
Referring Expression Generation under Uncertainty
in Integrated Robot Architectures

Tom Williams and Matthias Scheutz
Human-Robot Interaction Laboratory

Tufts University
williams@cs.tufts.edu, matthias.scheutz@tufts.edu

Abstract—To engage in language-based social interaction with
humans, robots must be able to refer to other agents, objects, and
locations, also known as referring expression generation (REG).
Unfortunately, classic REG algorithms like the Incremental Algo-
rithm assume that information is certain, centralized, and easily
accessible: assumptions which commonly break down in realistic
human-robot interaction scenarios. In this work, we show how
the incremental algorithm can be extended to produce DIST-
PIA: a domain-independent algorithm for REG under uncertain,
heterogeneous, and distributed knowledge.

I. INTRODUCTION

To engage in language-based social interaction with hu-
mans, robots must be able to choose what properties to use
to refer to other agents, objects, and locations. Traditionally,
algorithms designed to solve this task (known as Referring
Expression Generation (REG) algorithms) operate by selecting
properties that appear in the attribute set of the target to be
described, but do not appear in the attribute sets for one or
more distractors, allowing those distractors to be ruled out.

Unfortunately, in most robot architectures, checking whether
an entity has a certain property is not as simple as a set-
membership check. Knowledge in robot architectures is com-
monly distributed across multiple architectural components
which use different forms of representation. Moreover, because
of the uncertainty inherent to realistic human-robot interaction
scenarios, these components may be unable to definitively
answer whether or not an entity has a certain property.

This presents a clear need for a general framework whereby
architectural components query the probability that particular
properties hold for particular entities, without requiring any
prior knowledge of the location in the architecture where
information about that entity is stored or how that entity is
represented. Provided with such a framework, traditional REG
algorithms could easily be modified to issue this type of query
rather than making attribute-set set-membership checks.

In previous research, we presented just such a frame-
work [9], and showed how it could be used to facilitate the
inverse of the referring expression generation, known as refer-
ence resolution. In this work, we show how this framework can
also be used for referring expression generation, and present
DIST-PIA: a novel REG algorithm inspired by Dale and
Reiter’s classic Incremental Algorithm. Unlike previous robot-
oriented approaches to referring expression generation under
uncertainty, this algorithm can be used to generate expressions

referring to entities other than objects. Furthermore, due to
the use of this consultant framework, this algorithm does not
mandate the use of any particular classifier.

We begin by discussing previous work on REG under uncer-
tainty. We then describe how we have extended our consultant
framework, and present DIST-PIA, our novel REG algorithm
which leverages that framework. Finally, we conclude by
discussing possible directions for future work.

II. PREVIOUS WORK

While much research has done on referring expression gen-
eration, three algorithms stand out the foundational algorithms
of the field: Full Brevity, the Greedy Algorithm [1], and
the Incremental Algorithm [2]. These algorithms, however,
operate under a number of simplifying assumptions which are
untenable in many real-world scenarios. Most crucially for
human-centered robotics (HCR) applications, these algorithms
assume certain knowledge on the part of both speaker and
listener. More recently, there have been two classes of REG
algorithm which have attempted to relax this assumption.

In the first class are algorithms that, like those foundational
algorithms, are domain-independent, but which only take the
listener’s uncertainty into account [6]. This is problematic
as this may lead a robot to unintentionally communicate
beliefs it does not actually hold, reinforcing misconceptions
and misaligning common ground. In the second class are
algorithms which take the speaker’s uncertainty into account,
but which are highly domain-dependent, being only able to
choose visually assessable properties and describe currently
visible entities [3, 4, 7]. What is more, the approaches from
both classes share another assumption with the foundational
approaches which may not hold in all HCR contexts: that all
relevant information is conveniently stored in a single format
in a single centralized knowledge base.

It appears that what is needed is an REG algorithm that uses
a framework for handling uncertain knowledge from different
domains and of heterogeneous representation which is dis-
tributed throughout a robot architecture. If such a framework
is available, a modified version of any of the foundational
algorithms could be used, but we argue that the Incremental
Algorithm (IA) is the best choice, as it has advantageous
complexity guarantees, generates human-like REs through its
use of a preference ordering over properties, and has generally
been the most successful REG algorithm. In the next section,

we describe just such a framework, and then describe how it
can be extended to facilitate use with the IA.

III. FRAMEWORK

In previous work, we presented a framework which makes
uses a set of “consultants”, each of which facilitates access to
a distributed heterogeneous knowledge-base k for a different
domain [9]. Each such consultant must be capable of at least
four functions:

1) providing a set cdomain of atomic entities from k,
2) advertising a list cconstraints of constraints that can be assessed

with respect to entities from cdomain,
3) assessing constraints from cconstraints with respect to entities

from cdomain, and
4) adding, removing, or imposing constraints from cconstraints on

entities from cdomain.
These capabilities were originally chosen to facilitate refer-

ence resolution. However, the first three can also be used to
facilitate REG: Capability 1 provides a set of distractors which
must be ruled out, and Capability 2 provides a list of properties
that can be checked using Capability 3 to determine if they
(i) apply to the target referent, and (ii) rule out distractors.

The IA, however, considers constraints according to a prefer-
ence ordering: for example, using an entity’s type to describe it
is typically preferable to its color, which is typically preferable
to its size, and so on. To use this framework for REG, we thus
modify the second capability to require such an ordering:

2) advertising a list cconstraints of constraints that can be assessed
with respect to entities from cdomain, and that is ordered by
descending preference.

With this modification, we now have a framework which
provides access to uncertain knowledge from different do-
mains and of heterogeneous representation which is distributed
throughout a robot architecture, and which is configured to
interface well with the IA. In the next section, we describe how
we have similarly modified the IA in order to take advantage
of this framework.

IV. ALGORITHM AND WALKTHROUGH

In this section we present our version of the Incremental
Algorithm (IA) [2], modified to use the modified framework
presented in the previous section. The standard IA incremen-
tally proceeds through an ordered list of properties that could
be used to describe a referent. For each such property p, if
p is in the list of properties attributed to the target referent,
IA checks whether p is not true of any distractors (initially
all other possible referents). If any distractors are ruled out,
p is added to the description, i.e., the list of properties to
communicate, and those ruled-out distractors are removed
from the set of distractors. This process iterates until all
distractors or properties are ruled out.

In order to make the IA usable in realistic HCR applications,
we must adapt it to use the modified framework presented in
the previous section so that it can make use of uncertain and
distributed knowledge. This adaptation is necessary because
when information is uncertain and distributed, we cannot
assume that there will exist a precomputed set of sufficiently
probable properties that hold for either the target or its
distractors. Thus, instead of a simple set-membership check,

we must use the framework to assess whether each property
holds for the target or a given distractor by making a query
to the relevant consultant.

In this section, we present DIST-PIA, the Distributed, Prob-
abilistic Incremental Algorithm which does just that. In the
remainder of this section, we first define the notation used
throughout the remainder of the section. We then present as
pseudocode the DIST-PIA algorithm and its helper function,
DIST-PIA-HELPER. Finally, we provide a walkthrough of
these algorithms on an example problem.

A. Notation

C A set of consultants {c0, . . . , cn}
cΛm The set of formulae {λ0, . . . , λn} advertised by the consultant

c ∈ C responsible for m.
M A robot’s world model of entities {m0 . . .mn} found in the

domains provided by C.
D The incrementally built up description, comprised of mappings from

entities M to sets of pairs (λ,Γ) of formulae and bindings for
those formulae.

DM The set of entities m ∈M for which sub-descriptions have been
created.

dM The set of entities m ∈M involved in sub-description d.
P The set of candidate (λ,Γ) pairs under consideration for addition

to a sub-description.
Q The queue of referents which must be described.
X The incrementally pruned set of distractors

Algorithm 1 DIST-PIA(m,C)

1: D = new Map() // The Description
2: Q = new Queue(m) // The Referent Queue
3: while Q 6= ∅ do
4: // Consider the next referent
5: m′ = pop(Q)
6: // Craft a description d for it
7: d = DIST-PIA-HELPER(m′, C)
8: D = D ∪ {m→ d}
9: // Find all entities used in d

10: for all m′′ ∈ dM \ keys(D) do
11: // And add undescribed entities to the queue
12: push(Q,m′′)
13: end for
14: end while
15: return D

B. Algorithm Walkthrough

In this section we will provide a walkthrough of our algo-
rithms in an example scenario. Each step of this walkthrough is
summarized in a row of Tab. I and denoted in the walkthrough
in bold (e.g., (1)).

Imagine a robot with three distributed consultants which
use disparate representational schemes for representing people,
locations, and objects respectively (p, l, o). Suppose that this
robot needs to refer to entity p5. Provided with target referent
m = p5 and set of consultants C = {p, l, o}, DIST-PIA (DP
hereafter) will begin (Tab. I Row (1); Algorithm 1,Lines 1-
2) by creating empty description D = ∅ and referent queue
Q = {p5}. Next, DP must determine the next referent for
which a description must be created (Line 5), popping p5 off
of Q. Because a description for p5 does not appear in D,
will call DIST-PIA-HELPER) (DPH hereafter) with arguments
(p5, {p, l, o}) (Line 7). DPH is responsible for crafting the

Algorithm 2 DIST-PIA-HELPER(m,C)

1: d = ∅ // The Sub-Description
2: X = M \m // The Distractors
3: // Initialize a set of properties to consider: those advertised by the

consultant c responsible for m
4: P = [∀λ ∈ cΛm : (λ, ∅)]
5: // While there are distractors to eliminate or properties to consider
6: while X 6= ∅ and P 6= ∅ do
7: (λ,Γ) = pop(P)
8: // Find all unbound variables in the next property
9: V = find_unbound(λ,Γ)

10: if |V |> 1 then
11: // If there’s more than one, create copies of that property under

all possible variable bindings that leaving unbound exactly one
variable of the same type as the target referent

12: for all Γ′ ∈ cross_bindings(λ,Γ, C) do
13: // And push them onto the property list
14: push(P, (λ,Γ′))
15: end for
16: // Otherwise, if it is sufficiently probable that the property applies

to the target referent...
17: else if apply(cm, λ,Γ ∪ (v0 → m)) > τdph then
18: // And it’s sufficiently probable that it does not apply to at least

one distractor...
19: X̄ = [x ∈ X | apply(cx, λ,Γ ∪ (v0 → x)) > τdph]
20: // Then bind its free variable to the target referent, and add it to

the sub-description...
21: if X̄ 6= ∅ then
22: // And remove any eliminated distractors
23: d = d ∪ (λ,Γ ∪ (v0 → m))
24: X = X \ X̄
25: end if
26: end if
27: end while
28: return d

sub-descriptions that comprise D, and begins by initializing
sub-descriptor d = ∅, distractor set X = {p1, p2, p3, p4}
(assuming a set of five known people), and a set of properties
P to consider adding to d (Algorithm 2, Lines 1- 4). Suppose
p (i.e., the consultant cm responsible for entity m) advertises
the set of properties cΛm = jim(X-p), jill(X-p), man(X-p),
woman(X-p), lives-in(X-p,Y-l).

First, DPH will pop from P the first unconsidered property
(i.e., jim(X − p)) in the form of a pair (λ,Γ), where λ is
a formula and Γ is a partial set of bindings for that formula
(Line 7). Next, DIST-PIA-HELPER finds all variables V in
λV that do not have bindings in Γ (Line 9). jim(X − p)
has exactly one unbound variable, so DPH will use (2) the
apply method (provided by each of DP’s consultants, as per
capability three) to ask how probable it is that jim(p5) holds.
Suppose the returned probability is above some threshold, say
60%. DPH will thus determine if this property also weeds
out distractors. For each referent x in X , DPH uses apply
to ask how probable it is that jim(x) holds. Suppose this
is only sufficiently probable for p2. The set of eliminated
distractors X̄ will equal {p1, p3, p4}. Since this is nonempty,
(3) {p1, p3, p4} will be removed from X and (4) jim(p5) will
be added to sub-description d (Lines 17- 26).

DPH will next consider jill(X−p). This has one unbound
variable, so DPH will use (5) apply to ask how probable
it is that jill(p5) holds. Suppose the returned probability is
below 60%. DPH will move on, to consider man(X − p).

This predicate has one unbound variable, so DPH will use
(6) apply to ask how probable it is that man(p5) holds.
Suppose the returned probability is above 60%. DPH will thus
determine if this property also weeds out distractors. For each
referent x in X , DPH will use apply to ask how probable it
is that man(x) holds. Suppose this is sufficiently probable for
the lone remaining distractor, p2. Since the set of eliminated
distractors X̄ is empty (7), DPH will not add this property to
d, but will instead move on.

DPH will next consider woman(X − p). This has one
unbound variable, so DPH will use (8) apply to ask how
probable it is that woman(p5) holds. Suppose the returned
probability is below 60%. DPH will move on, to consider
lives-in(X − p, Y − l). This has two unbound variables, so
DPH will use (9) cross_bindings to create variable bindings
that leave exactly one p-associated variable unbound. Since
only X is associated with p, it finds the set of candidate
bindings to Y . If l knows of three locations: {l1, l2, and l3},
DPH will add the following to P : (lives-in(X − p, Y −
l), {Y → ls1}), (lives-in(X − p, Y − l), {Y → ls2}), and
(lives-in(X − p, Y − l), {Y → ls3}) (Lines 10- 15).

DPH will next consider lives-in(X − p, l1). This has
one unbound variable, so DPH will use (10) apply to ask
how probable it is that lives-in(p5, l1) holds. Suppose the
returned probability is above 60%. DPH will thus determine
if this property also weeds out distractors. For each referent
x in X , DPH will use apply to ask how probable it is
that lives-in(x, l1) holds. Suppose that this is not suffi-
ciently probable for the lone remaining distractor, p2. The
set of eliminated distractors X̄ will equal {p2}. Since this
is nonempty (11), lives-in(X − p, Y − l) will be added (12)
to d and {p2} will be removed from X . Since X is empty,
p5 → {jim(p5), lives-in(p5, l1)} will be returned (13) to DP
(Line 28).

Now, DP will add all entities mentioned in this set of
properties that have not yet been described (i.e., l1) to Q.
Next, DP will pop l1 off of Q, and call DPH(l1, {p, l, o}).
DPH will first initialize (14) sub-descriptor d = ∅, and set
of distractors X = {l2, l3}, assuming for simplicity that l
only knows of three people. Next, let’s suppose l adver-
tises the following properties: somerville(X-l),cambridge(X-
l),massachusetts(X-l),in(X-l,Y-l).

First, DPH will consider somerville(X − l). This has
one unbound variable, so DPH will use (15) apply to ask
how probable it is that somerville(l1) holds. Suppose the
returned probability is above 60%. DPH will thus deter-
mine if this property also weeds out distractors. For each
referent lx in X , DPH will use apply to ask how proba-
ble it is that somerville(lx) holds. Suppose that it is not
sufficiently probable that any of the distractors have this
property. The set of eliminated distractors X̄ will equal
{l2, l3}. Since this is nonempty (16), somerville(l1) will
be added (17) to d and {l2, l3} will be removed from
X . Since X is empty, l1 → {somerville(l1)} will be
returned (18) to DP. Since Q is empty, DP will return
{p5 → {jim(p5), lives-in(p5, l1)}, l1 → {somerville(l1)}}

Act Description m Sub-
description

Distractors Property Property List

1 P ∅ p5 ∅ {p1, p2, p3, p4} ∅ {jim(X-p), jill(X-p),man(X-p), wom(X-p),
l-in(X-p, Y -l)}

2 A ∅ p5 ∅ {p1, p2, p3, p4} jim(X-p) {jill(X-p),man(X-p), wom(X-p), l-in(X-p, Y -l)}
3 E ∅ p5 ∅ {p2} jim(X-p) {jill(X-p),man(X-p), wom(X-p), l-in(X-p, Y -l)}
4 d ∅ p5 {jim(p5)} {p2} ∅ {jill(X-p),man(X-p), wom(X-p), l-in(X-p, Y -l)}
5 A ∅ p5 {jim(p5)} {p2} jill(X-p) {man(X-p), wom(X-p), l-in(X-p, Y -l)}
6 A ∅ p5 {jim(p5)} {p2} man(X-p) {wom(X-p), l-in(X-p, Y -l)}
7 E ∅ p5 {jim(p5)} {p2} man(X-p) {wom(X-p), l-in(X-p, Y -l)}
8 A ∅ p5 {jim(p5)} {p2} wom(X-p) {l-in(X-p, Y -l)}
9 B ∅ p5 {jim(p5)} {p2} l-in(X-p, Y -l) {l-in(X-p, l1), l-in(X-p, l2), l-in(X-p, l3)}
10 A ∅ p5 {jim(p5)} {p2} l-in(X-p, l1) {l-in(X-p, l2), l-in(X-p, l3)}
11 E ∅ p5 {jim(p5)} ∅ l-in(X-p, l1) {l-in(X-p, l2), l-in(X-p, l3)}
12 d ∅ p5 {jim(p5),

l-in(p5, l1)}
∅ ∅ {l-in(X-p, l2), l-in(X-p, l3)}

13 D {jim(p5), l-in(p5, l1)} ∅ ∅ ∅ ∅ ∅
14 P {jim(p5), l-in(p5, l1)} l1 ∅ {l2, l3} ∅ {som(X-l), cam(X-l),mass(X-l), in(X-l, Y -l)}
15 A {jim(p5), l-in(p5, l1)} l1 ∅ {l2, l3} som(X-l) {cam(X-l),mass(X-l), in(X-l, Y -l)}
16 E {jim(p5), l-in(p5, l1)} l1 ∅ ∅ som(X-l) {cam(X-l),mass(X-l), in(X-l, Y -l)}
17 d {jim(p5), l-in(p5, l1)} l1 {som(l1)} ∅ ∅ {cam(X-l),mass(X-l), in(X-l, Y -l)}
18 D {jim(p5), l-in(p5, l1), som(l1)} ∅ ∅ ∅ ∅ ∅

TABLE I: WALKTHROUGH SUMMARY. Column Two summarizes action taken: Prepare, Assess, Eliminate, Bind, d-append, or D-append.
Some predicates are abbreviated, and predicate/binding tuples are rewritten as bound predicates.

(Algorithm 1, Line 15), with the expectation that natural lan-
guage generation will use these properties to craft a referring
expression along the lines of “Jim, who lives in Somerville”.

V. CONCLUSION

In this paper, we make three main contributions. First, we
presented a domain independent algorithm for REG under
uncertainty, which separates the problems of referring ex-
pression generation and reference resolution from the task of
property assessment. Second, we have taken the realities of
modern integrated agent architectures into account by using
our consultant framework [9], which allows information to be
distributed across multiple heterogeneous KBs.

In future work, we must evaluate this approach to experi-
mentally verify that the REs it generates are both useful and
natural. Once this is done, we would like to adapt our approach
to learn its thresholds from data, to use uncertainty repre-
sentations that better handle ignorance [10], to incorporate
audience design considerations, similar to Horacek [6], to use
Givenness-Hierarchy Theoretic mechanisms [11] to generate
deictic and anaphoric REs, and to extend the approach to
generate references to sets of objects as well [5, 8].

ACKNOWLEDGMENTS

This research was in part funded by grant N00014-14-1-0149
from the US Office of Naval Research.

REFERENCES

[1] Robert Dale. Cooking up referring expressions. In
Proc. of the 27th Annual Meeting of the Association for
Computational Linguistics, pages 68–75, 1989.

[2] Robert Dale and Ehud Reiter. Computational interpreta-
tions of the gricean maxims in the generation of referring
expressions. Cognitive Science, 19(2):233–263, 1995.

[3] Rui Fang, Changsong Liu, Lanbo She, and Joyce Y
Chai. Towards situated dialogue: Revisiting referring

expression generation. In Proc. of Empirical Methods
on Natural Language Processing, pages 392–402, 2013.

[4] Rui Fang, Malcolm Doering, and Joyce Y Chai. Em-
bodied Collaborative Referring Expression Generation in
Situated Human-Robot Interaction. In Proc. of the 10th
Int’l Conference on Human-Robot Interaction, 2015.

[5] Nicholas Fitzgerald, Yoav Artzi, and Luke Zettlemoyer.
Learning Distributions over Logical Forms for Referring
Expression Generation. In Proc. of Empirical Methods in
Natural Language Processing, pages 1914–1925, 2013.

[6] Helmut Horacek. Generating referential descriptions
under conditions of uncertainty. In Proc. of the 10th
European Workshop on NLG, pages 58–67, 2005.

[7] Amir Sadovnik, Andrew Gallagher, and Tsuhan Chen.
Not everybody’s special: Using neighbors in referring
expressions with uncertain attributes. In Proc. of the
Conference on Computer Vision and Pattern Recognition
Workshops, pages 269–276, 2013.

[8] Kees Van Deemter. Generating referring expressions:
Boolean extensions of the incremental algorithm. Com-
putational Linguistics, 28(1):37–52, 2002.

[9] Tom Williams and Matthias Scheutz. A framework for re-
solving open-world referential expressions in distributed
heterogeneous knowledge bases. In Proc. of the 30th
AAAI Conference on Artificial Intelligence, 2016.

[10] Tom Williams, Gordon Briggs, Bradley Oosterveld, and
Matthias Scheutz. Going beyond command-based in-
structions: Extending robotic natural language interaction
capabilities. In Proc. of 29th AAAI Conference on
Artificial Intelligence, pages 1387–1393, 2015.

[11] Tom Williams, Saurav Acharya, Stephanie Schreitter,
and Matthias Scheutz. Situated open world reference
resolution for human-robot dialogue. In Proc. of the 11th
Int’l Conference on Human-Robot Interaction, 2016.

	Introduction
	Previous Work
	Framework
	Algorithm and Walkthrough
	Notation
	Algorithm Walkthrough

	Conclusion

