
Models and Tradeoffs in WSN System-Level Design

Simone Campanoni, William Fornaciari

Politecnico di Milano, Dipartimento di Elettronica e Informazione

campanoni@elet.polimi.it, fornacia@elet.polimi.it

Abstract

System-level design of WSNs includes the selection of

the sensing nodes and their dissemination in the

environment to be monitored. Many design choices

have to be taken during this stage of the development

of the application. The goal of this paper is to present a

methodology to specify formally the desired behavior

of the sensing application and to derive an optimal

selection and placement of the network nodes. The

approach is flexible and powerful, since it allows the

designer to analyze the impact of clustering sensors

onto a reduced set of boards (nodes) and to perform

sensitivity analysis on parameters such as type of

sensor, position of the nodes, observation time,

presence of faults, etc. The paper introduces the

concepts with some representative examples as well as

by considering bigger use cases extracted from

international projects.

1. Introduction

The technologies to realize wireless sensor networks

(WSNs) are becoming so mature to enable a “LEGO-

like” approach to the deployment of applications. At

the prices of consumer electronics, it is available the

bare hardware and some middleware to simplify the

building of applications [1] [2]. The attention of the

designer can be moved towards system-level design

issues, concerning the software side of the application

and the organization of the sensors set.

Despite of such simplifications, many other

questions are still open or partially neglected, like

optimization of overall costs (sensors, communication

infrastructure, networks deployment, etc), feasibility

analysis to understand suitability and effectiveness of

the WSN against real application goals, lifetime

(especially in the case of battery operating sensor

nodes), robustness, etc [1]. The main need is an overall

analysis and design framework, to enable a quantitative

evaluation of the above properties, taking into account

not only the networking-related issues or the

distributed software system itself, but also the cross

relations existing among the network topology, the

nodes, the environment where the WSN is embedded

and the events to be monitored, namely the real and

comprehensive functional goal of the WSN.

Since a few years, in literature appeared a number of

proposals regarding simulation and deployment of

WSNs. A not exhaustive list of the more mature and

publicly available results is: TOSSIM, NS-2, Avrora, J-

Sim, SENSE, OMNeT++, VisualSense, SensorSim,

EmStar, OPNET, ATEMU, Ptolemy, etc. Each of these

proposals addresses with significant results some

specific simulation or implementation aspects of WSN

analysis, covering hardware, software and networking.

However, from the best of our knowledge, none of

them is addressing with a proper and formal extent the

capability of the network to capture the events to be

monitored. Their focus is frequently related to the

optimization of the cost or to verify other properties

like power consumption, robustness of the connection

layer or the analysis of the models of computation

(middleware).

As far as the offline planning is concerned, which is

the case this paper is focusing on, the proposals usually

deal with only one single objective (e.g., coverage) or

in some cases with lifetime in terms of power

consumption. The sensing model is normally built

around flat squares, and only few proposals cope with

simple obstacles [3] [4]. From a more abstract

standpoint, the problem of designing WSNs produced

noticeable solutions identifying data-centric high level

representations of the overall network behavior. For

example, TinyDB [5] has been a pioneer effort

enabling a SQL-based interface to the sensed data,

while considering the need of achieving a power

efficient processing and routing of query data. GSN [6]

is another proposal based on XML and SQL as data

specification and data manipulation languages, taking

into account the problem of dynamic reconfiguration of

the system. A declarative approach to the network

11th EUROMICRO CONFERENCE on DIGITAL SYSTEM DESIGN Architectures, Methods and Tools

978-0-7695-3277-6/08 $25.00 © 2008 IEEE

DOI 10.1109/DSD.2008.96

676

Authorized licensed use limited to: Northwestern University. Downloaded on February 22,2022 at 22:24:15 UTC from IEEE Xplore. Restrictions apply.

description has been considered in [7], where a dialect

of Datalog is used for both data acquisition and

transmission management. On top of such internal data

representations, an engine to recognize events can be

implemented. In [8], Symblic Aggregate

approXimation (SAX) is used as an algorithm for

detecting complex events by analyzing the patterns

related to the sensed basic parameters.

The scope of the work here presented is a wide class

of applications where, in addition to the typical

monitoring capabilities, it is also required a prompt

highlight of the occurrence of particular events. Under

these assumptions, our methodology to tackle the

problem of designing a sensor network requires to:

 specify the characteristics of the events of interest;

 select a proper set of sensors tailored to catch such

events;

 embed the sensors in the environment so to ensure

the capturing of the desired events while optimize

some design goals, and

 map the sensor set onto realistic WSN board

architectures.

First of all it is crucial to make sure a priori that it

exists a feasible solution to the sensing problem with

the accuracy required by the application. Then, by

exploiting the capabilities of the SWORDFISH

optimization engine [9], it is possible to derive the

WSN by refining the architecture according to design

constraints and user’s goals. Other important issues

addressed in this paper are:

 the possibility to forecast the impact of clustering

many sensors onto the same board to keep under

control the realization cost;

 the availability of a toolset simplifying the

sensitivity analysis of the WSN behavior, both

disregarding or considering the need of grouping

the sensors in boards.

The paper is organized as follows. Section 2

summarizes the overall architecture of SWORDFISH.

Section 3 discusses the models of the events to be

recognized and the design flow to create a WSN

ensuring that all the events can be sensed. Some of the

capabilities of SWORDFISH are discussed in Section

IV, where it is shown how it is possible to explore the

design space taking into account both abstract and

functional requirements. Sections 5, 6 and 7 are more

related to the physical constraints/optimizations of

actual implementations. It is shown how the different

sensors can be grouped in board to decrease costs

while maintaining acceptable WSN performance

degradation and the impact of design choices onto the

capability of the WSN to tolerate temporary faults.

Concluding remarks are drawn in Section 8.

2. The design environment

The architecture of SWORDFISH is conceived to

support the users during the system-level design of the

WSN-based application. The main problems addressed

and an outlook of the toolset implementation are

discussed in the following of this Section.

2.1 Framework architecture and design flow

The general architecture of SWORDFISH is

depicted in Fig. 1. It is composed of a set of modules

allowing the users to describe the main actors (sensors,

network, events, and environment) and the design goals

of the systems (properties of the network and

optimization parameters). The coarse grain supported

activities are:

Verification. The goal is to determine the occurrence

of a set of events (e.g., fire in a defined region,

temperature and humidity over a certain threshold for a

time window, etc.) by exploiting the potential of a

given sensor network.

Sensitivity Analysis. Evaluation of the impact of some

variation of sensors, environment and network

properties, onto the performance of a WSN. Examples

are fault tolerance w.r.t. sensors and network errors,

effect of sensor aging or moving of their location,

influence of the observation time, etc.

Design/Planning. Given a set of events and some

constraints/goals, the task is to discover the optimal

sensor network capable to identify the events while

maximizing user-controlled goal functions.

Environment

Simulator

Predicates

Analyzer

Simulation Kernel

World

Model

Sensor

Models

Sensors

Editor

Environment

Editor

Sens. Ntw

Planner

Events
Event

Editor

Evaluation

Metrics

Optimization

Editor

Network

Models

Network

Editor

Predicate

Editor

GUI

Figure 1. The modules composing SWORDFISH.

The overall framework is encapsulated in a

graphical user interface connecting all the different

modules, whose main characteristics are outlined in the

following (more details can be found in [9]).

Environment Editor. This module allows defining a

model of the environment where the WSN will be

embodied, with graphical views of the associated

physical parameters (e.g., temperature, humidity,

3D-spatial representation, obstacles, etc) and the

677

Authorized licensed use limited to: Northwestern University. Downloaded on February 22,2022 at 22:24:15 UTC from IEEE Xplore. Restrictions apply.

possibility to specify constraints such as position and

type of some sensors, if relevant for the users.

Sensor Editor. It is the mean to obtain the analytic

representation of the sensing nodes, which is a

modeling of the relation existing between the sensed

physical parameters and the signal produced. The

model of the node includes additional information like

cost, type of sensors, energy consumption, accuracy,

speed, etc.

Network Editor. In addition to the node features, a

model of the available connection channels among

nodes is specified. This model can cover both wired

and wireless links, although current implementation

focuses on wireless only.

Predicate Editor. This editor allows the user to

specify via logic formulas the properties to be verified

in the case a given event occurs. This is of paramount

importance to verify that a WSN is actually capable to

argue if an event is recognized, or, dually, to select the

proper set of sensors to recognize the events. Such a

concept more abstract and powerful then a simple

measurement-based analysis.

Event Editor. The purpose of this editor is to

support the description of the events to be captured in

terms of variation of some physical parameters to be

sensed, along with their timing characteristics. These

models are flexibly implemented via software plugins.

Simulation Kernel. It is the engine which, based on

a simulation of the event occurring, modifies the

configuration of the world model accordingly. This

allows feeding the sensor node models with the real

(location aware) data of the world, including their

dynamics. Hence, both the physical parameters of the

environment and the events to be monitored can be

jointly modeled and verified by the Predicate Analyzer

(Fig.1)

Optimization Editor. It is an editor allowing the

designer to specify and tune the goal functions and the

formal model of the network properties/constraints.

Planner. This is the main module for both

verification and network design. It allows to formally

verify that a given WSN is able to capture a set of

events as well as to support the building and

optimization of the overall network according to the

selected policies and goals.

The focus of this paper is on the sensitivity analysis

and on some planning strategies enabled by

SWORDFISH. Based on the application requirements,

the first steps for the user are defining formally the

events to be captured and possibly some optimization

goals/constraints. Network properties and sensor

behavior can be also specified, in the case of default

settings are not considered suitable. According to the

existing model of the environment, the events are then

“fired” to get a profiling of the evolution of the

physical parameters corresponding to the events. Such

results are then used as a testbench to compare the

performance of alternative WSNs in terms of sensing

capabilities. Useful information for optimization can be

gathered by analyzing the sensitivity of the network

over the variation of parameters like observation time,

clustering of sensors or temporary faults, as shown in

the following sections.

2.2 Software implementation

The entire SWORDFISH software system has been

developed in C under GNU/Linux (Debian

distribution), using the following libraries:

 XanLib library ver. 0.1.5: to manipulate data

structures like hash tables, trees, pipes, etc.

 Gtk library ver. 2.0: for the GUI development.

 GNU C library ver. 2.3: to interface with the

GNU system.

 Flex: to make a lexical analysis of the user’s input

describing the sensing goal.

 Bison: to generate a parser for the grammar which

describes the multi value logic used to express the

sensing goal.

 Libglut: for writing the world in a 3D vision.

 Libgtkglext: to embed the openGL objects inside

the GTK GUI of SWORDFISH.

 Graphviz: to draw the direct graph representing

the sensing goal written by the user and each of

its derivatives.

The software architecture is composed of five main

modules (Simulator; Planner; Logic_manager; Sensors;

Events) whose role is sketched below.

Simulator has the goal to emulate the behavior of the

supported physical events (e.g., a fire or an

atmospheric phenomenon), while the Planner has the

role to design the WSN by satisfying the input

constraints.

A crucial module is the Logic_manager, capable to

manage the multi-value logic which is the base for

writing the sensing goals and the constraints. Such a

module is invoked by the Planner to calculate the truth

of a predicate, as a result of certain spatial distribution

of the sensors, as well as to calculate the derivative of

the logic functions.

Sensor is the manager of the sensor models

implemented in SWORDFISH. It is realized via a

standard interface based on dynamically loadable

shared libraries (plugins). Thanks to this choice, it is

allowed to manage efficiently a wide range of sensors

with no impact on SWORDFISH code, since the only

contact is through the functionality exposed by the

678

Authorized licensed use limited to: Northwestern University. Downloaded on February 22,2022 at 22:24:15 UTC from IEEE Xplore. Restrictions apply.

interface. Sensor models can be added incrementally as

well as obtained interfacing other libraries, without

changing SWORDFISH software.

Events is in charge of managing the implemented

available types of events. Its implementation is similar

to Sensor, since it uses plugins to decouple the

implementation of the events from the rest of the

SWORDFISH software.

The current version performs the design of WSNs

with a dozen of predicates composing the SG and a

similar amount of sensors with runtimes of less than a

minute, running on a 1.8 MHz Centrino Laptop. Bigger

WSNs (tens of predicates and sensors) requires 1-2

minutes to produce the result. The execution time of

SWORDFISH is considerably influenced by the time

window (observation period) chosen by the user.

3. Preliminary steps of the design

The model of the environment is 3-D, so that each

point is represented by using (x,y,z) coordinates

belonging to a user-defined grid. Before starting the

exploration of the WSN design space, there are three

preliminary steps to be carried out: i) definition of the

purpose of the network; ii) identification of the

benchmark; iii) modeling of the hardness to recognize

physical parameters corresponding to an event.

The first activity turns to the definition of an overall

Sensing Goal (SG) for the WSN, that is a multi-value

logic formula composed of some predicates Pr

(implemented via plugins), each corresponding to an

event. For example Water(x, y, z, magn, trend) is a

plug-in modeling the presence of water in the point

(x,y,z), starting from a given magnitude and with a

specified trend over the time. A predicate Pr is an

instance of Water applied to a specific point. A catalog

of plugins (e.g., Fire, Water, Humidity, …) is available,

and its extension is straightforward. An example of

sensing goal is (1).

 SG = Water (3,2,1, 30, const) AND

 Water (5,6,7, 20, const) (1)

Such SG means that the WSN has the goal to discover

the concurrent presence of the events of having a

certain amount (30 and 20) of water in two points

(3,2,1), (5,6,7) of the environment.

The second step is the characterization of the changing

in the environment whenever the events occur, namely

the identification of a testbench to evaluate the WSN

performance. To this purpose, based on the (user

defined) fp sampling rate of the environment simulator,

a profiling stage is triggered by firing each one of the

defined events, namely running the Pr-related plugins.

At the end, !(x,y,z), and ! Pr of SG, all the data

patterns are obtained.

There are at least other two problems the designer has

to face with during WSN system-level design. The first

concerns the selection of the type of sensor, while the

second is the sensors placement. In fact, the target is to

discover a positioning of the sensors, maximizing the

capability of the WSN to recognize the events, i.e.

maximizing the SG. The former question impacts

mainly on the feasibility of designing a WSN capable

to recognize the events encompassed by the SG. The

latter is related to the dissemination of sensors in order

to enhance their possibility to satisfy the Pr composing

the SG, i.e. improving the performance of the system.

In the current implementation of SWORDFISH, we

followed an approach producing results in the order of

seconds, so as to actually enable sensitivity analysis. In

Section 4 and Section 7, the main benefits of sensitivity

analysis are addressed through some representative

examples.

Our first concern in the design flow is ensuring that a

solution to the SG can exist, by using a proper set of

sensors that is incrementally built up and significantly

optimized by sharing sensors among the set of Pr

(specified in the SG) to be verified. Then, this set of

candidate sensors are placed in the environment taking

into account the information coming from a

configurable hardness function. In such a way, it is

guaranteed to obtain a WSN formally satisfying the SG

with a quasi-optimal cost, with runtimes in the order of

a few seconds.

As far the positioning of the sensors is concerned, we

defined a hardness function Hard(x, y, z, Pr) modeling

the difficulty in evaluating Pr in a given point (x,y,z).

 Hard(x,y,z,Pr)= Hs(PPr,t)/ C{(PPr,t), Pr} (2)

Calling PPr the profiling output of Pr, i.e. the data

pattern associated to Pr obtained during the initial

profiling, Hs(PPr,t) depends on the type of sensor

(corresponding model) and relates to the difficulty to

recognize the event Pr within the time frame of a

profiler sampling rate (1/fp). For example for a slow

temperature sensor can be hard (or even impossible)

recognizing T-ramps moving faster than its cutting

frequency. The term C{(PPr(x,y,z), Pr} is the

confidence to infer the truth of Pr based on the

sequence of the physical variations defined via PPr.

Of course, any positioning strategy for the sensors

attempts to place the sensor where Hard is low, i.e.

where it is easier and more reliable recognizing the Pr

composing the SG. More formally, it is selected the Si

to be assigned to the predicated Pj, such that

| dSG/dPj | ! Si available, is minimum.

679

Authorized licensed use limited to: Northwestern University. Downloaded on February 22,2022 at 22:24:15 UTC from IEEE Xplore. Restrictions apply.

The implemented algorithm actually starts considering

only the models of the available types of sensors and

the predicate Pr to be satisfied, with possibly additional

constraints (e.g., cost figures) that can be provided by

the users within the sensor plugins. Then, the minimum

set of sensors capable to recognize physical parameters

to satisfy all the Pr is discovered and initially allocated

to the most relevant predicates (in the SG sense). Based

on this initial allocation, that is a pre-condition to

satisfy SG, the sharing of the sensor proceeds as

described in the above example. The end of the process

produces a solution employing the minimum set of

sensors covering all the predicates, using a quick

heuristic producing a configuration that in most of the

cases it is also the absolute optimum.

To represent how a given sensor is actually capable to

capture its target events from a position (xp,yp,zp), a

proper metric (3) has been defined, called confidence.

Confidence = 1-(Hard (xp,yp,zp,Pr))/max Hard(x,y,z,Pr)) (3)

Where Pr is the predicate corresponding to the event,

Hard (xp,yp,zp,Pr) is the hardness calculated in the

candidate point for the sensor positioning and max

Hard (x,y,z,Pr) is the maximum hardness within the

considered environment. Note that values of

confidence closer to one means that the position of the

sensor is approaching the best existing in the

environment to satisfy Pr, while lower values

corresponds to critical points; this latter case can

trigger the search for a better positioning or the

increasing of the sensor set cardinality.

In summary, Fig.2 depicts the pseudo-code steps of the

WSN planning implemented in SWORDFISH.

1. Analysis of the inputs (sensing goal

parsing and constraints processing)

2. Storing of the initial condition for the
environment simulation

3. Profiling of the events composing the
sensing goal (storing of the data for each
physical parameters and point, given an
observation window and a user defined
sampling rate of the simulation)

4. Computation of the hardness grid for each
predicate composing the sensing goal

5. for(numSensors=1; numSensors < maxSensors;
numSensors++) {

a) choice of the target predicate for the
sensors (depending on numSensors and
sensing goal)

b) computation of the sensors positions
(based on Hardness and numSensors)

c) if (check_WSN()==OK) break}

Figure 2. Steps of the WSN planning strategy.

4. Sensitivity analysis

First of all this section shows some practical usages

of SWORDFISH and demonstrates, by using simple

examples, its flexibility and the value added even when

the complexity of the application seems to be

manageable. In this section we still consider abstract

architectures with one sensor per node. Section 7

figures out how similar analysis can be carried out also

at board level, i.e. with architectures closer to real

implementations.

4.1 Sensor set and observation time

This example shows the influence of the number of

sensors and of the observation time onto the truth value

of the sensing goal, namely the confidence on the

capability of the WSN to correctly recognize the

events. We considered a linear model for the sensor

and the sensing goal (5) corresponding to the

identification of three events.

SG=Water(9,9,9) AND Water(0,0,0) AND Water(4,4,0) (5)

The analysis result is depicted in Fig.3, showing

how vary the SG when changing the observation time

(time windows) and the number of sensors.

The obtained result reveals that using at least three

sensors it is possible to realize a WSN capturing all of

the three events disregarding the observation period.

Conversely, using less than three sensors, the time

window influences the performance. With two sensors

the observation time must be grater than 3 seconds:

such sensors (S0, S1) will be able to recognize more

than one event with the following positioning:

S0=(9,9,4), S1=(1,2,0). In such a case, S1 can capture

most of the events Water(0,0,0) and Water(4,4,0), so

that S0 and S1 can cover the entire SG.

1 2 3 4 5 6 7

1

4
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

SG

Time windo w

Sensors

Figure 3. Influence of the numer of sensors and time
window on the Sensing Goal.

680

Authorized licensed use limited to: Northwestern University. Downloaded on February 22,2022 at 22:24:15 UTC from IEEE Xplore. Restrictions apply.

It is worth nothing that S0 is not positioned in

(9,9,9), as in the case where more than three sensors

are available. In fact, under this more severe

“restrictions”, S0 contributes to the identification of the

rest of the events, though its position denotes a major

value added for Water(9,9,9).

4.2 Impact of the sensor position

To figure out the cross relation existing between the

type of event and the position of a sensor, we

considered two sensing goals (6) with a model of the

sensor is still linear:

 SG1 = Water(4,4,4); SG2 = Fire(4,4,4); (6)

The value of SG1 has been computed considering

the following space: X=[3..5], Y=[2..4] and Z=[0..3],

with a time window of two seconds). The obtained data

show that, to recognize a Water event, the sensor has to

be located close to the point of interest.

Conversely, for the Fire event, the positioning of

the sensor seems to be less important w.r.t. the previous

case. This result makes sense: it possible to recognize

fire events even by positioning sensors far away from

the critical area. Within the entire analyzed space for

the positioning of the sensors (X=[4..8], Y=[4..7] and

Z=[0..8]), SG2 has been always satisfied.

4.3 Sharing of sensors

This example addresses the search for a WSN

capable to recognize an event with a scarce amount of

resources (sensors). The user have to specify the max

number of sensors, the min value of the SG considered

acceptable and other data regarding the observation

time window for the sensors. We have chosen the SG

(7), corresponding to the presence of water on the

ground in two positions:

 SG = water(0,0,0) AND water(2,2,0),

 with min SG=0.2 (7)

Tab.1 reports the output of SWORDFISH (sensor

position) along with the confidence for each

predicated. In this simple case the SG is close to one,

pretty over the 0.2 threshold.

The truth value of the single predicates are similar

and close to one (water(0,0,0)=water(2,2,0)=0.99999)

so that the SG=0.998 is fairly acceptable. In summary,

the system discovers an intermediate position for a

single sensor (1,2,0) ensuring the meeting of the SG

with sensor sharing. In the case our goal is modified (8)

to recognize the presence of water in two points more

distant as above and with an observation window of 5

seconds, i.e.:

 SG = water(0,0,0) AND water(9,9,9),

 with min SG=0.2 (8)

The system fails in using only one sensor and find

out automatically a new WSN using two sensors, now

satisfying the SG. Because of we have two sensors for

two events, the suggested positioning of the sensors are

obviously overlapped to the event locations (Tab.2).

Note that Tab.2 highlights a (negligible in this case)

contribution of S1 also to water(0,0,0) recognition.

Such type of information can be useful to identify

Achilles’ heel of more complicated WSNs, where the

amount of sensors makes hard identifying their

ordering of relevance in contributing to the overall SG.

Table 1. Positioning of the set of sensors.

Sens Pos Confidence

 Water(0,0,0) Water(2,2,0) Total

S0 (1,2,0) 0.999 0.999 0.998

Table 2. Solution with two sensors.

Sens Pos Confidence

 Water(0,0,0) Water(9,9,9) Total

S0 (0,0,0) 0.9999 0.0 0.999

S1 (9,9,0) 0.1 0.9999 0.999

4.4 Influence of the type of sensor

The WSN we are designing has the responsibility to

report the presence of two different events (water and

fire) having different sensing requirements. In

particular, in our modeling environment sensing the

water it is harder than recognizing the fire. The SG is:

 SG = water(0,0,0) AND fire(5,5,0),

 with min SG=0.4 (9)

In this case, as shown in Tab.3, the positioning of

the sensor is closer (0,3,0) to the water, because of the

sensing of fire is considered easier than recognizing the

water itself. In more complicated scenarios, but even in

this simple case, the typical design approach to place

the sensors in intermediate positions disregarding the

type of events to be considered, does not allows to take

full advantages from the WSN intrinsic capability.

Table 3. Influence of type of sensor on the WSN
placement.

Sens Pos Confidence

 Water(0,0,0) Fire(5,5,0) Total

S0 (0,3,0) 0.99 0.99 0.99

681

Authorized licensed use limited to: Northwestern University. Downloaded on February 22,2022 at 22:24:15 UTC from IEEE Xplore. Restrictions apply.

5. Modeling of nodes

The output of the SWORDFISH-based feasibility

analysis is a set of {sensor, position} tailored to

optimize cost-effectiveness and performance (sensing

goal) of the WSN. On the other hand, realistic design

and deployment typically requires simplifying both the

hardware and the architecture of the network, while

maintaining effectiveness and performance.

To cope with such problem, in the following section

the PESCA (Pareto Efficient Solution Clustering

Algorithm) approach is outlined. The goal of PESCA is

to produce a quasi-optimal clustering of the sensors by

identifying an optimal mapping of the sensor set onto

boards, like those available on the market [2]. In

general, each board hosting sensors includes the

following sections: PCB/package; power supply and

energy management; radio (RX/TX);

control/processing Unit (CU); connectors/Interfaces;

one or more sensors. Based on our experience in

realizing PCB-level embedded systems and on market

availability of sensing modules, we found reasonable

adopting the model (10) for the cost of each board

(node).

"
#

$%$%#

sSensorType

j

jj NumSSCNKConstNodeCost
1

)()log(

 (10)

Where, for each board, N is the overall number of

sensors, NumSj is the number of sensors of a given type

j, SensorTypes is the number of possible types of

sensor, and SCj is a cost of a sensor of type j.

In other words, there exist a variable cost which is

related to the type and number of sensors in a linear

manner and a processing cost that is logarithmic, due to

the typical price trends of CPU and microcontrollers.

Furthermore, the cost of PCB and packaging is less

than linear against the number of sensors (close to a

constant), while radio and power supply is fairly stable

over a wide range of possible sensors cardinality.

As far the cost function is concerned, to increase the

generality over different suppliers, we partitioned the

available sensors into classes, to capture their relative

cost, instead of considering the absolute values.

Concerning the cost of the network, we assume a

constant value for wireless connections (typically

built-in in commercial nodes).

Actually, some influence of the network topology

should be considered in the case of some gateway

nodes, mastering hierarchies of sensors patches, were

identified. In such a case there is an additional cost

related to the wired connection or the use of other long-

range radio communication standards/modules (e.g.,

GPRS), but this analysis is not included due to the lack

of space.

6. Board-level design

The clustering of the set of sensors identified by the

SWORDFISH framework is a multi-stage process,

including the following topmost activities:

compatibility analysis between all the possible pairs of

sensors; identification of the boundaries of the

clustering problem (worst and best case); generation

and evaluation of the candidate solutions.

6.1 Compatibility graph
At the beginning, the user (e.g., by accepting default

settings) is required to specify constraints on the

possible clustering of different sensors onto the same

board. Based on these information, an Interference

Graph G=<N,E> is built, where nodes n are sensors

and an edge e among the nodes represents a possible

sensor interference to be avoided. Note that the

interference is not only related to the nature of the

sensors, as specified by the user. In fact, two sensors

can have no shared position where both sensors are still

able to discover the associated set of events. This latter

case can be discovered by using the Hard function; in

fact, the Hardness of a point to discover two events e1,

e2 is the sum of the Hardness of both sensors computed

in that point.

Once the interference graph is completed, it is possible

to identify the compatibility graph G’, which is its

complementary graph G’=<N,E’>, gathering all the

feasible solutions. Note that any possible clustering of

sensors, cannot but be a clique of the compatibility

graph. In fact, all the sensors hosted by the same board

must be cross-compatible. The next step is the

computation of all the maximal cliques of the

compatibility graph G’. Since this type of activity is

recognized to be a NP-hard problem [10] we adopted

some heuristics to speedup the computation.

6.2 Coverage of the sensor graph

To better understand the optimality of placing a certain

group of sensors onto a board, we focused at the

beginning on the boundaries solutions, considering the

cardinality of the cliques (not their cost). At the lowest

level, each sensor corresponds to a board. As far the

best case is concerned, the biggest clique has been

computed, and then the same action has been

performed on the remaining graph, and so on. At the

end we obtain a partitioning of the compatibility graph,

682

Authorized licensed use limited to: Northwestern University. Downloaded on February 22,2022 at 22:24:15 UTC from IEEE Xplore. Restrictions apply.

where its cliques are those clustering the maximum

number of compatible nodes.

The design space spanning between the two boundaries

cases so identified, contains a number of possible

solutions that is exponential with the sensor cardinality.

We attacked the analysis of a so wide solution space

through an heuristic structured into a pair of

consecutive steps.

1. Starting from the best case above described,

solutions are generated by creating a new list of

cliques where one sensor has been extracted from

the biggest clique, to create a new single-sensor

board. The same activity is then repeated,

considering the biggest cliques at any iteration. At

the end of such a process, a wide set of possible

solutions is generated, ordered for relevance i.e., in

terms of cardinality of the biggest clique.

2. All the possible pairs of the above solutions are

taken into account for possible merging, while

verifying the compatibility (taboos) of the new

sensor set.

At the end of the second steps, the recombining of

cliques not maximal in terms of cardinality, allows the

optimizer to consider solutions more orthogonal,

possibly characterized by a lower board-level cost.

6.3 Selection of solutions

This step takes into account the candidate WSNs under

the Pareto standpoint. The task of the PESCA

algorithm is to find out a solution to the multi-objective

clustering problem, considering two metrics: the cost of

the solution and the functional quality, i.e. its

performance. The cost of a solution (set of boards) is

evaluated through the cost model (10) described in

Section 5, which is depending on the number and type

of sensors associated with each partition. Concerning

the performance, the badness of a solution is computed

by exploiting the Hardness functions Hij(x,y,z) of the

event i covered by the sensor j belonging to the same

board. Thus, the hardness of the entire WSN is:

"" &&

#
Ji ijWSNj

zyxHzyxH),,(),,(
 (11)

The badness of the WSN is evaluated, and its minimum

corresponds to a point where the positioning of the

board is optimal. This new location, which is shared by

all the sensors on the same node, is the best to ensure

that all the events associated with the sensors can still

be captured after clustering. Note that the solution so

discovered is a Pareto efficient solution. In fact, all the

solutions “dominated” within the <cost, performance>

optimization space of the WSN are discarded during

the population of the design space.

7. Experiments

The PESCA approach and some capabilities to analyze

the degradation of performance in the case of

temporary faults have been considered.

7.1 Mapping on boards

Some validation scenarios extracted from multi-partner

projects [11] [12] have been considered. Figure 4.

reports the analysis of a complex WSN: SG of 16 basic

predicates producing an optimal network with 18 ideal

sensors. The plot reports the Pareto solutions and

figures out the influence of the fixed costs (linked to

the volume/standardization of boards) against the

overall cost and performance (1/Hardness) of the

clustered WSN. It is possible to observe the impact on

performance and cost associated with the spreading vs

clustering of sensors. By following such a quantitative

analysis, the design driver may be not only the cost, but

also the capability of the WSN to fulfill the initial

application requirements.

Figure 4. Pareto frontier of the cost-performance
tradeoff (varying the fixed cost of the board).

7.2 Impact of temporary faults

The analysis framework allows also to quantitatively

put in evidence the impact of some design parameters

onto the fault tolerance of the WSN. Let us consider

the two examples reported in Tab.4 and Tab.5.

Table 4. Fault tolerance vs sensor sampling rate.

Fp\Sf 10 12 14 16 20

0% 0.814 0.814 0.814 0.814 0.814

10% 0.081 0.629 0.698 0.752 0.814

20 % 0 0.316 0.358 0.391 0.65

30% 0 0.14 0.165 0.184 0.44

40% 0 0 0.065 0.075 0.211

50% 0 0 0 0 0.089

>50% 0 0 0 0 0

0

200

400

600

800

1000

1200

1400

1600

1800

0 200 400 600 800

WSN cost

H
a
rd

n
e
s
s
 (

1
/P

e
rf

o
rm

a
n

c
e
)

const=130

const=13

const=5

const=1

2 boards

3 boards

4 boards5 boards

6 boards

7 boards

8 boards

9 boards

683

Authorized licensed use limited to: Northwestern University. Downloaded on February 22,2022 at 22:24:15 UTC from IEEE Xplore. Restrictions apply.

Both depict how the SG changes in the case of the

probability Fp of temporary fault of one sensor, whose

duration produces the loss of a single sample, varies

from 0% to 100%. Gray regions correspond to SG

greater than 0.5, but of course the choice of such

threshold is up to the user. In both cases the time

windows (Tw) to recognize the events is fixed to 2.

Considering the minimum number of samples to

correctly recognize the events (Smin) equal to 10,

Tab.4 figures out the impact of varying the sampling

rate Sf from 10 to 20 for a WSN with a SG composed

of 6 predicates, each assigned to a separate sensor. It is

manifest the capability of the network to tolerate

increasing error probabilities as the sampling rate rises

up. Tab.5 addresses a different analysis, where the

number of predicates is still 6, but the number of

sensors (#sens) ranges from 6 to the double of the

predicates (12). As it can be seen, such redundancy

(#sens>6) allows the WSN to tolerate significant fault

probabilities, while maintaining high sensing goals.

In summary, the framework significantly simplify a

comparative (and quantitative) analysis of the solutions

to enhance the fault tolerance of the WSN.

Table 5. Fault tolerance vs # of sensors.

Fp\#sens 5 6 8 10 12

0% 0.814 1 1 1 1

10% 0.081 0.533 1 1 1

20% 0 0.131 1 1 1

30% 0 0 1 1 1

40% 0 0 0.74 1 1

50% 0 0 0.45 1 1

60% 0 0 0.26 1 1

70% 0 0 0.13 0.888 1

80% 0 0 0 0.609 1

90% 0 0 0 0.403 0.51

100% 0 0 0 0 0

8. Conclusions

The paper described the design methodology of

SWORDFISH and on some aspects related to the

sensitivity analysis. The presented approach is

complementary to the typical simulation-based

analysis, since its emphasis is on the system-level steps

of the design, where a broad design space has to be

extensively and efficiently explored, and on the formal

modeling and verification of the WSN objectives.

The obtained results are promising, and some of the

verification and top-level analysis and design

capabilities have been addressed by considering simple

but representative examples and stressed with the use-

cases of [11] [12]. It has been shown how it is possible

to optimize the WSN while ensuring that the original

user’ goal has been fulfilled. The examples reveal that

many side-effects of changing the behavior of the

WSNs and sensor positioning (or clustering) produces

significant changing in the sensing goal that are hard to

be managed by a human designer without the support

of a proper methodology and a toolsuite. At the same

time, it becomes affordable the effort to quantitatively

compare alternative solutions in terms of fault

tolerance capability of the WSN.

10. References

[1] Akyildiz I.F.; Weilian Su; Sankarasubramaniam Y.;

Cayirci E. 2002. A survey on sensor networks,IEEE Comm.

Mag., vol. 40, n. 8, pp. 102-114, Aug 2002.

[2] www.moteiv.com, www.xbow.com

[3] S.Dhillon, K.Chakrabarty, S.Iyngar. Sensor placement for grid

coverage under imprecise detections. Proc. Of Int. Conf. on

Information Fusion, July 2002, pp 1581-1587.

[4] A.Howard, M.Mataric, G.Sukhatme, An incremental self-

deployment algorithm for mobile sensor networks. Autonomous Robots-

Special Issue on Intelligent Embedded Systems, Vol.13(2),

2002. pp 113-126.

[5] S.Madden, M.Franklin, J.Hellerstain, W.Hong, TinyDB:

an acquisitional query processing system for sensor networks,

ACM Trans. on Database Sys, vol.30 (1), 2005.pp122-173.

[6] K.Aberer, M.Hauswirth, A.Salehi, A middleware for fast and

flexible sensor deployment, Proc of 32nd Int. Conf. on VLDB,

2005. pp 1199-1202.

[7] D. Chu, L.Popa, A.Tavakoli, J.Hellerstein, P.Levis,

S.Shenker, The design and implementation of a declarative sensor network

system, Proc. of SenSys’07, November, 2007. Sydney,

Australia.

[8] M. Zoumboulakis, G.Roussos, Escalation: Complex

Event Detection in Wireless Sensor Networks, LNCS Smart

Sensing and Context, Vol. 4793/2007, October 2007.

[9] S.Campanoni, W.Fornaciari, SWORDFISH: a

Framework to Formally Design WSNs Capturing Events, In

Proc. of IEEE SoftCOM’07, Split-Dubrovnik, Croatia,

September, 2007.

[10] M. R. Garey, D. S. Johnson, Computers and

Intractability: A Guide to the Theory of NP-Completeness

(Series of Books in the Mathematical Sciences), W. H.

Freeman Publisher, 1979. ISBN 0716710455.

[11] Adaptive Infrastructure for Decentralized Organizations

- ARTDECO, Min. for the National Research, 2006-2009.

http://artdeco.elet.polimi.it

[12] WASP (Wirelessly Accessible Sensor Populations), EC-

Funded IST project, http://www.wasp-project.org/

684

Authorized licensed use limited to: Northwestern University. Downloaded on February 22,2022 at 22:24:15 UTC from IEEE Xplore. Restrictions apply.

