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Abstract. Automatic parallelization is an increasingly important tech-
nique for accelerating sequential applications on multicore processors.
This approach relies on having an accurate compile-time dependence
analysis to identify independent sections of code. Previously it has been
assumed that improving this analysis would also improve the perfor-
mance of parallelized code. In this paper we use novel profiling tech-
niques to see how much room there is for improvement of the compile-
time analysis. By feeding this knowledge back into the compiler we sim-
ulate a perfectly accurate dependence analysis. Although we find that
the compiler does indeed overestimate the number of data dependences,
this extra knowledge does not help the compiler to achieve better per-
formance since the remaining dependences still prevent parallelization.
However, study of the dynamic nature of these remaining dependences
shows that fewer than 1% are realised on every dynamic instance of the
instructions involved. We conclude that other avenues, such as specu-
lation, must be explored to surpass current cyclic-multithreading style
automatic parallelization efforts.

1 Introduction

Recent industrial trends point towards an increasing number of cores being
placed on a single chip. However our ability to exploit parallelism in software
is lagging behind. Writing correct and efficient multithreaded code is difficult
and many legacy single-threaded applications exist which would be tedious to
rewrite. One approach to improve the performance of such code is to automati-
cally parallelize the code in the compiler and this technique has received much
attention [1–4]. Automatic parallelization has been assumed to be limited by the
accuracy of the dependence analysis it relies on. Therefore, the community has
spent a significant amount of effort on improving this dependence analysis [5–7].
While these efforts were justified in the past, there is no evidence that this is still
a limitation for today’s compilers. What if dependence analysis is already good
enough and further enhancements will result in only negligible performance im-
provements? In this paper we show that the upper limits of compile-time analysis
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for cyclic-multithreading style parallelization have been reached and that other
avenues must be explored for further speedups.

To understand the potential for improving current dependence analysis we
start with the HELIX parallelizing compiler [4, 8]. HELIX includes state-of-
the-art dependence analysis [6] and has already demonstrated speedups for
sequentially-designed programs traditionally considered challenging for auto-
matic parallelization. Then we identify dependences claimed by this analysis
which are never actually realized at runtime. These are the only dependences
that a hypothetical improved compile-time dependence analysis could eliminate.
These apparent dependences can be removed from the compile-time determined
data dependence graph (DDG) to create an oracle DDG. This is the upper limit
of how accurately the compiler can identify dependences given a specific input
set.

By parallelizing the code again, replacing the compile-time DDG with the
oracle DDG, we can determine an upper bound on potential speedups for purely
static parallelization in HELIX. We found that, although the dependence profil-
ing was able to remove dependences from the graph, for the considered bench-
marks no further speedup was obtained. This demonstrates that improving the
compile-time analysis beyond the current HELIX algorithm will not result in
better performance. However, it should be noted that the oracle DDG includes
any dependence which occurred even once during the running of the program.
Further study of the remaining dependences in the oracle DDG showed that the
majority were only realised occasionally at runtime. We conclude that there is
still considerable scope for extracting further parallelism using runtime systems
that take advantage of dynamic characteristics such as thread level speculation
[9–13]. We are currently working towards determining an upper limit to the
performance of thread level speculation using the HELIX infrastructure.

In this paper we will first look at the background of the automatic paral-
lelization infrastructure we used in section 2. In section 3 we discuss the profiling
methods we employed to collect a trace of the runtime behaviour of the loop and
how we used this to generate the oracle DDG. The results obtained from running
the compiler with the oracle DDG are presented in section 4. Section 5 discusses
related work and finally we offer some conclusions from our study in section 6.

2 Background

HELIX [4] is a parallelizing compiler which has previously demonstrated speedups
when parallelizing the SPEC2000 benchmark suite. HELIX assigns each iteration
of a parallelized loop to a separate core and handles cross-iteration dependences
by means of synchronization code inserted into the loop. HELIX uses a state-
of-the-art interprocedural dependence analysis [6] which builds a conservative
data dependence graph (DDG). Since each thread executes on a separate core
and so has its own set of registers and its own stack, write-after-read and write-
after-write dependences through registers and the stack can be omitted from the
graph.
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For all dependences which may require forwarding data from one iteration
to the next, HELIX inserts synchronization code which forces the instructions
involved in the dependence to execute in sequential order. Such instructions are
grouped into relatively short sections of code called sequential segments. The
parallelized loop body may contain several sequential segments with parallel
code in between. When a particular core reaches the start of a sequential seg-
ment it issues a Wait instruction which halts execution until the corresponding
sequential segment of the previous iteration has completed. Upon completion
of a sequential segment a Signal instruction is executed which indicates to the
next iteration that it is safe to execute the corresponding sequential segment.
The performance obtained by exploiting this parallelism is measured in [14].

Due to the conservative nature of the compile-time dependence analysis, it is
possible that some sequential segments will be generated even though no data is
transfered between iterations. This will cause code to be executed sequentially
which could in fact be executed in parallel. It is widely believed that an improved
compile-time analysis could reduce the size and number of sequential segments,
thereby increasing the amount of code which can execute in parallel and en-
hancing performance. HELIX has previously shown the results of parallelization
using a state-of-the-art dependence analysis [8]. Is there value in further improv-
ing the analysis to increase DDG accuracy? In this paper we will do a study of
the accuracy of the analysis and see what effects an improved analysis would
have on performance.

3 Generating the Oracle Data Dependence Graph

Our first task was to build a data dependence graph (DDG) representing the
most accurate graph the compiler could produce if it had perfect knowledge of
the runtime behaviour of the program. We call this the oracle DDG. Initially
we generate a compressed trace of the loop’s control flow and memory accesses.
This records the ordering of every memory access in the loop, which iteration
of the loop it occurred in and what memory locations were read and written.
Then the trace was analysed to find which pairs of instructions touched the same
memory in different iterations. Each such pair was recorded as an edge in the
DDG, thus creating the oracle DDG.

The remainder of this section discusses in more detail how the traces were
generated and analysed, as well as the characteristics of the oracle DDG.

3.1 Generating the Traces

It was necessary to find a mechanism whereby the program could be run several
times while preserving the identity of instructions from one execution to the
next. To achieve this the code is first compiled to the compiler’s intermediate
representation (IR) and all instructions involved in the loop’s control flow or in
memory accesses are given a unique ID. The IR and dictionary of IDs are stored
on disk and used as a starting point for all subsequent executions.
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We run HELIX to produce parallelized code. Memory accesses and loop con-
trol flow instructions were instrumented to record two traces. The first trace
records each memory location that was written or read by each instruction. The
second trace records the instructions that were executed in each iteration of a
loop and their order.

Memory Access Trace The memory access trace provides a complete record
of every memory event which occurs during the execution of the loop. The trace
is compressed using the SD3 scheme [15]. This takes advantage of the fact that
memory instructions in a loop typically access memory in a stride fashion. For
example, consider the following loop:

for ( int i = 0; i < 8; i++ )

A[i] = 2*B[i];

The reads from array B will access memory in a sequence such as:

0x1100 0x1104 0x1108 0x110C 0x1110 0x1114 0x1118 0x111C

This can be represented as a base address (0x1100), a stride (4) and a number
of repetitions (8), together referred to as a memory set entry. A complete trace
for one instruction consists of a sequence of memory set entries. Some instruc-
tions, such as those involved in pointer chasing in dynamic data structures, do
not compress well with this scheme. To compress these we take advantage of the
fact that such instructions tend to be confined to a relatively small portion of
the address space. Each memory set entry records the base address as the offset
from the previous base address rather than the absolute address.

Control Flow Trace The memory access trace can be used to determine which
instructions access the same memory locations but cannot distinguish between
accesses which occur in the same iteration or which occur in different iterations.
This information is necessary to find inter-iteration data dependences. Therefore
a second trace is produced which records which dynamic instances of instructions
occurred in which iterations of the loop.

This data is compressed in several ways. Firstly we use a novel compression
scheme which takes advantage of the nested patterns which exist in the instruc-
tion trace. For example a loop with a number of levels of inner nested loops
might produce a raw instruction trace which looks like the following, where each
number is the ID of a static instruction:

1 2 3 4 5 4 5 4 5 2 3 4 5 4 5 4 5 2 3 4 5 4 5 4 5 6 7

To record the nested patterns we use a new grammar which is expressed here
in Extended Backus-Naur Form (EBNF):
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digit = "O" | "1" | "2" | "3" | "4"

| "5" | "6" | "7" | "8" | "9"

instruction-id = digit{digit}

num-repetitions = digit{digit}

compression-pattern = "("compression-pattern","num-repetitions")"

| "("instruction-id")"

compressed-output = {compression-pattern}

The example raw trace would be compressed to:

(1)((2)(3)((4)(5),3),3)(6)(7)

We record such a trace for each iteration of the loop. Since each iteration
of a loop frequently executes the same instructions, the control flow pattern is
stored along with a list of iteration numbers on which it occurs.

3.2 Finding Runtime Dependences

Once the traces have been collected, the dependences can be found by applying
the SD3 algorithm for detecting dependences between stride representations of
memory accesses. The algorithm is based on comparing pairs of instructions
for conflicts. First the memory set entries are converted into intervals which
represent the lowest and highest addresses touched by the entry. An interval
tree is built for each instruction. This allows us to quickly find which memory
set entries overlap between two instructions.

SD3 uses a dependence test known as Dynamic-GCD. This algorithm can
return a list of all conflicts between two memory set entries in constant time.
From the control flow trace we can determine which iterations the conflicting
accesses occurred in. If a memory location is written in one iteration and read
or written in any other iteration, this is inserted as an edge in the oracle DDG.

3.3 Characteristics of the Oracle DDG

The oracle DDG includes all dependences including read-after-write (RAW),
write-after-read (WAR) and write-after-write (WAW) dependences. Another po-
tential analysis would be to look at only RAW dependences since theoretically
these are the only dependences which cannot be removed. For example, if a
memory location is written at the start of each iteration and read later then
there is no data flow between iterations through this location. In theory it would
be possible to discount this inter-iteration dependence from the DDG, however,
removing such dependences would require complex memory renaming techniques
which HELIX does not currently provide. Therefore it is necessary to include all
WAR and WAW dependences in the oracle DDG to ensure all dependences are
satisfied.

The oracle DDG records a dependence edge between every two instructions
that every touch the same memory location in the lifetime of the program.
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Even if two instructions have many dynamic instances and only alias once, a
dependence will still be recorded. Such a dependence would be a prime candidate
for parallelization using speculative techniques where we could speculate that the
dependence does not occur and perform runtime checks to guarantee correctness.
We are also interested in using the same infrastructure to evaluate the potential
for such techniques and a preliminary study has shown that a large proportion of
dependences in the oracle DDG are not realised on every iteration of the loop.

4 Evaluation

In prior work it has been assumed that automatic parallelization could be im-
proved by simply increasing the accuracy of the compiler’s dependence analysis.
In this section we will evaluate the validity of this assumption. Firstly, we de-
scribe the experimental setup and benchmarks used. The accuracy of the DDG
produced by the current HELIX compile-time analysis will be quantified, show-
ing that the compile-time DDG does significantly overstate the number of depen-
dences. We show, however, that even using the oracle DDG which removes these
extraneous dependences, the compiler is unable to produce code which performs
better than that produced using the compile-time DDG. Further analysis of ac-
tual dependences reveals that most of them do not need to be satisfied all the
time. This suggests that exploiting the dynamic nature of dependences is crucial
and that there is significant scope for gaining performance with speculation.

4.1 Execution Model

To evaluate HELIX performance we run the generated code in an execution
model which simulates how the code would run on a multicore system. The code
is transformed using the ordinary HELIX optimizations but each iteration of the
loop is forced to run sequentially on a single core. Callbacks to the execution
model are inserted into the code which update counters with the latency of each
basic block as it is executed. The starts and ends of sequential segments are
also instrumented with callbacks. The execution model calculates how long each
simulated core needs to wait at the start of each sequential segment. Parameters
such as the latency to communicate signals between cores are configurable. The
execution model produces deterministic results and this makes it easier to com-
pare the performance of HELIX with the compile-time generated DDG versus
the oracle DDG.

To evaluate the oracle DDG we modified HELIX to take the DDG as input.
HELIX then performs its normal optimizations and transformations and gen-
erates sequential segments based on the new DDG. This code is instrumented
with the execution model callbacks and executed.

4.2 Benchmarks

To test the performance of the improved DDG we used the cbench benchmark
suite [16]. This is a set of sequential benchmarks based on the MiBench suite [17]
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but with the addition of multiple datasets. We intend to do further study of how
the oracle DDG depends on the input dataset at a later stage although at the
moment our results are based on single datasets. The suite includes applications
from various domains such as security, telecommunications and office software.

4.3 Results

First we will look at the difference between the compile-time determined DDG
and that produced by the runtime dependence analysis. We will take a sample ap-
plication: automotive susan e, an image processing algorithm for detecting edges.
Table 1 shows the number of DDG edges identified by both the compile-time
dependence analysis and the oracle dependence analysis. Each edge represents a
pair of instructions which are identified as being dependent including read-after-
write, write-after-read and write-after-write dependences. Coverage indicates the
percentage of overall execution time for the program that was spent in that loop.
Accuracy indicates the percentage of compile-time identified dependences which
were also identified by the oracle analysis.

DDG edges

Loop ID Coverage Compile-time Oracle Accuracy

A 3% 1 0 0%
B 3% 64 56 87%
C 16% 9610 2110 21%
D 16% 9610 1778 18%
E 18% 4 0 0%
F 18% 4 0 0%
G 56% 1 0 0%
H 56% 1 0 0%

Table 1: Accuracy of DDG for loops in automotive susan e

For this application we can see that the compile-time analysis has greatly
overestimated the number of edges in the DDG. This means that the compile-
time analysis identified many pairs of instructions which it determined could
potentially have accessed the same memory locations but in reality did not alias
even once during execution. Conventional wisdom would suggest that when we
use our profile-determined oracle DDG to parallelize, we would be able to exploit
more parallelism than previously.

Figure 2 shows the speedups HELIX achieves, relative to sequential execu-
tion for each of the loops in automotive susan e. These results were obtained
running the HELIX execution model simulating a 16-core system. Contrary to
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Fig. 1: Percentage of compile-time identified dependences which occurred at least once
at runtime

expectation, no significant extra speedup was achieved despite the use of an or-
acle DDG (100% accuracy). Some of the loops were already achieving close to
linear speedup with HELIX and as such there was little extra performance to
gain anyway. However loops such as C and D which had no speedup or even a
slowdown would have been expected to benefit from the improved DDG.

With a view to further understanding the nature of the remaining depen-
dences in automotive susan e we ran another study which recorded the propor-
tion of iterations in which data was passed to an adjacent iteration by each pair
of dependent instructions. We found that fewer than 1% of the dependences
in the oracle DDG were actually realised on every single iteration. This shows
that the oracle DDG, which shows every pair of instructions which transfer data
between iterations at least once, is a significant overestimation of the amount
of inter-iteration data transfer which actually occurs dynamically. This suggests
that there is extra parallelism which can be exploited using runtime execution
systems like thread level speculation.

The results for automotive susan e are representative of the other applica-
tions we tested in cbench. The results can be seen in Figure 3. Although it was
possible to improve the accuracy of the DDG for most loops, only one loop in
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Fig. 2: Parallelization speedup for automotive susan e with original and oracle DDGs

security rijndael e experienced any speedup improvement when compiled with
the oracle DDG.

5 Related Work

This work draws on previous research in various topics. Automatic parallelization
has a rich history in the research community. Various authors have had success
parallelizing regular code, particularly scientific applications in which depen-
dence analysis is easier to perform accurately [18]. More recently the possibili-
ties for parallelizing more general purpose code with more complex dependence
behaviour have been explored. Zhong et al. [3] look at exploiting parallelism
in loops by transforming the code to make it more amenable to thread level
speculation. However they note that this technique is dependent on accurate
dependence analysis and that if they used a more sophisticated analysis they
may have achieved better results. Another approach to parallelizing irregular
loops is Decoupled Software Pipelining (DSWP) [2]. In this work the authors
show empirically that an improved dependence analysis would produce better
results in some benchmarks. They suggest that using a dependence analysis such
as that proposed by Guo et al. [6] would remove false dependences which harm
performance. HELIX [4] uses an interprocedural pointer analysis based on that
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Fig. 3: Parallelization speedup for loops in cbench

proposed by Guo et al. to discover parallelism in loops. In this work we study the
accuracy of the dependence analysis used in HELIX and show that that analysis
is already sufficient to extract optimal statically parallelized code and that even
an oracle analysis which has perfect knowledge of all actual dependences cannot
produce better speedups.

We have also built on previous work in dependence profiling. Since static
analysis often fails to eliminate false dependences, profiling is often used as
a method of enhancing speculative parallelization schemes by detecting such
dependences [19]. This paper uses dependence profiling as a means of finding the
most accurate data dependence graph the compiler could theoretically produce.
The scheme we use to detect dependences is based on that proposed by Kim
et al. [15] whereby patterns in memory accesses are exploited to compress the
overall amount of data that must be stored. We have expanded on this work
by means of the addition of a compressed control flow trace which can be used
to identify not only conflicting memory references but also the particular loop
iterations in which they occurred.

There is a long history of studying the limits of parallelism in sequential
code. Wall [20] examined the extent of instruction level parallelism that could
be extracted by collecting a trace of the benchmark and scheduling instructions
as early as possible. Austin and Sohi [21] used dynamic dependency graphs to
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show that more parallelism could be extracted than indicated by Wall but would
need to be exploited with memory renaming. Mak and Mycroft [22] expanded
on this work by also considering control dependences and proved that these
hugely restricted the degree of available parallelism. Lilja [23] presents a sur-
vey of techniques for parallelizing loops and a technique for determining the
maximum theoretical parallelism available in a loop although no results for ac-
tual benchmarks are shown. Vachharajani et al. [24] investigated the amount of
parallelism which could be extracted using chip-multiprocessors (CMPs) taking
into account constraints such as inter-core communication latency. This study
showed that there was ample parallelism available for CMPs to exploit but that
performance would not scale past 16 cores without using new techniques such as
speculation. Our work focuses on loop level parallelism and also uses a practical
execution model to see what speedups are possible when the maximum available
parallelism is exploited.

6 Conclusions

In this paper we have evaluated the limits of compile-time analysis as a tool
for improving the performance of automatic parallelization. We have simulated
a perfect dependence analysis by collecting a complete trace of runtime mem-
ory events, building from this an oracle DDG and feeding the results back into
the compiler to produce optimally parallelized code. We found that there were
indeed many shortcomings in the dependence analysis resulting in numerous
dependences being identified which were never realised during execution. How-
ever, the removal of these erroneous dependences did not result in improved
performance in most cases. From this we conclude that improving compile-time
analysis alone will not be enough to get better speedups with automatic paral-
lelization. Our dependence profiling has demonstrated that there is a significant
difference between the number of dependences which are realised at least once
and the number of dependences which are realised all the time. We conclude that
there is still considerable parallelism available to be exploited but that specula-
tion would be required to take advantage of the dynamic behaviour of the code.
We are currently working on an execution model which will simulate a system
using thread level speculation to take advantage of such behaviour.
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