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Abstract—In this work we create human-robot teams in which
humans pilot their own vehicle and team up with several
autonomous vehicles to accomplish a common goal. We focus
on human-robot teamwork in the marine environment as it is
challenging and can serve as a surrogate for other environments.
Humans use motorized kayaks to interact with autonomous
surface vehicles. Marine elements such as wind speed, air
temperature, water, obstacles, and ambient noise can have drastic
implications for team performance. Our goal is to create a
human-robot system that can join many humans and many
robots together to cooperatively perform tasks in such challenging
environments. We have previously presented our human-robot
speech dialog system which has been through several rounds of
user-centered design improvements. In this paper, we present our
plan to integrate a human operator’s physiological measurements
so that an autonomous teammate can vary their communication
and levels of control in response to the operator’s cognitive
load. We present initial results of using heart rate as a potential
measure of cognitive load. Our goal is to perform further user-
centered design improvements with both user feedback and
physiological measures as guidance.

I. INTRODUCTION

Modern systems are combining manned vehicles with au-
tonomous vehicles to perform tasks in challenging envi-
ronments. For example, the U.S. Army has the Manned-
Unmanned Teaming (MUM-T) program in which manned
aircraft work with unmanned aerial systems (UAS) [11]. The
manned aircraft are AH-64E Apache attack helicopters which
are aided by Grey Eagle UAS. The crews are able to request
various levels of control of the UAS from simply receiving
its camera data to ordering waypoints for the UAS to visit.
The U.S. Air Force’s “Loyal Wingman” project is exploring
manned-unmanned teaming in which an UAS and a manned
aircraft work directly on missions such as air interdiction,
attack on integrated air defense systems, and offensive counter
air [1, 5]. In this work we explore a similar manned-unmanned
teaming concept in the marine domain. The marine domain
is more accessible for deploying autonomous vessels (no ap-
proval is required from government agencies and vehicles can
be easily stopped on the water) and yet still challenging given
the elements in the environment. Our manned vessel is a mo-
torized kayak and our autonomous teammate is an autonomous
surface vehicle (ASV). In particular we focus on preliminary
user-centered design improvements of our speech dialogue
system in order to perform tasks of increasing complexity.

Fig. 1. Human operator in the motorized kayak, Mokai ES-Kape, and the
autonomous robot teammate Arnold.

In future experiments we wish to expand to coordinating
with several team-members while also recording physiological
data of our participants. This will allow for exploration of
the interplay between operator load, robot autonomy, and
human-robot trust. It is our goal to provide lessons learned
from our platform in the marine domain to other challenging
environments. Our design principal is for novice users to begin
using the system in a short period of time. We have previously
presented our manned unmanned teaming system along with
user-centered design improvements and initial pilot study
aimed at comparing human vs autonomous vehicle teammates
[7] [8]. This paper describes our plan to integrate a human
operator’s physiological measurements so that an autonomous
teammate can vary their interaction with the human based on
their cognitive load. We present initial results of using heart
rate as a possible measure of cognitive load for our motorized
kayak operators.

II. RELATED WORK

Uhrmann et al. [10] investigated the Manned-Unmanned
Teaming (MUM-T) domain. The researchers simulated a full-
scale military helicopter mission with the introduction of
UAVs for route reconnaissance and for observing the des-
ignated landing sites prior to the approach of the manned
helicopter. The mission was to have troops transported via
manned helicopter to secure an object. Both manned and
unmanned assets provided reconnaissance information and



overwatch after troop delivery. The human-robot interface
varied depending on the focus of the task such as maps for
spatial representations of a task and timetables or schedules for
temporal representations. Speech interfaces were utilized when
task representation involved a causal component, with previous
or following tasks refered in speech output or commands.

Draper et al. [3] investigated using speech input versus
manual input for an unmanned aerial vehicle control station.
The control station was designed to operate one vehicle at
a time with multiple monitors and manual controls. They
found that speech input was superior to manual input for
flight/navigation and data entry tasks. Operators in this study
indicated that speech provided a head up and hands-free
advantage.

Franke et al. [4] describe systems for command and control
for a single human operator to many autonomous vehicles.
The authors note that using auditory cues and speech frees
the operator’s eyes and hands to observe other information
and manipulate other tasks. They describe three primary
control paradigms: direct control, management by consent, and
management by exception. Direct control is when a human
does all the decision making and information processing. This
approach has a high workload as it requires the operator to
constantly attend the controls. Management by consent has
a lower operator workload as the vehicle performs planning
but waits for the operator to approve it before proceeding.
In management by exception the vehicle performs its own
planning and starts executing the plan. In this case, the
operator can override any actions or plans of the vehicle. The
autonomy in the surface vehicles in our work is higher than the
direct control paradigm because it takes high level commands
such as “Follow” instead of direct joystick inputs.

Solovey et al. [9] attempted classifying driver workload
using physiological and driving performance data. Using ma-
chine learning techniques, they had classification accuracies by
several algorithms of up to 90% for detecting elevated levels of
cognitive load. These measures were collected in real-time and
did not interfere with the primary task of driving the vehicle.
The researchers used heart rate (HR) and skin conductance
level (SCL) as the physiological measures. Driving speed,
steering wheel position, and acceleration data were measures
of vehicle control. Cognitive workload was increased using
an “n-back” task which is an auditory presentation of digits
followed by a verbal response by the participant delayed
by n numbers. An important facet of this work is that the
participants first drove in urban traffic for ten minutes to
acclimate to the vehicle. They then drove twenty minutes
on an interstate highway for additional familiarization. After
familiarization, a single task of driving was used as a reference
period. Then alternating task periods of “n-back” and rest
and recovery were performed. The researchers found that HR
was the most sensitive to cognitive load changes. They found
Logistic regression and naive Bayes performed significantly
better than all the other classifiers attempted.

III. MANNED-UNMANNED TEAMING SYSTEM

Our manned-unmanned teaming system is comprised of a
human in a motorized kayak and autonomous surface vehicles
which communicate through speech. The vehicle for human
conveyance is an augmented Mokai ES-Kape motorized kayak.
The ES-Kape weighs 88.45 kg, has a length of 3.63 meters,
and is powered by a Subaru EX21 engine that can reach top
speeds of 54 km/h. In order to function as a vehicle on our
network, the ES-Kape has been augmented with a semi-rugged
laptop, compass, GPS, and long range WiFi antenna.

The autonomous teammates are Clearpath Robotics King-
fisher M300s. The ASV is a mid-sized surface vessel with
a weight of 28 kg and travels at 1.5 m/s. The autonomy
for the ASV is provided by MOOS-IvP [2]. MOOS is a
robot middleware that utilizes a centralized database paradigm.
The autonomy is provided by the IvP Helm behavior-based
decision engine architecture. The IvP Helm behaviors used in
this work are trail, station, and waypoint.

A dual radio headset with dual push-to-talk (PTT) is used to
mitigate the effects of wind and motor noise from the Mokai.
The right speaker/PTT combination is connected to a 5-Watt
waterproof handheld radio which is used to communicate
with humans such as on shore or in a safety boat. The
left speaker/PTT combination is connected to a semi-rugged
laptop which runs the speech dialog MOOS-IvP modules that
communicate with the autonomous robot teammates.

The speech recognition used in this project is provided by
the open-source large vocabulary continuous speech recogni-
tion engine Julius [6]. The engine allows for the specification
of possible sentences and vocabulary to be recognized. The
Julius engine has been encapsulated into the MOOS-IvP
application uSpeechRec and adapted for use in our system.

A dialog manager was created called uDialogManager.
Each command sentence recognized by uSpeechRec is ac-
knowledged by asking the user “Did you mean, <com-
mand>?”, where the <command>echos what the system
believed to be uttered by the user. Possible baseline commands
are Follow, Station, and Return. The user can answer “No” in
which case uDialogManager does nothing and responds with
“Command Canceled” or the user can answer “Yes” in which
case uDialogManager sends the appropriate command to the
autonomous robot teammate and responds to the user with
“Command Sent.” The acknowledgment loop reduces error as
the accuracy in speech recognition can be affected by wind,
ambient noise, or user accents.

IV. PREVIOUS WORK

We performed user-centered design experiments which were
conducted on the Charles River in Cambridge, Massachusetts
where participants lead a teammate named Arnold to points of
interest on the river. User-centered design improvements were
implemented based on post-experiment participant question-
naire and interview data.

The human participant was asked to escort its teammate
to two points of interest marked with buoys on the water.
They were instructed to have their teammate station as close



as possible to each point of interest. Once all the points of
interest were visited they returned back to the starting location
at the dock.

Once the on-water orientations were completed the partic-
ipant was briefed on their task, which was described above.
After each experiment, the participant was asked to complete a
questionnaire. After the participant completed the experiment
and questionnaires, they were interviewed by an experimenter
on their experiences.

Five participants used the baseline system. Based on the
feedback in both questionnaire and interview data several
improvements were implemented. The major common issue
for the participants was a lack of feedback from their team-
mates, they were unsure of what task their teammate was
performing. The command “Arnold Status” was added to the
available sentences. Additionally, the pBotDialog application
was created so that the autonomous teammate would respond
with its current task upon receipt of the “Arnold Status”
request. The IvP Helm autonomy was augmented so that upon
switching to a new behavior it would inform the participant.
Fifteen participants performed the experiment in this design
iteration. Many of these participants used the “Arnold Status”
command to verify their teammate was still performing the
task they were commanded. Improvements in task performance
between the initial iteration and this improved version are
still being analyzed. Task performance measures include time
to complete the task and distance a human operator can
place their autonomous teammate to the buoy. Communication
measures include the number of repeated commands to the
robot. Other measures include participant responses on the
TLX questionnaires.

V. INTEGRATING PHYSIOLOGICAL AND ALTERNATIVE
MEASURES

In previous versions of our system, if the participant errors
in the command spoken or the system errors in speech
recognition, the user may cancel a command. Previously,
canceled commands were simply discarded. In a system trying
to monitor the participant, repeated canceled commands can
be an indicator of either system failure or participant over-
load. The uDialogManager can be adjusted to measure the
number of consecutive participant command rejections and
send a message to the autonomous teammate that there are
communication problems.

Heart Rate (HR) will be measured using the Zephyr
BioModule Device. Designed for athletes and high perfor-
mance environments, the BioModule attaches to a strap that
a participant can fit under their shirt. The BioModule uses
a BlueTooth interface that connects directly to the human
operator’s vehicle Toughbook computer.

Measuring galvanic skin response is more difficult given the
nature of our testing environment. The participants are close
to the surface of the water while in their vehicle. Water sprays
on them while their hands are on the hull of the kayak and
their torso and face can be sprayed by water depending on
their speed, water chop, and wind. Because participants use

both hands, one for the joystick to control their vehicle and
the other for communication, we are investigating sensors that
attach on parts of their body not exposed to the water such as
their feet.

Measuring the Mokai operator’s head motion may be an
additional piece of information to cognitive load or operator
comfort. Initial attempts have been made with a head-mounted
camera to observe optical flow of the image. A general sense
of head turn can be seen in the optical flow results. However,
when the vehicle turns or the operator looks to the water
at the side of the vehicle, the optical flow produces large
lateral movements in the image that do not correspond with
the operator’s head motion. Alternatively, we are exploring the
use of a compass to track head turning along with the head
mounted camera.

VI. PRELIMINARY HEART RATE EXPERIMENTS

In order to determine if heart rate (HR) could be an indi-
cator of cognitive load we performed explorative experiments
similar in fashion to Solovey et al. [9] and their use of the “n-
back” procedure. We established a baseline for the heart rate
of the Mokai operator by setting up a slalom course on the
water. The slalom course provided for a consistent challenge
for the operator rather than the operator driving into areas that
were relatively calm or full of traffic which would alter their
heart rate. The Mokai operator steered repeatedly in-between
buoys for 10 minutes. We then attempted to induce higher
cognitive load by giving the Mokai operator math equations
to solve via the radio from shore while still driving through the
slalom course. The types of math problems included simple
addition and subtraction in addition to a few more difficult
problems, namely the multiplication of 2 “larger” numbers
and an integral. As can be seen in Figure 2, the HR for the
slalom only modality was relatively consistent except for when
a stray paddleboarder entered the slalom and the operator had
to figure out how to maneuver in order to avoid a collision.
Figure 3 contains the modality in which the Mokai operator
navigates a slalom course and performs math over the radio.
Spikes in HR can be seen while the operator is processing
the more difficult problems. During just the slalom phase the
average HR was 116.94 with a standard deviation of 5.15
while in the slalom with math modality the average HR was
122.67 with a standard deviation of 8.11. The average and
standard deviation for the slalom modality were calculated
after removing an episode of the stray paddleboarder entering
the slalom, described above.

Based on these results, we will continue to investigate
using HR as a measure for cognitive load of our Mokai
operators. In particular, observing spikes in HR during the
difficult math problems gives an indication that it is a measure
of cognitive load. A difficulty with our current experimental
setup is that cognitive load was not maintained at an elevated
level throughout the ten minute time span. This indicates that
the math problems may have been too easy for the operator.
Additionally, radio reception was not always clear and some
time was needed to clarify and resend both questions and
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Fig. 2. Heart rate (in beats per minute) of the Mokai operator over a 10
minute period performing just a slalom course.

answers. Further exploration is required to design a modality
that maintains higher levels of cognitive load while the Mokai
operator is navigating the slalom.

VII. AUTONOMY ADAPTATION FURTHER
HUMAN-CENTERED DESIGN EXPERIMENTS

The first new set of human-centered design experiments
will begin with the improvements indicated by the participants
in the last iteration of experiments described above. This
will allow for an establishment of comfort with respect to
the physiological measuring instruments and data analysis,
along with any machine learning classifier creation, for the
researchers. It will also allow for exploration to determine if
the previous experiment of points of interest visitation actually
involves a high cognitive load, and if so, at which point
it occurs. Additionally, it will allow for comparison against
an augmented system in which the autonomy adapts to the
participant’s cognitive load.

There are several adaptations an autonomous teammate can
perform in response to perceived operator load. The first is to
modify the frequency and content of its messages. An observed
behavior by the participants in our experiments is the constant
need to look over their shoulders to verify the autonomous
robot teammate is performing the commanded action. A new
behavior in robot communication to address this will be the
continual communication of the robot’s status without being
prompted by the operator. Having the autonomous teammate
adjust the frequency of this status message may be regulated
by the perceived operator load, reducing the frequency when
the load is high. The second autonomy adaptation is to change
the way in which they are controlled based on operator
cognitve load: direct control, management by consent, or
management by exception. As described above, the current
implementation of the autonomous teammate is better than
direct control because the robots respond to commands such
as “follow”. In order for these autonomous teammates to
be capable of management by consent or management by
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Fig. 3. Heart rate (in beats per minute) sof the Mokai operator over a 10
minute period performing a slalom and math problems over the radio.

exception, they need a method of determining their possible
actions or plans based on the mission. This may then be
leveraged by the autonomous teammate to help reduce the
human’s cognitive load by switching itself from requiring
explicit mode commands to being managed by consent where
it can request permission to change modes based on context.

VIII. CONCLUSIONS AND FUTURE WORK

Our previous pilot study experiments demonstrated our
systems’ initial capability for a human-robot team to perform
tasks in a challenging environment. Improvements in the
dialog system were implemented based on feedback from
participants in the baseline experiments. It is our goal to
implement improvements to the autonomy that can adapt to the
perceived operator cognitive load. Our initial heart rate (HR)
experimental results do indicate that increased cognitive load
created by more difficult math problems does increase the HR
of the Mokai operator. Our next steps in the HR evaluation
for measuring cognitive load is to identify modalities that elicit
consistent cognitive load for extended periods of time. We will
also investigate whether direct ECG or heart rate variability
are more indicative of cognitive load. Future work will include
gathering physiological data to characterize cognitive load.
Our plan is to continue investigating galvanic skin response
and operator head motion. Further user-centered design itera-
tions and increased team size will aid in finding lessons learned
for application to other challenging environments.
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