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e What is a Task in NOELLE

e Creation of a Task

* Invoking a Task



Task in NOELLE

* Sources:
src/core/task

 Header:
install/noelle/core/Task.hpp



Task in NOELLE

A task t is a wrapper of

1. Asetof instructions S organized in basic blocks cloned from the original code

2. Siswrapped into a new function f and

3. Anenvironment e that includes live-in and live-out variables of S
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Task in NOELLE

A task t is a wrapper of

1. Asetof instructions S organized in basic blocks cloned from the original code
2. Siswrapped into a new function f and

3. Anenvironment e that includes live-in and live-out variables of S

e fis called “task body”
e e s called “task environment”

* t has a static unique ID (uint64_t) and a dynamic instance ID
* The static ID is set by the Task abstraction automatically

* The instance ID is a Value * and whoever defines t is responsible to create it
and register it to Task




Task in NOELLE

A task t is a wrapper of

1. Asetof instructions S organized in basic blocks cloned from the original code
2. Siswrapped into a new function f and

3. Anenvironment e that includes live-in and live-out variables of S

i -

Task definition Task invocation




Task in NOELLE: task signature

A task t is a wrapper of

1. Asetof instructions S organized in basic blocks cloned from the original code
2. Siswrapped into a new function f and

3. Anenvironment e includes pointers to all live-in and live-out variables of S

 Whoever creates t is responsible to define the signature of f
* f needs to obtain as inputs everything that it needs to execute
* An instance of e (of some shape/form) needs to be an input of f
* The return type of the signature of f can only be void
* The signature is an input to the Task constructor




Task in NOELLE: body definition

A task t is a wrapper of

1. Asetof instructions S organized in basic blocks cloned from the original code
2. Siswrapped into a new function f and

3. Anenvironment e that includes live-in and live-out variables of S
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Task in NOELLE: task signature

A task t is a wrapper of

1. Asetof instructions S organized in basic blocks cloned from the original code
2. Siswrapped into a new function f and

3. Anenvironment e includes pointers to all live-in and live-out variables of S

/*
* Define the signature of the task.
*/

auto tm = noelle.getTypesManager();
auto funcArgTypes = ArrayRef<Type *>({ tm->getVoidPointerType() });
auto taskSignature = FunctionType::get(tm->getVoidType(), funcArgTypes, false);




Task in NOELLE: task definition

A task t is a wrapper of

1. Asetof instructions S organized in basic blocks cloned from the original code
2. Siswrapped into a new function f and

3. Anenvironment e that includes live-in and live-out variables of S

* Whoever creates t is responsible to define the body of f
* The body is first defined by the creation of two basic blocks
* Entry basic block: first code executed when f is invoked
 Exit basic block: last code executed before leaving f
* Both basic blocks are empty




Task in NOELLE: task signature

A task t is a wrapper of

1. Asetof instructions S organized in basic blocks cloned from the original code
2. Siswrapped into a new function f and

3. Anenvironment e includes pointers to all live-in and live-out variables of S

/*
* Define the signature of the task.
*/
auto tm = noelle.getTypesManager(); s
auto funcArgTypes = ArrayRef<Type *>({ tm->getVoidPointerType() });
auto taskSignature = FunctionType::get(tm->getVoidType(), funcArgTypes, false);
/* \_

* Create an empty task.
*/

auto t = new Task(taskSignature, M); [




Task in NOELLE: body definition

A task t is a wrapper of

1. Asetof instructions S organized in basic blocks cloned from the original code
2. Siswrapped into a new function f and

3. Anenvironment e that includes live-in and live-out variables of S

* Whoever creates t is responsible to define the body of f

* The body is first defined by the creation of two basic blocks

* New basic blocks are then created by cloning S
void Task::cloneAndAddBasicBlocks(
const std::unordered set<BasicBlock *> &bbs,
std::function<bool(Instruction *origlnst)> filter);




Task in NOELLE: body definition

A task t is a wrapper of

1. Asetof instructions S organized in basic blocks cloned from the original code
2. Siswrapped into a new function f and

3. Anenvironment e that includes live-in and live-out variables of S

* Whoever creates t is responsible to define the body of f

* The body is first defined by the creation of two basic blocks
* New basic blocks are then created by cloning S

/*
* Define the body.
*/
auto filter = [J(Instruction *i) -> bool {

return true;
b
t->cloneAndAddBasicBlocks(hottestLoop->getBasicBlocks(), filter);




Task in NOELLE: body definition

A task t is a wrapper of

1. Asetof instructions S organized in basic blocks cloned from the original code

2. Siswrapped into a new function f and
3. Anenvironment e that includes live-in and live-out variables of S
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Task in NOELLE: environment definition

A task t is a wrapper of

1. Asetof instructions S organized in basic blocks cloned from the original code
2. Siswrapped into a new function f and

3. Anenvironment e that includes live-in and live-out variables of S

* Whoever creates t is responsible to identify and instantiate e correctly

* tsees e asa Value * to be the pointer from which
you can reach all live-in and live-out variables of the code wrapped into f

* The data layout of the objected pointed by e is decided by whoever designs a task
(rather than Task itself)

* In other words, Task ignores the details about how e looks in memory




Task in NOELLE: environment

A task t is a wrapper of

1. Asetof instructions S organized in basic blocks cloned from the original code

2. Siswrapped into a new function f and
3. Anenvironment e that includes live-in and live-out variables of S
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Task in NOELLE: environment

A task t is a wrapper of

1. Asetof instructions S organized in basic blocks cloned from the original code
2. Siswrapped into a new function f and
3. Anenvironment e that includes live-in and live-out variables of S
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Outline

* Invoking a Task



Task in NOELLE: task invocation

A task t is a wrapper of

1. Asetof instructions S organized in basic blocks cloned from the original code
2. Siswrapped into a new function f and

3. Anenvironment e that includes live-in and live-out variables of S

* tisinvoked by calling f

* The code that invokes f needs to setup a memory instance of e consistently
with the data layout chosen by whoever defined the Task




.
Task in NOELLE: exampleQ w0 o
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Task in NOELLE: examplel —wo  we
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Always have faith in your ability

Success will come your way eventually

Best of luck!



