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I. INTRODUCTION

Human trust is a key component for effective integration
of autonomy. Research has shown that inappropriate levels of
trust in the system can lead to over-reliance, or under-reliance
with detrimental effects on performance [Lee and See, 2004].

Consider, for example, the table-clearing example of Fig. 1
where a human and a robot collaborate to clear a table of its
items. When we asked users to perform this task with a robot
that was fully capable of clearing objects, we observed many
inexperienced participants prevented the robot from moving
the glass cup. They justified their interventions, saying that
they did not trust the robot and that letting the robot move
the glass cup was too risky. Clearly, human trust in the robot
directly affected the perception of risk [Siegrist, 2000] and
consequently, the interaction.

We propose a computational model that integrates human
trust into robot decision making. Because human trust is not
directly observable, we model it as a latent variable in a
partially observable Markov decision process (POMDP). This
trust-POMDP relies on two sub-models: (i) a trust dynamics
model, which captures the evolution of human trust in the
robot, and (ii) a human decision-making model, which cap-
tures the probability of different human actions depending on
trust. The POMDP formulation can accommodate a variety of
trust models. We propose a data-driven approach, where we
learn these two sub-models from data.

Although significant work has been done on real-time
human trust elicitation and modeling [Lee and Moray, 1992;
Floyd et al., 2015; Xu and Dudek, 2015; Wang et al., 2016],
this work closes the loop between modeling trust and choosing
robot actions to maximize team performance. Our model
enables the robot to both infer and influence the collaborating
human’s level of trust. Returning to our table clearing example,
our trust-POMDP robot first removes the three sealed water-
bottles to develop trust, and only attempts to remove the glass
cup at the end (Fig. 2). In contrast, a baseline robot that fails
to consider trust removes the highest reward item (the glass
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Fig. 1: Top: A robot and a human collaborate to clear a table.
Bottom left: A robot attempts to grasp the glass cup first,
causing the human teammate who does not trust the robot to
intervene. Bottom right: A robot has a model of human trust
and reasons with it for decision making. It increases human
trust by picking up the three bottles first and then goes for the
glass cup at the end, in order to minimize human intervention
and save human effort.

cup) first, resulting in unnecessary interventions by human
teammates with low initial trust.

We conducted an Amazon Mechanical Turk (AMT) study
to compare our trust-POMDP against a baseline model that
did not take human trust into account during decision-making.
Experimental results substantiates our hypothesis that reason-
ing with human-trust improved team performance: the trust-
POMDP was able to increase human trust when it was too low
and significantly reduced the number of human interventions.
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Fig. 2: Sample runs of the trust-POMDP (middle-row) and baseline (bottom-row) policies for the collaborative table-clearing
task. The top row shows the probabilistic estimate of human trust θ over time (ignored by the baseline policy). Each pictogram
represents a distinct snapshot of the task. The trust-POMDP policy starts with the bottles to build trust and chooses the glass
cup only when the estimated trust is high enough. The baseline policy starts with the glass cup, causing the human to intervene.

II. PROBLEM FORMULATION

A human-robot team can be treated as a multi-agent sys-
tem, with world state x ∈ X , robot action aR ∈ AR,
and human action aH ∈ AH. The system evolves accord-
ing to a stochastic state transition function T : X × AR ×
AH → Π(X). At each time step, the human-robot team
receives a real-valued reward R(x, aR, aH). We denote ht =
{x0, aR

0, a
H
0 , x1, . . . , xt−1, a

R
t−1, a

H
t−1} ∈ Ht as the history of

interaction between robot and human until time step t. We
assume that the human follows a stochastic policy, πH :
X ×AR ×Ht → Π(AH), that is unknown to the robot.

Our objective is to compute an optimal policy πR∗
for the

robot that maximizes the expected total discounted reward:

πR∗
= arg max

πR
E
πH

[ ∞∑
t=0

γtR
(
xt, a

R
t , a

H
t )|πR, πH

]
(1)

where xt, aR
t , a

H
t denote the state, action taken by the robot and

action taken by the human at time step t. The expectation is
taken over the human behavioral policies πH and the sequence
of uncertain state transitions over time. For the robot to solve
the optimization problem from Eq. 1, the robot needs access
to the human behavioral policies πH. In general, the human
behavior may depend on the entire history of interactions ht,
which can grow arbitrarily large.

Our key insight is that in a number of human-robot col-
laboration scenarios, trust is a compact approximation of the
history of interactions ht. Therefore, we hypothesize that we
can use trust as a predictor of future human actions. This
allows us to condition human behavior on the inferred trust
level, and in turn find the optimal policy that maximizes team
performance.

However, trust cannot be directly observed by the robot and
therefore, has to be inferred. Furthermore, trust in the robot
is likely to change depending on the robot’s performance.
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Fig. 3: State transition dynamics of trust-POMDP. The hu-
man action aH

t at time t is governed by a stochastic policy
P (aH

t |xt, θt, aR
t ) that depends on the world state xt, the robot

action aR
t , and the current trust level θt (red arrows). The

human and robot actions influence the next world state xt+1.
pt+1 = f(aH

t , a
R
t , xt+1) is the robot’s performance at time t.

Given the robot performance and the previous trust level, trust
then updates stochastically via P (θt+1|θt, pt+1) (blue arrows).

Both these issues can be addressed by the partially observable
Markov decision process (POMDP), which provides a prin-
cipled and general framework for sequential decision making
under uncertainty.

Our trust-POMDP takes trust as a latent state variable θ, and
includes a model of human behavior and trust dynamics into
the state transition function (Fig. 3). The solution to a trust-
POMDP is a policy that maximizes the team performance.

III. EVALUATION

We validated our trust-POMDP model via an online human
subject experiment (201 participants) on the collaborative
table-clearing task. Before the robot had reached each object,
the video of the robot moving towards the object paused, and
participants could choose to intervene and pick up the object
themselves. Participants’ intervention rate decreased by 31%
and 54% when our trust-POMDP robot attempted to remove



the glass and can objects, compared to a baseline robot that
did not account for trust, resulting in a statistically significant
improvement in team performance.

We look forward to extend this evaluation with real-world
human subject experiments, and to applying our trust-POMDP
to enhance the usability of autonomous systems in a variety
of collaborative settings.
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