Advanced

T PICS
n
C mpilers

Task

Simone Campanoni
simone.campanoni@northwestern.edu

Outline

e What is a Task in NOELLE

e Creation of a Task

* Invoking a Task

Task in NOELLE

* Sources:
src/core/task

 Header:
install/noelle/core/Task.hpp

Task in NOELLE

A task t is a wrapper of

1. Asetof instructions S organized in basic blocks cloned from the original code

2. Siswrapped into a new function f and

3. Anenvironment e that includes live-in and live-out variables of S

fi_

\

j: %v1 =%v0 + 1
k: %v2 = %vl1 * 4

JS

z: call @g(%v2
_ g(%v2)

Y

(
Get live-in values

_

\

J

7

ji%v1 =%v0" +1

N

k': %v2' = %vl’ * 4
_)

-
Propagate

\ live-out values

%Vv0 %v0’
%v1 %Vv1’
%V?2 %Vv2’
%Vv0 True

%V?2 False

Task in NOELLE

A task t is a wrapper of

1. Asetof instructions S organized in basic blocks cloned from the original code
2. Siswrapped into a new function f and

3. Anenvironment e that includes live-in and live-out variables of S

e fis called “task body”
e e s called “task environment”

* t has a static unique ID (uint64_t) and a dynamic instance ID
* The static ID is set by the Task abstraction automatically

* The instance ID is a Value * and whoever defines t is responsible to create it
and register it to Task

Task in NOELLE

A task t is a wrapper of

1. Asetof instructions S organized in basic blocks cloned from the original code
2. Siswrapped into a new function f and

3. Anenvironment e that includes live-in and live-out variables of S

i -

Task definition Task invocation

Task in NOELLE: task signature

A task t is a wrapper of

1. Asetof instructions S organized in basic blocks cloned from the original code
2. Siswrapped into a new function f and

3. Anenvironment e includes pointers to all live-in and live-out variables of S

 Whoever creates t is responsible to define the signature of f
* f needs to obtain as inputs everything that it needs to execute
* An instance of e (of some shape/form) needs to be an input of f
* The return type of the signature of f can only be void
* The signature is an input to the Task constructor

Task in NOELLE: body definition

A task t is a wrapper of

1. Asetof instructions S organized in basic blocks cloned from the original code
2. Siswrapped into a new function f and

3. Anenvironment e that includes live-in and live-out variables of S

2)

it
[j:%vlz%v0+1 JS
k: %v2 = %vl * 4
z: call @g(%v2)
\ ! %v0 True

%Vv2 False

Task in NOELLE: task signature

A task t is a wrapper of

1. Asetof instructions S organized in basic blocks cloned from the original code
2. Siswrapped into a new function f and

3. Anenvironment e includes pointers to all live-in and live-out variables of S

/*
* Define the signature of the task.
*/

auto tm = noelle.getTypesManager();
auto funcArgTypes = ArrayRef<Type *>({ tm->getVoidPointerType() });
auto taskSignature = FunctionType::get(tm->getVoidType(), funcArgTypes, false);

Task in NOELLE: task definition

A task t is a wrapper of

1. Asetof instructions S organized in basic blocks cloned from the original code
2. Siswrapped into a new function f and

3. Anenvironment e that includes live-in and live-out variables of S

* Whoever creates t is responsible to define the body of f
* The body is first defined by the creation of two basic blocks
* Entry basic block: first code executed when f is invoked
 Exit basic block: last code executed before leaving f
* Both basic blocks are empty

Task in NOELLE: task signature

A task t is a wrapper of

1. Asetof instructions S organized in basic blocks cloned from the original code
2. Siswrapped into a new function f and

3. Anenvironment e includes pointers to all live-in and live-out variables of S

/*
* Define the signature of the task.
*/
auto tm = noelle.getTypesManager(); s
auto funcArgTypes = ArrayRef<Type *>({ tm->getVoidPointerType() });
auto taskSignature = FunctionType::get(tm->getVoidType(), funcArgTypes, false);
/* _

* Create an empty task.
*/

auto t = new Task(taskSignature, M); [

Task in NOELLE: body definition

A task t is a wrapper of

1. Asetof instructions S organized in basic blocks cloned from the original code
2. Siswrapped into a new function f and

3. Anenvironment e that includes live-in and live-out variables of S

* Whoever creates t is responsible to define the body of f

* The body is first defined by the creation of two basic blocks

* New basic blocks are then created by cloning S
void Task::cloneAndAddBasicBlocks(
const std::unordered set<BasicBlock *> &bbs,
std::function<bool(Instruction *origlnst)> filter);

Task in NOELLE: body definition

A task t is a wrapper of

1. Asetof instructions S organized in basic blocks cloned from the original code
2. Siswrapped into a new function f and

3. Anenvironment e that includes live-in and live-out variables of S

* Whoever creates t is responsible to define the body of f

* The body is first defined by the creation of two basic blocks
* New basic blocks are then created by cloning S

/*
* Define the body.
*/
auto filter = [J(Instruction *i) -> bool {

return true;
b
t->cloneAndAddBasicBlocks(hottestLoop->getBasicBlocks(), filter);

Task in NOELLE: body definition

A task t is a wrapper of

1. Asetof instructions S organized in basic blocks cloned from the original code

2. Siswrapped into a new function f and
3. Anenvironment e that includes live-in and live-out variables of S

fi_

~

j: %v1 =%v0 + 1
k: %v2 = %vl1 * 4

JS

z: call @g(%v2
_ g(%v2)

Y

_

J

r

ji%v1l =%v0 +1

\

k': %v2' = %vl * 4
_)

r

%Vv0 %v0’

%v1 %v1’

%V 2 %v2’
Nawe | uven?

%Vv0 True

%v2 False

14

Task in NOELLE: environment definition

A task t is a wrapper of

1. Asetof instructions S organized in basic blocks cloned from the original code
2. Siswrapped into a new function f and

3. Anenvironment e that includes live-in and live-out variables of S

* Whoever creates t is responsible to identify and instantiate e correctly

* tsees e asa Value * to be the pointer from which
you can reach all live-in and live-out variables of the code wrapped into f

* The data layout of the objected pointed by e is decided by whoever designs a task
(rather than Task itself)

* In other words, Task ignores the details about how e looks in memory

Task in NOELLE: environment

A task t is a wrapper of

1. Asetof instructions S organized in basic blocks cloned from the original code

2. Siswrapped into a new function f and
3. Anenvironment e that includes live-in and live-out variables of S

fi_

~

j: %v1 =%Vv0 + 1
k: %v2 = %vl1 * 4

JS

z: call @g(%v2
_ g(%v2)

Y

(" %p0 = GEP(%e, ...)
%VvOp = load %p0
%Vv0’ = load %VvOp
%pl = GEP(%e, ...)
_%V2p =load %pl)
(+ N\
ji%v1 =%v0 +1
X K': %v2" =%vl * 4)

7

store %v2’, %v2p
ret

\. J

%Vv0 %v0’

%v1 %v1’

%V 2 %v2’
Vawe | uven?

%Vv0 True

%v2 False

16

il

Task in NOELLE: environment

A task t is a wrapper of

1. Asetof instructions S organized in basic blocks cloned from the original code
2. Siswrapped into a new function f and
3. Anenvironment e that includes live-in and live-out variables of S

fi_

~

j:%v1 =%v0 + 1
k: %v2 = %vl1 * 4

JS

z: call @g(%v2
L g(%v2)

Y

4)

%p = GEP(%e, ...)
%Vv0’ = load %p
%v2p = GEP(%e, ...)

- J

(\

ji%v1 =%v0" +1
. kK': %v2' = %vl * 4 |

7

store %v2’, %v2p

ret
_)

%v0 %v0’

%v1 %v1’

%V 2 %v2’
Value | e ?

%Vv0 True

%V?2 False

17

Outline

* Invoking a Task

Task in NOELLE: task invocation

A task t is a wrapper of

1. Asetof instructions S organized in basic blocks cloned from the original code
2. Siswrapped into a new function f and

3. Anenvironment e that includes live-in and live-out variables of S

* tisinvoked by calling f

* The code that invokes f needs to setup a memory instance of e consistently
with the data layout chosen by whoever defined the Task

.
Task in NOELLE: exampleQ w0 o

%v1 %v1’

/%Ie = alloca ... \ ,

o _ %Vv2 %v2
%Vv1s = alloca

%v2s = alloca
%Vv1sp = GEP(%le, 0)

store %v1s, %vlsp m

%v2sp = GEP(%le, 1) %vO0 True
Qtore %V2s, %VZSp/ %y False
(%p=GEP(e,.)
%VvOp = load %p
(i: A %Vv0 = load %v0p
j:%v1=%v0+1 store %v1, %vils \%v2p = GEP(e, ...)
k: %v2 = %v1 * 4 call @f (%le) SN IR
- call %2 %v2 = load %v2s J vl =7%vU
z:call @gl%v2) K2 %2’ = %v1 * 4
\, J
7 > -
store %v2’, %v2p
ret

\ J

il

.
Task in NOELLE: examplel —wo we

%v1 %v1’
/%Ie = alloca ... \

%v1sp = GEP(%le, O) Yov2 %V2
%v2sp = GEP(%le, 1)

%Vv0 True

\ / %v2 False

(%p=GEP(e,.)
%Vv0’ = load %p
fi:) %v2p = GEP(e, ...)
j:%v1=%v0+1 g store %v1, %vlsp _)
k: %v2 = %Vl * 4 call @f (%le) ot 'cy 1)
- call %2 %v2 = load %v2sp Jrovl =7v0 +
z: call @g(%v2) y %D = %l * 4
\, J
7 > -
store %v2’, %v2p
. ret)

Always have faith in your ability

Success will come your way eventually

Best of luck!

