
Call Graph
Simone Campanoni
simone.campanoni@northwestern.edu

Outline

• Call graph (summary from 323)

• Call graph in NOELLE

• Other abstractions generated from call graph in NOELLE

2

Call graph

• First problem: how do we know
what procedures are called from where?
• Especially difficult in higher-order languages,

languages where functions are values
• What about C programs?
• We’ll ignore this for now

• Let’s assume we have a (static) call graph
• Indicates which procedures can call which other procedures,

and from which program points

void foo (int a, int (*p_to_f)(int v)){
 int l = (*p_to_f)(5);
 a = l + 1;
 return a;
}

3

Call graph example
From now on we assume we have a static call graph

4

Using CallGraphWrappingPass

• Declaring your pass dependence

• Fetching the call graph

5

Call graph

• how do we know
what procedures are called from where?
• Especially difficult in higher-order languages,

languages where functions are values
• What about C programs?

• Call graph generated by LLVM:
• If the callee is unknown: no edge is generated
• If there are N possible callees (N > 1): no edge is generated
• In other words: the call graph of LLVM is not complete

void foo (int a, int (*p_to_f)(int v)){
 int l = (*p_to_f)(5);
 a = l + 1;
 return a;
}

6

Outline

• Call graph (summary from 323)

• Call graph in NOELLE

• Other abstractions generated from call graph in NOELLE

7

Call graph in NOELLE

• Called “Program Call Graph (PCG)”

• PCG is complete (and conservative)

• If there are N possible callees (N > 1): there are N outgoing edges

• It is a hierarchical graph

8

Let’s compute the PCG

9

Normalize the code

Code must be normalized before you use NOELLE
• noelle-norm MYIR.bc –o IR.bc

or
• noelle-simplification MYIR.bc –o IR.bc

10

Fetching the program call graph (PCG)

llvm::noelle::CallGraph *

llvm::noelle::FunctionsManager *

llvm::noelle::Noelle

11

Using the PCG

llvm::noelle::CallGraphFunctionNode *

llvm::Function *

llvm::noelle::CallGraphFunctionFunctionEdge *

llvm::noelle::CallGraphFunctionNode *

llvm::Function * 12

PCG: from function to node

13

llvm::noelle::CallGraphFunctionNode *

llvm::Function *

Edges in the PCG

• Two type of edges: may and must
• May:

when the related call executes,
the destination of the edge might be called
• Must:

when the related call executes,
the destination of the edge will always execute

LLVM call graph edges

14

PCG of NOELLE is hierarchical

• If a function F invokes G N times,
the PCG includes only one edge e from F to G
• Source of e: F
• Destination of e: G

• That edge includes N sub-edges
• Source of a sub-edge: the specific call instruction of F
• Destination of all sub-edges: function G

15

PCG of NOELLE is hierarchical

llvm::noelle::CallGraphFunctionFunctionEdge *

llvm::noelle::CallGraphInstructionFunctionEdge *

llvm::noelle::CallGraphInstructionNode *

16

Outline

• Call graph (summary from 323)

• Call graph in NOELLE

• Other abstractions generated from call graph in NOELLE

17

Islands

• Island: disconnected sub-graph of a graph
• Island in the PCG:

set of functions that cannot reach
from any other function of another island

18

Strongly Connected Component
Call Acyclic Graph (SCCCAG)

19

Always have faith in your ability

Success will come your way eventually

Best of luck!

20

