
CMSC 154, Spring 2008
Programming Assignment 1: Manipulating Bits

Assigned: April 2, Due: Sun., April 13, 11:59PM

This lab was developed by the authors of the course text.

Introduction

The purpose of this assignment is to become more familiar with bit-level representations and manipulations.
You will do this by solving a series of programming “puzzles.” Many of these puzzles are quite artificial,
but you will find yourself thinking much more about bits in working your way through them.

Logistics

You may work in a group of up to two people in solving the problems for this assignment. The only “hand-
in” will be electronic. Any clarifications and revisions to the assignment will be posted on the course Web
page.

Hand Out Instructions

Start by downloading datalab-handout.tar from the syllabus web page to (protected) directory in
which you plan to do your work. Then give the command: tar xvf datalab-handout.tar. This
will cause a number of files to be unpacked in the directory. The only file you will be modifying and turning
in is bits.c.

The file btest.c allows you to evaluate the functional correctness of your code. The file README contains
additional documentation about btest. Use the command make btest to generate the test code and run
it with the command ./btest. The file dlc is a compiler binary that you can use to check your solutions
for compliance with the coding rules. The remaining files are used to build btest.

Looking at the file bits.c you will notice a C structure team into which you should insert the requested
identifying information about the one or two individuals comprising your programming team. Do this right
away so you do not forget.

1



Table 1: Bit-Level Manipulation Functions.

Name Description Rating Max Ops
bitAnd(x,y) Compute x&y using only | and ˜ 1 8
bitXor(x,y) Compute x ˆ y 2 14
copyLSB(x) Set all bits of the result to least significant bit of x 2 5
bitMask(h, l) Generate a mask consisting of all 1’s from bit l to bit h 3 16
logicalShift(x, n) Shift x to the right by n, using a logical shift 3 16
bitParty(x) Return 1 if x contains an odd number of 0’s 4 20

Table 2: Arithmetic Functions

Name Description Rating Max Ops
fitsBits(x, n) Return 1 if x can be represented as an n-bit integer. 2 15
negate(x) Return -x 2 5
multFiveEights(x) Multiply x by 5/8 rounding toward 0 3 12
isLess(x, y) x<y 3 24
sum3(x, y, z) Computes x+y+z using only a single + 3 16
isNonZero(x) x==0 4 10
logb2(x) Computes floor(log base 2 of x) 4 90
sm2tc(x) Convert x from sign-magnitude to 2’s complement 4 15

The puzzles

The file bits.c contains a skeleton for each of the 14 programming puzzles. Your assignment is to
complete each function skeleton using only straightline code (i.e., no loops or conditionals) and a limited
number of C arithmetic and logical operators. Specifically, you are only allowed to use the following eight
operators:

! ˜ & ˆ | + << >>

A few of the functions further restrict this list. Also, you are not allowed to use any constants longer than 8
bits. See the comments in bits.c for detailed rules and a discussion of the desired coding style.

Table 1 describes a set of functions that manipulate and test sets of bits and Table 2 describes a set of
functions that make use of the two’s complement representation of integers. The “Rating” field gives the
difficulty rating (the number of points) for the puzzle, and the “Max ops” field gives the maximum number
of operators you are allowed to use to implement each function. If you find a descrepancy between the
tables and the information in bits.c, follow the information in bits.c.

2



Evaluation

Your code will be compiled with GCC and run and tested on lilac. Your score will be computed out of a
maximum of 75 points based on the following distribution:

40 Correctness of code running on one of the class machines.

28 Performance of code, based on number of operators used in each function.

7 Style points, based on your instructor’s subjective evaluation of the quality of your solutions and your
comments.

The 14 puzzles you must solve have been given a difficulty rating between 1 and 4, such that their weighted
sum totals to 40. We will evaluate your functions using the test arguments in btest.c. You will get full
credit for a puzzle if it passes all of the tests performed by btest.c, half credit if it fails one test, and no
credit otherwise.

Regarding performance, our main concern at this point in the course is that you can get the right answer.
However, we want to instill in you a sense of keeping things as short and simple as you can. Furthermore,
some of the puzzles can be solved by brute force, but we want you to be more clever. Thus, for each function
we have established a maximum number of operators that you are allowed to use for each function. This
limit is very generous and is designed only to catch egregiously inefficient solutions. You will receive two
points for each function that satisfies the operator limit.

Finally, we have reserved 7 points for a subjective evaluation of the style of your solutions and your com-
menting. Your solutions should be as clean and straightforward as possible. Your comments should be
informative, but they need not be extensive.

Advice

You are welcome to do your code development using any system or compiler you choose. Just make sure
that the version you turn in compiles and runs correctly on lilac.cs.uchicago.edu. If it does not
compile, we will not grade it.

The dlc program, a modified version of an ANSI C compiler, will be used to check your programs for
compliance with the coding style rules. The typical usage is

./dlc bits.c

Type ./dlc -help for a list of command line options. The README file is also helpful. Some notes on
dlc:

• The dlc program runs silently unless it detects a problem.

• Do not include <stdio.h> in your bits.c file, as it confuses dlc and results in some non-
intuitive error messages.

3



Check the file README for documentation on running the btest program. You will find it helpful to work
through the functions one at a time, testing each one as you go. You can use the -f flag to instruct btest
to test only a single function, e.g., ./btest -f isPositive.

Hand In Instructions

• Make sure you have included your identifying information in your file bits.c.

• Remove any extraneous print statements.

• Create a team name of the form:

– “ID” where ID is your login, if you are working alone, or

– “ID1+ID2” where ID1 is the login of the first team member and ID2 is the login of the second
team member.

This should be the same as the team name you entered in the structure in bits.c.

• Email your solution to siweiw@cs.uchicago.edu and cc robby@cs.uchicago.edu and
macqueen@cs.uchicago.edu. Your email must be received by the deadline.

4


