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Call graph

• First problem: how do we know 
what procedures are called from where?
• Especially difficult in higher-order languages, 

languages where functions are values
• What about C programs?
• We’ll ignore this for now

• Let’s assume we have a (static) call graph
• Indicates which procedures can call which other procedures, 

and from which program points

void foo (int a, int (*p_to_f)(int v)){
  int l = (*p_to_f)(5);
  a = l + 1;
  return a;
}
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Call graph example
From now on we assume we have a static call graph
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Using CallGraphWrappingPass

• Declaring your pass dependence

• Fetching the call graph
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Call graph

• how do we know 
what procedures are called from where?
• Especially difficult in higher-order languages, 

languages where functions are values
• What about C programs?

• Call graph generated by LLVM:
• If the callee is unknown: no edge is generated
• If there are N possible callees (N > 1): no edge is generated
• In other words: the call graph of LLVM is not complete

void foo (int a, int (*p_to_f)(int v)){
  int l = (*p_to_f)(5);
  a = l + 1;
  return a;
}
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Call graph in NOELLE

• Called “Program Call Graph (PCG)”

• PCG is complete (and conservative)

• If there are N possible callees (N > 1): there are N outgoing edges

• It is a hierarchical graph
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Let’s compute the PCG

9



Normalize the code

Code must be normalized before you use NOELLE
• noelle-norm MYIR.bc –o IR.bc

or
• noelle-simplification MYIR.bc –o IR.bc

10



Fetching the program call graph (PCG)

llvm::noelle::CallGraph *

llvm::noelle::FunctionsManager *

llvm::noelle::Noelle
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Using the PCG

llvm::noelle::CallGraphFunctionNode *

llvm::Function *

llvm::noelle::CallGraphFunctionFunctionEdge *

llvm::noelle::CallGraphFunctionNode *

llvm::Function * 12



PCG: from function to node
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llvm::noelle::CallGraphFunctionNode *

llvm::Function *



Edges in the PCG

• Two type of edges: may and must
• May: 

when the related call executes, 
the destination of the edge might be called
• Must:

when the related call executes, 
the destination of the edge will always execute

LLVM call graph edges
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PCG of NOELLE is hierarchical

• If a function F invokes G N times, 
the PCG includes only one edge e from F to G
• Source of e: F
• Destination of e: G

• That edge includes N sub-edges
• Source of a sub-edge: the specific call instruction of F
• Destination of all sub-edges: function G
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PCG of NOELLE is hierarchical

llvm::noelle::CallGraphFunctionFunctionEdge *

llvm::noelle::CallGraphInstructionFunctionEdge  *

llvm::noelle::CallGraphInstructionNode  *
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Islands

• Island: disconnected sub-graph of a graph
• Island in the PCG: 

set of functions that cannot reach 
from any other function of another island
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Strongly Connected Component
Call Acyclic Graph (SCCCAG)
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Always have faith in your ability

Success will come your way eventually

Best of luck!
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