapshots and real environments.

Given the same initial poses, we ran PF, MCMC and ICP on
all three scenes and compared results. As shown in Figure 6,
PF outperforms the other two methods for waterpot and door
handle. Both PF and MCMC are generative methods that
use a rendering engine as a mean to generate samples. PF
is more adaptive to this circumstance due to the number of
particles it can sample within one iteration. ICP, on the other
hand, is a discriminative method. Since the depth camera
can only capture a small portion of the object’s geometry,
it may be difficult to fit the entire object model to the scene,
especially when object is small, whereas a rendering engine-
based generative method, such as PF, is able to fully explore
the local search space given enough samples.

Fig. 6: Pose estimation methods comparison of waterpot scene.
All three methods use the same STG initialization.

5) Affordance template tasks: Once a predicted pose is
given, affordance templates will perform the action associated
with each waypoint. However, the completion of the task de-
pends on many factors. For instance, motion planning between
two waypoints may fail due to object pose or end-effector
pose. Thus, we only consider if the robot is able to grasp
the object successfully regardless of the completion of the
task. The success rate of using a spray is 90%, pouring is
70% and door opening is 100%. The reason why grasping
related task (e.g. using a spray) is not successfully every time
is because of two reasons. First, the pouring task, for instance,
is more challenging compared to the other two tasks since the
lower half of the end-effector (gripper) has to be threaded
through the pot handle as shown in Figure 4. Therefore, this
process has low tolerance of trajectory deviation. Therefore,
the design of pre-grasp gripper pose is crucial to the success

of task execution. Secondly, the arm of the Fetch robot may
sometimes miss the designed waypoints, and cause potential
failures in various stages.

V. CONCLUSION

We present a human-in-the-loop approach to affordance reg-
istration for robot manipulation. We demonstrate that shared
autonomy can be achieved by the combination of user ini-
tialization and pose estimator. Furthermore, we posit that the
poses of objects and their affordances is a critical bottleneck
for autonomous execution of robot manipulation. Hence, by
taking advantage of particle filtering-based pose estimator, we
offer one step closer towards this goal. However, successful
affordance registration does not necessarily mean successful
task execution since task completion also relies on other
factors, such as accurate grasp pose and trajectory following
of the robotic arm.
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