
Task
Simone Campanoni
simone.campanoni@northwestern.edu

Outline

•What is a Task in NOELLE

• Creation of a Task

• Invoking a Task

2

Task in NOELLE

3

• Sources:
src/core/task

• Header:
install/noelle/core/Task.hpp

Task in NOELLE
A task t is a wrapper of
1. A set of instructions S organized in basic blocks cloned from the original code
2. S is wrapped into a new function f and
3. An environment e that includes live-in and live-out variables of S

4

i: …
j: %v1 = %v0 + 1
k: %v2 = %v1 * 4
z: call @g(%v2)

j’: %v1’ = %v0’ + 1
k’: %v2’ = %v1’ * 4

f

eValue Live-In ?

%v0 True

%v2 False

S

Original Clone

%v0 %v0’

%v1 %v1’

%v2 %v2’

Code
mappingGet live-in values

Propagate
live-out values

Task in NOELLE
A task t is a wrapper of
1. A set of instructions S organized in basic blocks cloned from the original code
2. S is wrapped into a new function f and
3. An environment e that includes live-in and live-out variables of S

5

• f is called “task body”

• e is called “task environment”

• t has a static unique ID (uint64_t) and a dynamic instance ID
• The static ID is set by the Task abstraction automatically
• The instance ID is a Value * and whoever defines t is responsible to create it

and register it to Task

Task in NOELLE
A task t is a wrapper of
1. A set of instructions S organized in basic blocks cloned from the original code
2. S is wrapped into a new function f and
3. An environment e that includes live-in and live-out variables of S

6

Task definition Task invocation

Task in NOELLE: task signature
A task t is a wrapper of
1. A set of instructions S organized in basic blocks cloned from the original code
2. S is wrapped into a new function f and
3. An environment e includes pointers to all live-in and live-out variables of S

7

• Whoever creates t is responsible to define the signature of f
• f needs to obtain as inputs everything that it needs to execute
• An instance of e (of some shape/form) needs to be an input of f
• The return type of the signature of f can only be void
• The signature is an input to the Task constructor

Task in NOELLE: body definition
A task t is a wrapper of
1. A set of instructions S organized in basic blocks cloned from the original code
2. S is wrapped into a new function f and
3. An environment e that includes live-in and live-out variables of S

8

i: …
j: %v1 = %v0 + 1
k: %v2 = %v1 * 4
z: call @g(%v2)

f

eValue Live-In ?

%v0 True

%v2 False

S

Code
mapping

void f (int8 *%e)

Task in NOELLE: task signature
A task t is a wrapper of
1. A set of instructions S organized in basic blocks cloned from the original code
2. S is wrapped into a new function f and
3. An environment e includes pointers to all live-in and live-out variables of S

9

Task in NOELLE: task definition
A task t is a wrapper of
1. A set of instructions S organized in basic blocks cloned from the original code
2. S is wrapped into a new function f and
3. An environment e that includes live-in and live-out variables of S

10

• Whoever creates t is responsible to define the body of f
• The body is first defined by the creation of two basic blocks

• Entry basic block: first code executed when f is invoked
• Exit basic block: last code executed before leaving f
• Both basic blocks are empty

Task in NOELLE: task signature
A task t is a wrapper of
1. A set of instructions S organized in basic blocks cloned from the original code
2. S is wrapped into a new function f and
3. An environment e includes pointers to all live-in and live-out variables of S

11

void f (int8 *%e)

Task in NOELLE: body definition
A task t is a wrapper of
1. A set of instructions S organized in basic blocks cloned from the original code
2. S is wrapped into a new function f and
3. An environment e that includes live-in and live-out variables of S

12

• Whoever creates t is responsible to define the body of f
• The body is first defined by the creation of two basic blocks
• New basic blocks are then created by cloning S

void Task::cloneAndAddBasicBlocks(
 const std::unordered_set<BasicBlock *> &bbs,
 std::function<bool(Instruction *origInst)> filter);

Task in NOELLE: body definition
A task t is a wrapper of
1. A set of instructions S organized in basic blocks cloned from the original code
2. S is wrapped into a new function f and
3. An environment e that includes live-in and live-out variables of S

13

• Whoever creates t is responsible to define the body of f
• The body is first defined by the creation of two basic blocks
• New basic blocks are then created by cloning S

Task in NOELLE: body definition
A task t is a wrapper of
1. A set of instructions S organized in basic blocks cloned from the original code
2. S is wrapped into a new function f and
3. An environment e that includes live-in and live-out variables of S

14

i: …
j: %v1 = %v0 + 1
k: %v2 = %v1 * 4
z: call @g(%v2)

j’: %v1’ = %v0’ + 1
k’: %v2’ = %v1’ * 4

eValue Live-In ?

%v0 True

%v2 False

S

Original Clone

%v0 %v0’

%v1 %v1’

%v2 %v2’

Code
mapping

void f (int8 *%e)

?

?

Task in NOELLE: environment definition
A task t is a wrapper of
1. A set of instructions S organized in basic blocks cloned from the original code
2. S is wrapped into a new function f and
3. An environment e that includes live-in and live-out variables of S

15

• Whoever creates t is responsible to identify and instantiate e correctly
• t sees e as a Value * to be the pointer from which

you can reach all live-in and live-out variables of the code wrapped into f
• The data layout of the objected pointed by e is decided by whoever designs a task

(rather than Task itself)
• In other words, Task ignores the details about how e looks in memory

Task in NOELLE: environment
A task t is a wrapper of
1. A set of instructions S organized in basic blocks cloned from the original code
2. S is wrapped into a new function f and
3. An environment e that includes live-in and live-out variables of S

16

i: …
j: %v1 = %v0 + 1
k: %v2 = %v1 * 4
z: call @g(%v2)

j’: %v1’ = %v0’ + 1
k’: %v2’ = %v1’ * 4

%p0 = GEP(%e, …)
%v0p = load %p0
%v0’ = load %v0p
%p1 = GEP(%e, …)
%v2p = load %p1

store %v2’, %v2p
ret

f

eValue Live-In ?

%v0 True

%v2 False

S

Original Clone

%v0 %v0’

%v1 %v1’

%v2 %v2’

Code
mapping

Task in NOELLE: environment
A task t is a wrapper of
1. A set of instructions S organized in basic blocks cloned from the original code
2. S is wrapped into a new function f and
3. An environment e that includes live-in and live-out variables of S

17

i: …
j: %v1 = %v0 + 1
k: %v2 = %v1 * 4
z: call @g(%v2)

j’: %v1’ = %v0’ + 1
k’: %v2’ = %v1’ * 4

%p = GEP(%e, …)
%v0’ = load %p
%v2p = GEP(%e, …)

store %v2’, %v2p
ret

f

eValue Live-In ?

%v0 True

%v2 False

S

Original Clone

%v0 %v0’

%v1 %v1’

%v2 %v2’

Code
mapping

Outline

•What is a Task in NOELLE

• Creation of a Task

• Invoking a Task

18

Task in NOELLE: task invocation
A task t is a wrapper of
1. A set of instructions S organized in basic blocks cloned from the original code
2. S is wrapped into a new function f and
3. An environment e that includes live-in and live-out variables of S

19

• t is invoked by calling f
• The code that invokes f needs to setup a memory instance of e consistently

with the data layout chosen by whoever defined the Task

Task in NOELLE: example0

20

i: …
j: %v1 = %v0 + 1
k: %v2 = %v1 * 4
z: call @g(%v2) j’: %v1’ = %v0’ + 1

k’: %v2’ = %v1’ * 4

%p = GEP(e, …)
%v0p = load %p
%v0 = load %v0p
%v2p = GEP(e, …)

store %v2’, %v2p
ret

f

eValue Live-In ?

%v0 True

%v2 False

S

Original Clone

%v0 %v0’

%v1 %v1’

%v2 %v2’

Code
mapping

%le = alloca …
%v1s = alloca
%v2s = alloca
%v1sp = GEP(%le, 0)
store %v1s, %v1sp
%v2sp = GEP(%le, 1)
store %v2s, %v2sp

store %v1, %v1s
call @f (%le)
%v2 = load %v2s

Task in NOELLE: example1

21

i: …
j: %v1 = %v0 + 1
k: %v2 = %v1 * 4
z: call @g(%v2) j’: %v1’ = %v0’ + 1

k’: %v2’ = %v1’ * 4

%p = GEP(e, …)
%v0’ = load %p
%v2p = GEP(e, …)

store %v2’, %v2p
ret

f

eValue Live-In ?

%v0 True

%v2 False

S

Original Clone

%v0 %v0’

%v1 %v1’

%v2 %v2’

Code
mapping

%le = alloca …
%v1sp = GEP(%le, 0)
%v2sp = GEP(%le, 1)

store %v1, %v1sp
call @f (%le)
%v2 = load %v2sp

Always have faith in your ability

Success will come your way eventually

Best of luck!

22

