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Abstract

This paper presents a Coq library that lifts an abstract yet precise notion of running-time
into the type of a function. Our library is based on a monad that counts abstract steps.
The monad’s computational content, however, is simply that of the identity monad so
programs written in our monad (that recur on the natural structure of their arguments)
extract into idiomatic OCaml code.

We evaluated the expressiveness of the library by proving that red-black tree inser-
tion and search, merge sort, insertion sort, various Fibonacci number implementations,
iterated list insertion, various BigNum operations, and Okasaki’s Braun Tree algo-
rithms all have their expected running times.

1. Introduction

For some programs, proving that they have correct input-output behavior is only
part of the story. As Crosby and Wallach (2003) observed, incorrect performance
characteristics can lead to security vulnerabilities. Indeed, some programs and algo-
rithms are valuable precisely because of their performance characteristics. For exam-
ple, merge sort is preferable to insertion sort only because of its improved running
time. Unfortunately, defining functions in Coq or other theorem proving systems does
not provide enough information in the types to state these intensional properties.

Our work provides a monad (implemented as a library in Coq) that enables us
to include abstract running times in types. We use this library to prove that several
important algorithms have their expected running times.

The monad in our work has similar goals to the one in Danielsson (2008)’s, but with
two benefits. First, it allows programmers to write idiomatic code without embedding
invariants in data types, so we can reason about a wider variety of programs. Second,
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and more significantly, our monad adds no complexity computations to the extracted
OCaml code, so the verification imposes no run-time overhead. We elaborate these
details and differences throughout the paper and, in particular, in section 9.

The rest of the paper is structured as follows. In section 2, we give an overview of
how the library works and the style of proofs we support. In section 3, we discuss the
cost model our proofs deal with. In section 4, we explain the extraction of our programs
to OCaml. In these first three sections, we use a consistent example that is introduced
in section 2. Following this preamble, section 5 walks through the definition and de-
sign of the monad itself. Section 6 describes the results of our case study, wherein we
proved properties of a variety of different functions. Section 7 and section 8 discuss
accounting for the running time of various language primitives. Finally, section 9 pro-
vides a detailed account of our relation to similar projects. Our source code and other
supplementary material is available at https://github.com/rfindler/395-2013.

Extended material: Compared to the conference proceedings version of this pa-
per (McCarthy et al. 2016), this version contains more elaborate and detailed figures
and proofs throughout, as well as an extended discussion of language primitive run-
times in section 7.

2. Overview of Our Library

The core of our library is a monad that, as part of its types, tracks the running time
of functions. To use the library, programs must be explicitly written using the usual
return and bind monadic operations. In return, the result type of a function can use
not only the argument values to give it a very precise specification, but also an abstract
step count describing how many primitive operations (function calls, pattern matches,
variable references etc.) that the function executes.

To give a sense of how code using our library looks, we start with a definition of
Braun trees (Braun and Rem 1983) and their insertion function, where the contributions
to the running time are explicitly declared as part of the body of the function. In the
next section, we make the running times implicit (and thus not trusted or spoofable).

Braun trees, which provide for efficient growable vectors, are a form of balanced
binary trees where the balance condition allows only a single shape of trees for a given
size. Specifically, for each interior node, either the two children are exactly the same
size or the left child’s size is one larger than the right child’s size.

Because this invariant is so strong, explicit balance information is not needed in the
data structure that represents Braun trees; we can use a simple binary tree definition.

Inductive bin_tree {A:Set} : Set :=
| bt_mt : bin_tree
| bt_node : A -> bin_tree -> bin_tree -> bin_tree.

To be able to state facts about Braun trees, however, we need the inductive Braun
to specify which binary trees are Braun trees (at a given size n)1.

1The @ in bin_tree is to specify the implicit type argument.

2

https://github.com/rfindler/395-2013


Program Fixpoint insert {A:Set} (i:A) (b:@bin_tree A)
: {! res !:! @bin_tree A !<! c !>!

(forall n, Braun b n -> (Braun res (n+1) /\ c = fl_log n + 1)) !} :=
match b with

| bt_mt => += 1; <== (bt_node i bt_mt bt_mt)
| bt_node j s t => t' <- insert j t;

+= 1; <== (bt_node i t' s)
end.

Figure 1: Braun tree insertion

Inductive Braun {A:Set} : (@bin_tree A) -> nat -> Prop :=
| B_mt : Braun bt_mt 0
| B_node : forall (x:A) s s_size t t_size,

t_size <= s_size <= t_size+1 ->
Braun s s_size -> Braun t t_size ->
Braun (bt_node x s t) (s_size+t_size+1).

This says that the empty binary tree is a Braun tree of size 0, and that if two numbers
s_size, t_size are the sizes of two Braun trees s and t, and if t_size <= s_size
<= t_size+1, then combining s and t into a single tree produces a Braun tree of size
s_size+t_size+1.

Figure 1 shows the insertion function. Let us dig into this function, one line at a
time. It accepts an object i (of type A) to insert into the Braun tree b. Its result type
uses a special notation:

{! «result id» !:! «simple type» !<! «cost id» !>! «property» !}

where the braces, exclamation marks, colons, less than, and greater than are all fixed
parts of the syntax and the portions enclosed in « » are filled in based on the particulars
of the insert function. In this case, it is saying that insert returns a binary tree and,
if the input is a Braun tree of size n, then the result is a Braun tree of size n+1 and the
function takes fl_log n + 1 steps of computation (where fl_log computes the floor
of the base 2 logarithm and is defined as zero at zero).

These new {! ... !} types are the types of computations in the monad. The
monad tracks the running time and verifies the correctness property of the function.

The body of the insert function begins with the match expression that determines
if the input Braun tree is empty or not. If it is empty, then the function returns a
singleton tree that is obtained by calling bt_node with two empty children. This case
uses <==, the return operation that injects simple values into the monad and += that
declares that this operation takes a single unit of computation. That is, the type of +=
insists that += accepts a natural number k and a computation in the monad taking some
number of steps, say n. The result of += is also a computation in the monad just like
the second argument, except that the running time is n+k.

In the non-empty case, the insertion function recurs with the right subtree and then
builds a new tree with the subtrees swapped. This swapping preserves the Braun in-
variant: Since we know that the left subtree’s size is either equal to or one larger than
the right’s, when we add an element to the right and swap the subtrees, we end up with
a new tree whose left subtree’s size is either equal to or one greater than the right.
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The «var» <- «expr» ; «expr» notation is the monadic bind operator; using a
let-style notation. The first, right-hand side expression must be a computation in the
monad; the result value is pulled out of the monad and bound to «var» for use in the
body expression. Then, as before, we return the new tree in the monad after treating
this branch as a single abstract step of computation.

We exploit Sozeau (2006)’s Program to simplify proving that these functions have
their types. In this case, we are left with two proof obligations, one from each of the
cases of the function. The first one is:

forall n, Braun bt_mt n ->
Braun (bt_node i bt_mt bt_mt) (n + 1) /\ 1 = fl_log n + 1

The assumption is saying that n is the size of the empty Braun tree, which tells us that
n must be zero. So simplifying, we are asked to prove that:

Braun (bt_node i bt_mt bt_mt) 1 /\ 1 = fl_log 0 + 1

both of which follow immediately from the definitions. This proof request corresponds
exactly to what we need to know in order for the base case to be correct: the singleton
tree is a Braun tree of size 1 and the running time is correct on empty input.

For the second case, we are asked to prove:

forall i j s t bt an n,
(forall m : nat, Braun t m -> Braun bt (m + 1) /\ an = fl_log m + 1) ->
Braun (bt_node j s t) n ->
Braun (bt_node i bt s) (n + 1) /\ an + 1 = fl_log n + 1

Thus, we may assume a more general inductive hypothesis (the inner forall) than we
need (it is specialized to the recursive call that insert makes, but not the size of the
tree) and that the tree bt_node j s t is a Braun tree of size n. So, we must show that
bt_node i bt s is a Braun tree of size n + 1 and that the running time is correct.

Because the size information is not present in the actual insertion function, Coq
does not know to specialize the inductive hypothesis to the size of t. To clarify that,
we can replace m with t_size and, since we know that the tree is not empty, we can
replace n with s_size + t_size + 1 and simplify to arrive at this goal:

forall i j s t bt an s_size t_size,
Braun bt (t_size + 1) ->
an = fl_log t_size + 1 ->
Braun (bt_node j s t) (s_size + t_size + 1) ->
Braun (bt_node i bt s) (s_size + t_size + 1 + 1) /\
an + 1 = fl_log (s_size + t_size + 1) + 1

which we can prove by using facts about logarithms and the definition of Braun trees.
This theorem corresponds precisely to what we need to know in order to prove

that the recursive case of insert works. The assumptions correspond to the facts
we gain from the input to the function and from the result of the recursive call. The
conclusion corresponds to the facts we need to establish for this case. This precision
of the obligation is thanks to Program and the structure of our monad.
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Program Fixpoint insert
Program Fixpoint insert {A:Set}
(i:A) (b:@bin_tree A)

{A:Set} (i:A) (b:@bin_tree A) : {! res !:! @bin_tree A !<! c !>!

: @bin_tree A :=
insert_result A i b res c !}

:=
match b with match b with
| bt_mt => | bt_mt =>
<== bt_node i bt_mt bt_mt += 6;

| bt_node j s t => <== (bt_node i bt_mt bt_mt)
t' <- insert j t; | bt_node j s t =>
<== bt_node i t' s t' <- insert j t;

end. += 9;
<== (bt_node i t' s)

end.

Figure 2: Inserting += into insert

3. Implicit Running Times

One disadvantage to the code in the previous section is that the running times are
tangled with the body of the insertion function. Even worse, making mistakes when
writing += expressions can produce un-provable claims or cause our proofs about the
running times to be incorrect and useless, as they will prove facts that are irrelevant to
the functions we are using.

To handle this situation, we have written a simple Coq-to-Coq translation function
that accepts functions written in our monad without any += expressions and turns them
into ones with += expressions in just the right places.

Our translation function accepts a function written in the monad, but without the
monadic type on its result, and produces one with it. For example, the insert function
shown on the left in figure 2 is translated into the one on the right. As well as adding
+= expressions, the translation process also generates a call to insert_result in the
monadic result type. The user must define this function separately and the translation’s
output must be used in that context:

Definition insert_time n := 9 * fl_log n + 6.
Definition insert_result (A : Set) (i : A) (b:bin_tree) (res:bin_tree) c :=

(forall n, Braun b n ->
(Braun res (S n) /\
(forall xs, SequenceR b xs -> SequenceR res (i::xs)) /\
c = insert_time n)).

Unlike the previous version, this one accounts for the larger constant factors and it
also includes a stricter correctness condition to show that we establish complete func-
tional correctness. Specifically, the new conjunct uses SequenceR (a proposition from
our library) to insist that if you linearize the resulting Braun tree into a list, then it is
the same as linearizing the input and consing the new element onto the front of the list.

Rather than develop a novel, and potentially controversial cost semantics, we show
the utility of our monad by adopting the Rosendahl (1989) cost model. This model
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treats each function call, variable lookup, and case-dispatch as a single unit of abstract
time. In figure 2, the first return is annotated with a cost of 6 because it references 4
variables, calls 1 function, and does 1 case-dispatch. The second return is annotated
with a cost of 9 because it references 6 variables (the self-reference is not counted),
calls 2 functions, and does 1 case-dispatch.

Our translation function is straightforward and is included in the supplementary
materials (add-plusses/check-stx-errs in rkt/tmonad/main.rkt). Our monad
could support different cost semantics, without modification, provided a function could
map them to the program’s syntax in a straightforward way and provided they met
certain constraints. Specifically, we assume that costs are compositionally additive.
This means that a live heap consumption cost, such as Albert et al. (2013) or Mon-
tenegro et al. (2014) could not be used. However, a semantics like Charguéraud and
Pottier (2015)’s that only counts unit cost at function entry would be straightforward.
We implement a simplified semantics like this. It is particularly interesting because the
default, specific semantics treats all arithmetic operations as having unit cost, which
may not be the most reliable measure as we discuss in section 7.

An alternative approach would be to follow Danner et al. (2013) and build a Coq
model of a machine and programming language. We would then define a cost judge-
ment for this machine and prove its soundness with respect to the machine’s reduction
lengths. Finally, we would show that our monadic types allow incremental proofs of
their cost results. In some sense, this “deep embedding” would be a more direct study
of cost and cost proofs, but it would be no more directly connected with the running
time of the programs, unless we could establish a connection to the OCaml VM and
the hardware itself.

4. Extracting the insert Function

One of the important benefits of our library is that none of the correctness condi-
tions and running time infrastructure affect Coq’s extraction process. In particular, our
monad extracts as the identity monad, which means that the OCaml code produced by
Coq does not require any modifications. For example, here is how insert extracts:

type 'a bin_tree = | Bt_mt
| Bt_node of 'a * 'a bin_tree * 'a bin_tree

let rec insert i = function
| Bt_mt -> Bt_node (i, Bt_mt, Bt_mt)
| Bt_node (j, s, t) -> Bt_node (i, (insert j t), s)

The only declarations we added to aid Coq’s extraction was the suggestion that it
should inline the monad operations. And since the extracted version of our monad
is the identity monad, the monad operations simply evaporate when they are inlined.

More importantly, however, note that this code does not have any proof residue;
there are no extra data-structures or function arguments or other artifacts of the infor-
mation used to prove the running time correct.
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5. The Monad

One way to account for cost is to use the monad to pair an actual value (of type
B) with a natural number representing the computation’s current cost, and then ensure
that this number is incremented appropriately at each stage of the computation. Un-
fortunately, this cost would be part of the dynamic behavior of the algorithm. In other
words, insert x bt would return a new tree and a number, violating our goal of
having no complexity residue in extracted programs.

In Coq parlance, the problem is that we have a pair of two Set values—the B and
the nat—and Sets are, by definition, part of the computational content. Instead, we
need to have a Set paired with something from the universe of truth propositions, Prop.
The trouble is finding the right proposition.

We use a new function C that consumes a type and a proposition that is parameter-
ized over values of the type and numbers. Specifically, we define C:

Definition C (A:Set) (P:A -> nat -> Prop) : Set :=
{a : A | exists (an:nat), (P a an)}.

For a given A and P, C A P is a dependent pair of a, a value of type A, and a
proof that there exists some natural number an related to a by P. The intention is to
think of the natural number as the running time and P as a post-condition that includes
some specification of running time (and also correctness) for the particular function.
Importantly, the right-hand side of this pair is a proposition, so it contributes no com-
putational content when extracted. To see this in practice, consider insert’s result
type:

: {! res !:! @bin_tree A !<! c !>!
(forall n, Braun b n -> (Braun res (n+1) /\ c = fl_log n + 1)) !}

This is a shorthand (using Coq’s notation construct) for the following call to C, in
order to avoid duplicating the type between !:! and !<!:

(C (@bin_tree A) (fun (res:@bin_tree A) (c:nat) =>
(forall n, Braun b n -> (Braun res (n+1) /\ c = fl_log n + 1))))

One important aspect of the C type is that the nat is bound only by an existential,
and thus is not necessarily connected to the value or the run time. Therefore, when we
know an expression has the type C A P, we do not know that its running time is correct,
because the property might be about anything and the proof might supply any nat to
satisfy the existential. Thus, in order to guarantee the correct running times, we treat
types of the form C A P as private to the monad’s defining module. We build a set of
operations that can be combined in arbitrary ways but subject to the restriction that the
nat must actually be the running time.

The first of these operations is the monadic unit, ret. Suppose a program returns
an empty list, <== nil. Such a program takes no steps to compute, because the value
is readily available. This logic applies to all places where a computation ends. To do
this, we define <== x to be ret _ _ x _, a use of the monad operator ret. The
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underscores ask Coq to fill in well-typed arguments (asking the user to provide proofs,
if necessary, as we saw in section 2). This is the type2 of ret:

Definition ret (A:Set) (P:A -> nat -> Prop) (a:A) (Pa0:P a 0) : C A P.

This specifies that ret will construct a C A P only when given a proof, Pa0, that the
correctness/run time property holds between the actual value returned a and the natural
number 0. In other words, ret requires P to predict the running time as 0.

There are two other operations in our monad: inc that adds to the count of the
running time, and bind that combines two computations in the monad, summing their
running times. We tackle inc next.

Suppose a program returns a value a, with property P, that takes exactly one step to
compute. We represent such a program with the expression:

+= 1; <== a

We would like our proof obligation for this expression to be P a 1. We know, however,
that the obligation on <==, namely P a 0, is irrelevant or worse, wrong, because one
unit of cost should be accounted for and it accounts for none. There is a simple way
out of this bind: what if the P for the ret were different than the P for the entire
expression? In code, what if the obligation were P’ a 0? At worst, such a change
would be irrelevant because there may not be a connection between P’ and P. But, we
can choose a P’ such that P’ a 0 is the same as P a 1.

We previously described P as a relation between As and nats, but in Coq this is just
a function that accepts an A and a nat and returns a proposition. So, we can make P’
be the function fun a an => P a (an+1). This has the effect of transforming the run
time obligation on ret from what was described above. The proof P’ a 0 becomes P
a 1. In general, if the cost along a control-flow path to a ret has k units of cost, the
proof will be P a k. Thus, we accrue the cost inside of the property itself.

The monadic operator inc encapsulates this logic and introduces k units of cost:

Definition inc (A:Set) k (PA : A -> nat -> Prop)
(xc:C A (fun x xn => forall xm, xn + k = xm -> PA x xm))

: C A PA.

In programs using our monad, we write += k; e, a shorthand for inc _ k _ e.
The key point in the definition is that the property in x’s type is not PA, but a modified
function that ensures the argument is at least k.

In principle, the logic for bind is very similar. A bind represents a composition of
two computations: an A-producing one and an A-consuming, B-producing one. If we
assume that the property for A is PA and PB for B, then an attempt at a type for bind is:

Definition bind1 (A:Set) (PA:A -> nat -> Prop)
(B:Set) (PB:B -> nat -> Prop)
(am:C A PA) (bf:A -> C B PB)

: C B PB.

2The definition of ret, and all other monadic operations, are in the supplementary material and our public
Github repo. The types are the most interesting part, however, so we focus on them.
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This definition is incorrect from the cost perspective, as it does not ensure that the
cost for producing the A is accounted for along with the cost of producing the B.

Suppose that the cost of generating the A was 7, then we should transform the
property of the B computation to be fun b bn => PB b (bn+7). Unfortunately, we
cannot “look inside” the A computation to know that it costs 7 units. Instead, we have
to show that whatever the cost for A was, the cost of B is still as expected. This suggests
a second attempt at a definition of bind:

Definition bind2 (A:Set) (PA:A -> nat -> Prop)
(B:Set) (PB:B -> nat -> Prop)
(am:C A PA)
(bf:A -> C B (fun b bn => forall an, PB b (bn+an)))

: C B PB.

Unfortunately, this is far too strong of a statement because there are some costs an
that are too much. The only an costs that our bind proof must be concerned with are
those that respect the PA property given the actual value of a that the A computation
produced, rather than any possible result and cost.

We can use a dependent type on bf to capture the connection between the costs in
a third attempt at the type for bind.

Definition bind3 (A:Set) (PA:A -> nat -> Prop)
(B:Set) (PB:B -> nat -> Prop)
(am:C A PA)
(bf:forall (a:A),

C B (fun b bn => forall an, PA a an -> PB b (bn+an)))
: C B PB.

This version of bind is complete, from a cost perspective, but has one problem for
practical theorem proving. The body of the function bf has access to the value a, but
it does not have access to the correctness part of the property PA. At first blush, the
missing PA appears not to matter because the proof of correctness for the result of bf
does have access through the hypothesis PA a an, but that proof context is not available
when producing the b result. Instead, bind assumes that b has already been computed.
That assumption means if the proof of PA is needed to compute b, then we will be
stuck. The most common case where PA is neccessary occurs when bf performs non-
structural recursion and must construct a well-foundness proof to perform the recursive
call. These well-foundness proofs typically rely on the correctness of the a value. Some
of the functions we discuss in our case study in section 6 could not be written with this
version of bind, although some could.

It is simple to incorporate the PA proof into the type of bf, once you realize the need
for it, by adding an additional proposition argument that corresponds to the right-hand
side of the C A PA value am:

Definition bind (A:Set) (PA:A -> nat -> Prop)
(B:Set) (PB:B -> nat -> Prop)
(am:C A PA)
(bf:forall (a:A) (pa:exists an, PA a an),

C B (fun b bn => forall an, PA a an -> PB b (an+bn)))
: C B PB.
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When writing programs we use the notation «x» <- «expr1» ; «expr2» as a
shorthand for bind _ _ _ _ expr1 (fun (x : _) (am : _) => expr2)

Because all of the interesting aspects of these operations happen in their types, the
extractions of these operations have no interesting dynamic content. Specifically ret
is simply the identity function, inc is a function that just returns its second argument
and bind applies its second argument to its first.

Furthermore, we have proven that they obey variants of the monad laws that incor-
porate the proof obligations (see the file monad/laws.v in the supplementary material).
Our versions of the monad law proofs use an auxiliary relation, written sig_eqv, rather
than equality. This relation ensures that the values returned by monadic commands are
equal and that their proofs are equivalent. In practice, this means that although the
theorems proved by expressions such as (m >>= (\x -> f x >>= g)) and ((m >>=
f) >>= g) are written differently, they imply each other. In particular, for that pair
of expressions, one proves that (n_m + (n_f + n_g)) is an accurate prediction of
running time and the other proves that ((n_m + n_f) + n_g) is an accurate prediction
of running time, which are equivalent statements.

In summary, the monad works by requiring the verifier to predict the running-time
in the PA property and then prove that the actual cost (starting at 0 and incrementing as
the property passes down) matches the prediction.

6. Case Study

To better understand how applicable our monad is, we implemented a variety of
functions: search and insert for red-black trees, insertion sort, merge sort, both the
naive recursive version of the nth Fibonacci number function and the iterative version,
a function that inserts m times into a list at position n using both lists and zippers,
BigNum add1, sub1, plus, and mult, as well as all of the algorithms mentioned in
Okasaki (1997)’s paper, Three Algorithms on Braun Trees. We chose these algorithms
by first selecting Okasaki’s papers, because the project originated in an undergraduate
class and we knew Okasaki’s paper to be well-written and understandable to under-
graduates. From that initial selection, we moved to an in-order traversal of Cormen et
al. (2009) looking for functional algorithms that would challenge the framework, and
added BigNum operations to support the discussion in section 7.

To elaborate on the Braun tree algorithms, Okasaki’s paper contains several ver-
sions of each of the three functions, each with different running times, in each case
culminating with efficient versions. The three functions are:

• size: computes the size of a Braun tree (a linear and a log squared version)

• copy: builds a Braun tree of a given size filled entirely with a given element (a
linear, a fib ˝ log, a log squared, and a log time version), and

• make_array: converts a list into a Braun tree (two n logpnq and a linear version).

In total, we implemented 56 different functions (some of them are helper functions
to support other top-level functions) using the monad. For all of them, we proved the
expected O running times. For merge sort, we proved it is Θ(n logpnq). For the naive
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File Non- Obligation Other

Proof Lines Proof

Lines Lines

make_array_nlogn1.v 43 12 79

make_array_nlogn1_gen.v 13 0 0

Subtotal 56 12 79

make_array_nlogn1_fold.v 43 13 59

Subtotal 43 13 59

make_array_nlogn2.v 64 57 64

make_array_nlogn2_gen.v 17 0 0

unravel_gen.v 15 0 0

Subtotal 96 57 64

make_array_linear.v 180 39 241

make_array_linear_gen.v 13 0 0

rows.v 120 115 145

rows1_gen.v 6 0 0

rows_gen.v 20 0 0

take_drop_split.v 78 91 26

drop_gen.v 18 0 0

take_gen.v 18 0 0

pad_drop_gen.v 19 0 0

split_gen.v 7 0 0

foldr_build_gen.v 13 0 0

zip_with_3_bt_node_gen.v 24 0 0

build.v 48 41 2

build_gen.v 14 0 0

Subtotal 578 286 414

File Non- Obligation Other

Proof Lines Proof

Lines Lines

copy_linear.v 21 22 1

copy_linear_gen.v 13 0 0

Subtotal 34 22 1

copy_fib_log.v 146 90 313

copy_fib_log_gen.v 17 0 0

Subtotal 163 90 313

copy_log_sq.v 67 56 179

copy_log_sq_gen.v 16 0 0

Subtotal 83 56 179

copy_log.v 39 28 21

copy_log_gen.v 9 0 0

copy2_gen.v 18 0 0

Subtotal 66 28 21

size_linear.v 22 16 1

size_linear_gen.v 13 0 0

size_linear_bin.v 30 55 2

size_linear_bin_gen.v 17 0 0

Subtotal 82 71 3

size_log_sq.v 83 100 155

diff_gen.v 19 0 0

size_log_sq_gen.v 13 0 0

Subtotal 115 100 155

to_list_naive.v 58 53 22

cinterleave_gen.v 12 0 0

to_list_naive_gen.v 14 0 0

Subtotal 84 53 22

Figure 3: Braun Tree Function Line Counts

fib, we proved that it is Θ of itself, O(2n), and Ω(2n{2), all assuming that the addition
operation is constant time. For the iterative fib, we prove that it is O(n2). For the
list insertion functions, we prove that when m is positive, the zipper version is O of
the list version (because the zipper version runs in O(m`n) while the list version runs
in O(n ˚m).) We discuss the BigNum arithmetic functions in section 7. In all cases,
except for make_array_linear and red-black tree insertion, the proofs of running time
include proof of correctness of the algorithm. The supplementary material contains all
of the Coq code for the functions in our case study.
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File Non- Obligation Other

Proof Lines Proof

Lines Lines

rbtree.v 155 0 126

rbt_search.v 56 106 6

bst_search_gen.v 26 0 0

rbt_insert.v 171 54 179

rbt_balance_gen.v 347 0 0

rbt_blacken_gen.v 11 0 0

rbt_insert_gen.v 8 0 0

rbt_insert_inner_gen.v 28 0 0

Subtotal 802 160 311

sorting.v 20 0 5

isort.v 62 132 53

insert_gen.v 18 0 0

isort_gen.v 13 0 0

merge_gen.v 25 0 0

mergesort.v 524 400 813

mergesort_gen.v 7 0 0

mergesortc_gen.v 20 0 0

split2_gen.v 18 0 0

clength_gen.v 12 0 0

Subtotal 719 532 871

fib.v 92 0 200

fib_iter.v 213 48 351

fib_iter_gen.v 18 0 0

fib_iter_loop_gen.v 13 0 0

fib_rec_gen.v 19 0 0

fib_rec.v 53 12 76

Subtotal 408 60 627

Monad 229 0 114

Common 1,740 4 1,719

File Non- Obligation Other

Proof Lines Proof

Lines Lines

zip.v 235 270 70

from_zip_gen.v 5 0 0

insert_at_gen.v 18 0 0

minsert_at_gen.v 13 0 0

minsertz_at_gen.v 10 0 0

to_zip_gen.v 5 0 0

zip_insert_gen.v 5 0 0

zip_left_gen.v 11 0 0

zip_leftn_gen.v 13 0 0

zip_minsert_gen.v 13 0 0

zip_right_gen.v 11 0 0

zip_rightn_gen.v 13 0 0

Subtotal 352 270 70

add1.v 50 21 113

add1_gen.v 15 0 0

sub1.v 55 25 110

sub1_gen.v 15 0 0

sub1_linear.v 43 10 107

sub1_linear_loop_gen.v 13 0 0

Subtotal 191 56 330

plus.v 160 77 309

plus_cin_gen.v 50 0 0

plus_gen.v 6 0 0

Subtotal 216 77 309

mult.v 156 50 321

mult_gen.v 17 0 0

Subtotal 173 50 321

Totals 3,167 910 3,893

Total number of lines: 7,970

Figure 4: Non-Braun Tree Functions Line Counts
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Program Fixpoint copy_log_sq {A:Set} (x:A) (n:nat) {measure n}
: {! res !:! bin_tree !<! c !>!

copy_log_sq_result A x n res c !} :=
match n with

| 0 =>
+= 3;
<== bt_mt

| S n' =>
t <- copy_log_sq x (div2 n');
if (even_odd_dec n')
then (+= 13;

<== (bt_node x t t))
else (s <- insert x t;

+= 16;
<== (bt_node x s t))

end.

Figure 5: copy_log_sq

6.1. Line Counts
Figure 3 and figure 4 show a detailed account of the lines of Coq code produced for

our study. We separate the line counts into proofs that are inside obligations (and thus
correspond to establishing that the monadic types are correct) and other lines of proofs.
In total there are 13,543 lines of code. There are 5,564 lines that are not proofs. There
are 1,997 lines of code in obligations and 5,982 lines of other proofs.

We have built a library of general proofs about the monad (such as the monad
laws), an asymptotic complexity library, a Log library, and some common facts and
definitions about Braun trees. This library accounts for over 25% of the code of each
category. The arithmetic proofs that do not involve logarithms, multiplication, division
by 2, or evenness are dispatched by the standard Coq tactic omega.

With the exception of the make_array_linear and the red-black tree insertion
function, the proofs inside the obligations establish the correctness of the functions and
establish a basic running time result, but not an asymptotic one in terms of O.

For example, Figure 5 is the definition of the copy_log_sq function, basically
mirroring Okasaki’s definition, but in Coq’s notation. The monadic result type is

Definition copy_log_sq_result (A:Set) (x:A) (n:nat) (b:@bin_tree A) (c:nat) :=
Braun b n /\ SequenceR b (mk_list x n) /\ c = copy_log_sq_time n.

which says that the result is a Braun tree whose size matches the input natural number,
that linearizing the resulting tree produces the input list, and that the running time is
given by the function copy_log_sq_time.

The running time function, however, is defined in parallel to copy_log_sq itself,
not as the product of the logs:

Program Fixpoint copy_log_sq_time (n:nat) {measure n} :=
match n with

| 0 => 3
| S n' => if (even_odd_dec n')

then 13 + copy_log_sq_time (div2 n')
else 16 + copy_log_sq_time (div2 n') + insert_time (div2 n')

end.
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This parallel definition allows a straightforward proof that copy_log_sq’s running time
is copy_log_sq_time, but leaves as a separate issue the proof that copy_log_sq_time
is O(log2 n). There are 56 lines of proof to guarantee the result type of the function is
correct and an additional 179 lines to prove that that copy_log_sq_time is O(log2 n).

For simple functions (those with linear running time except make_array_linear),
the running time can be expressed directly in the monadic result (with precise con-
stants). However, for most of the functions the running time is first expressed precisely
in a manner that matches the structure of the function and then that running time is
proven to correspond to some asymptotic complexity, as with copy_log_sq.

It is conceivable that this “matching structure” running time function could be au-
tomatically generated by the preprocessor from section 3, but we have not done it. We
expect that the value would be minor because the real effort is in proving that the func-
tion satisfies the appropriate complexity (and this typically involves proving several
intermediate, simpler functions are in the same complexity class).

In both cases—single step precise statements and progressively abstract statements—
the verifier needs to have an intuition for what the actual complexity is and why, just
like when doing paper proofs. Unlike some of the related work we discuss later (Gul-
wani et al. 2009; Hoffmann and Shao 2015; Hofmann and Jost 2003; Hughes and
Pareto 1999), we help programmers express complexity properties and verify their
proofs, but do not do the analysis automatically.

This raises the question of whether it would be better to initially use asymptotic
claims and never introduce an exact, intermediate form. We tried to do this initially but
could not make progress on the proofs. The essential problem was that the inductive
hypothesis was too weak when trying to distinguish between the various cases inside
copy_log_sq and similar functions. It is possible that this could be made to work, but
we could not do it in this case study.

6.2. Extraction

The extracted functions naturally fall into three categories.
In the first category are functions that recur on the natural structure of their in-

puts, e.g., functions that process lists from the front, functions that process trees by
processing the children and combining the result, and so on. In the second category
are functions that recursively process numbers by counting down by one from a given
number. In the third category are functions that “skip” over some of their inputs. For
example, some functions recur on natural numbers by dividing the number by 2 instead
of subtracting one, and merge sort recurs by dividing the list in half at each step.

Functions in the first category extract into precisely the OCaml code that you would
expect, just like insert, as discussed in section 2.

Functions in the second category could extract like the first, except because we
extract Coq’s nat type, which is based on Peano numerals, into OCaml’s big_int
type, which has a different structure, a natural match expression in Coq becomes a
more complex pattern in OCaml.
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A representative example of this pattern is zip_rightn. The extraction is:

let rec zip_rightn n z =
(fun fO fS n -> if (eq_big_int n zero_big_int) then fO () else fS (pred_big_int n))

(fun _ -> z)
(fun np -> zip_rightn np (zip_right z))
n

The body of this function is equivalent to a single conditional that returns z when n
is 0 and recursively calls zip_rightn on n-1 otherwise. This artifact in the extraction
is simply a by-product of the mismatch between nat and big_int. We expect that this
artifact can be automatically removed by the OCaml compiler. This transformation into
the single conditional corresponds to modest inlining, since fO and fS occur exactly
once and are constants.

Functions in the third category, however, are more complex. They extract into code
that is cluttered by Coq’s support for non-simple recursion schemes. Because each
function in Coq must be proven to be well-defined and to terminate on all inputs, func-
tions that don’t simply follow the natural recursive structure of their input must have
supplemental arguments that record the decreasing nature of their input. After extrac-
tion, these additional arguments clutter the OCaml code with useless data structures
equivalent to the original set of arguments.

The function cinterleave is one such function. Here is the extracted version:

let rec cinterleave_func x =
let e = let a,p = let x0,h = x in h in a in
let o = let x0,h = let x0,h = x in h in h in
let cinterleave0 = fun e0 o0 -> let y = __,(e0,o0) in cinterleave_func y in
(match e with
| Nil -> o
| Cons (x0, xs) -> Cons (x0, (cinterleave0 o xs)))

let cinterleave e o =
Obj.magic (cinterleave_func (__,((Obj.magic e),(Obj.magic o))))

All of the extra pieces beyond what was written in the original function are useless.
In particular, the argument to cinterleave_func is a three-deep nested pair contain-
ing __ and two lists. The __ is a constant that is defined at the top of the extraction file
that is never used for anything and behaves like unit. That piece of the tuple corre-
sponds to a proof that the combined length of the two lists is decreasing. The function
starts by destructuring this complex argument to extract the two lists, e and o. Next
it constructs a version of the function, cinterleave0, that recovers the natural two
argument function for use recursively in the body of the match expression. Finally,
this same two argument interface is reconstructed a second time, cinterleave, for
external applications. The external interface has an additional layer of strangeness in
the form of applications of Obj.magic which can be used to coerce types, but here is
simply the identity function on values and in the types. These calls correspond to use
of proj1_sig in Coq to extract the value from a Sigma type and are useless and always
successful in OCaml.
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All together, the OCaml program is equivalent to:
let rec cinterleave e o =

match e with | Nil -> o
| Cons (x, xs) -> Cons (x, (cinterleave o xs))

This is exactly the Coq program and idiomatic OCaml code. Unlike the second
category, it is less plausible that the OCaml compiler already performs this optimization
and removes the superfluity from the Coq extraction output. However, it is plausible
that such an optimization pass could be implemented, since it corresponds to inlining,
de-tupling, and removing an unused unit-like argument. In summary, the presence of
these useless terms is unrelated to our running time monad, but is an example of the
sort of verification residue we wish to avoid and do successfully avoid in the case of
the running time obligations.

The functions in the first category are: insert, size_linear, size, make_array_naive,
foldr, make_array_naive_foldr, unravel, to_list_naive, isort’s insert, isort, clength,
minsert_at, to_zip, from_zip, zip_right, zip_left, zip_insert, zip_minsert, minsertz_at,
bst_search, rbt_blacken, rbt_balance, rbt_insert. The functions in the second category
are: fib_rec, fib_iter, sub1, mergesort’s split, insert_at, zip_rightn, zip_leftn, add1, tplus.
The functions in the third category are: copy_linear, copy_fib, copy_log_sq, copy2, diff,
make_array_td, cinterleave, merge, mergesort. Some of the functions in the second category
are also in the third category.

7. Accounting for Language Primitives

Rosendahl (1989)’s cost function counts all primitive functions as constant (simply
because it counts a call as unit time and then doesn’t process the body). For most prim-
itives, this is the right behavior. For example, field selection functions (e.g., car and
cdr) are certainly constant time. Structure allocation functions (e.g., cons) are usually
constant time when using a two-space copying collector, as most garbage-collected lan-
guages do. Occasionally, allocation triggers garbage collection, which we can assume
is amortized constant time (but not something our framework handles).

More interestingly, and more often overlooked, however, are numeric primitives.
In a language implementation with BigNums, integers are generally represented as a
list of digits in some large base and grade-school arithmetic algorithms implement the
various operations. Most of these operations do not take constant time.

For the remainder of this discussion, we assume that the base is a power of 2. This
is certainly the case if BigNums are represented as lists of bits, but most libraries use
a larger base. For example, OCaml’s library uses 230 as the base; GMP uses either
232 or 264, depending on configuration parameters. In general, we do not know of any
BigNum library that represents integers in another way.

In such libraries, division by 2, evenness testing, and checking to see if a number
is equal to 0 are all constant-time operations. In general, addition of BigNums is not
constant time. However, certain uses of addition can be replaced by constant-time bit
operations. For instance, doubling and adding 1 can be replaced by a specialized oper-
ation that conses a 1 on the front of the bitstring. The remainder of this section explores
how BigNum arithmetic affects the running time computations of various functions in
our case study.
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7.1. Addition and Subtraction
To get us started, here is the implementation of sub1 in terms of constant-time

BigNum operations, written in our monad:

Program Fixpoint sub1 (n:nat) {measure n}
: {! res !:! nat !<! c !>!

sub1_result n res c !} :=
match n with

| 0 =>
+= 3;
<== 0

| S _ =>
if (even_odd_dec n)
then (sd2 <- sub1 (div2 n);

+= 12;
<== (sd2 + sd2 + 1))

else (+= 8;
<== (n - 1))

end.

where sub1_result asserts that the result of the function is one less than the input and
that the running time is a function in Oplogpnqq.

The use of n - 1 may seem strange in the last line of the function, but in that case we
know that n is odd, so that operation corresponds to zeroing the last bit of the number,
a constant time operation.

Unlike the implementation of sub1 when using Peano arithmetic, this function is
not constant time. Specifically, if the if expression always takes the true branch, then
the function will traverse the entire representation of the number. This possible path
through the function is why it takes log time; the representation of the number takes
space proportional to log of its value.

Beyond sub1, our library contains add1, addition, and multiplication, along with
proofs that add1 is Oplogpnqq, addition is Oplogpmaxpm,nqqq and Ωplogpminpm,nqqq,
and the multiplication algorithm we used is Θplogpnq ¨ plogpmq` logpnqqq.

7.2. Using Subtraction to Recur
A common pattern for functions in our case study is to consume a natural number

and count down, subtracting 1 at each recursive step. A naive analysis based on the
result in section 7.1 suggests that this could add a log factor to the running time, but
that is not a tight bound.

Although subtraction by 1 is not always a constant time operation, it is constant
time on half of its possible inputs. That is, on any odd number, subtracting by 1 is a
constant time operation. Similarly, any number equivalent to 2 modulo 4 will require
2 units of time to perform the sub1 operation because sub1 will terminate after two
iterations. In general, there is a 1

2n chance that sub1 terminates after n iterations.
To account for all uses of sub1 in the implementation of a function that counts

down, we note that we perform the sub1 operation on each number from 1 to n. This
gives a cost in terms of the iterations required by sub1 that is bounded above by n ˚
p 1

2 `
2
4 `

3
8 `¨¨ ¨`

n
2n `¨¨ ¨). This infinite sum converges to 2˚n, thus any prefix of it is

in O(n) and so n sub1 operations require amortized constant time.
We have proved this using our monad, showing that this function is linear time:
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Program Fixpoint sub1_linear_loop (n:nat) {measure n}
: {! res !:! nat !<! c !>!

sub1_linear_loop_result n res c !} :=
match n with

| 0 =>
+= 3;
<== 0

| S _ =>
n' <- sub1 n;
res <- sub1_linear_loop n';
+= 7;
<== res

end.

7.3. Addition in Fib

We did not account for the time of additions in the recursive implementation of
fib. We did prove, however, that the iterative fib function, which requires linear time
when additions are considered constant time, requires quadratic time when we properly
account for primitive operations.

Addition takes time proportional to the number of bits of its input. Using this
fact, we can prove that iterative fib’s running time is proportional to the square of
its input. To prove that fib’s run time is bounded below by n2, we first observe that
for all n ě 6 we have that 2n{2 ď f ibpnq. In the nth iteration of the loop, fib adds
numbers with n

2 bits in their binary representation, and thus takes time Op n
2 q. For large

enough n, this implies that the run time of the additions in the iterative fib function
are bounded below by 1

2 p6` 7` ¨¨ ¨` n), which has a quadratic lower bound. Since
the other primitives used in fib run in constant time, the run time is dominated by the
addition operations, and thus the run time of fib is bounded below by a factor of n2.

A similar argument shows that the run time of fib has a quadratic upper bound.
Combining these two results proves that the run time of the iterative version of fib is
Θpn2q when we properly account for primitive operations.

The supplementary material contains proofs of these facts in Coq (fib/fib_iter.v).

7.4. The size_linear Function

Okasaki (1997)’s size_linear function, shown in Coq notation on the left of fig-
ure 6, has the addition expression lsize + rsize + 1 that is not obviously a constant
time operation. The Braun tree invariant, however, allows for this expression to be
computed in constant time. The invariant guarantees that either lsize equals rsize
or lsize equals rsize + 1. In the former case, the addition corresponds to doubling
lsize followed by adding 1. If numbers are represented by lists of bits with the least
significant bits at the front of the list, then this corresponds to consing a 1 onto the
front of the list. In the latter case, the addition is equivalent to doubling lsize, which
can be implemented by consing a 0 onto the front of the list of bits. The right-hand
side of figure 6 shows the revised version of size_linear that uses only constant time
BigNum operations.

We proved both of these functions have the same running time (where the primitive
operations in each count as unit time) and both compute the correct result.
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Program Fixpoint size_linear
(bt:@bin_tree A)

: {! res !:! nat !<! c !>!
c = size_linear_rt res /\
(forall m,

Braun bt m ->
m = res) !} :=

match bt with
| bt_mt =>

+= 3;

<== 0
| bt_node x l r =>

ls <- size_linear l;
rs <- size_linear r;
+= 10;
<== (ls + rs + 1)

end.

Program Fixpoint size_linear_bin
(bt:@bin_tree A)

: {! res !:! nat !<! c !>!
forall m,

Braun bt m ->
c = size_linear_bin_rt res
/\ m = res !} :=

match bt with
| bt_mt =>

+= 3;

<== 0
| bt_node x l r =>

ls <- size_linear_bin l;
rs <- size_linear_bin r;
if (same (even_odd_dec ls)

(even_odd_dec rs))
then (+= 14;

<== (double_plus1 ls))
else (+= 14;

<== (double ls))

end.

Figure 6: Linear-time Braun Size Functions; the left side is Okasaki’s original function
and the right side is the same, but in terms of constant-time BigNum operations

The proof of the running time of the size_linear function (on the left) does not
require the assumption that the input is a Braun tree, but the proof of the version on the
right does. Without that assumption, the resulting size may not be correct because the
result is computed purely in terms of the size of the left sub-tree, ignoring the right.
Since the running time’s correctness property is specified in terms of the result size,
when the result size is wrong, then the running time will still be linear in the size of the
tree, but may not match the result of the function.

8. Other Uses of Arithmetic

Our case study contains other uses of arithmetic operations that treat operations on
BigNums as constant when they are not. This section discusses them. None of the
proofs in this section have been formalized in Coq.

8.1. The log-time size function

The log-time size function for Braun trees, reproduced below, performs an addi-
tion in each recursive call that is not tracked within the monad. Performing the sum,
1`p2 ˚mq` zo, cannot always be replaced by a constant time operation. The Braun
tree invariant, however, guarantees that zo is either 0 or 1 because it is the difference in
size between the left and right subtrees of a Braun tree. Therefore, in the worst case,
evaluating 1`p2 ˚mq` zo requires time proportional to logm. Evaluating diff s m
to compute zo also requires time proportional to logm. Therefore, ignoring the time
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complexity of the addition operation does not affect our analysis of the size function’s
running time.

Program Fixpoint size {A:Set} (b:@bin_tree A)
: {! res !:! nat !<! c !>!

size_result A b res c !} :=
match b with

| bt_mt =>
+= 3;
<== 0

| bt_node _ s t =>
m <- size t;
zo <- diff s m;
+= 13;
<== (1 + (2 * m) + zo)

end.

8.2. Subtraction and Division Together

The copy functions, such as copy_log_sq, exhibit a more complicated recursion
pattern. These functions apply two primitives for each recursive call, subtraction by 1
and division by 2. It is not obvious that this combination of operations is safe to ignore
in run time calculations because whereas div2 is a constant time operation, subtracting
by 1, as we have already seen, is not.

Program Fixpoint copy_log_sq {A:Set} (x:A) (n:nat) {measure n}
: {! res !:! bin_tree !<! c !>!

copy_log_sq_result A x n res c !} :=
match n with

| 0 =>
+= 3;
<== bt_mt

| S n' =>
t <- copy_log_sq x (div2 n');
if (even_odd_dec n')
then (+= 13;

<== (bt_node x t t))
else (s <- insert x t;

+= 16;
<== (bt_node x s t))

end.

We argue by strong induction that for any binary number, if we perform a sequence
of sub1 and div2 operations, the running time of the combination is amortized constant
time. More strongly, we claim that the total run time of performing sub1 and div2
operations on a binary number b until we reach 0 is 3n, where we count iterations of
sub1 and div2 as a single unit of time and n is the number of bits in b.

For the proof, consider a binary number b. If b is zero the result is trivial. If b is odd
then there exists some b1 ă b such that b“ 2˚b1`1. As a list of bits, b is represented
by a 1 followed by the bits in b1. We write this representation as b“ 1 ¨b1 to make the
lower order bits, upon which subtraction and division operate, explicit. Performing a
sequence of sub1 and div2 operations on b “ 1 ¨ b1 takes 2 units of time (1 each for
sub1 and div2) to reduce to b1 plus the time to perform the sequence of operations on
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Figure 7: Average running time of sub1 and div2

b1. By induction, we have that performing sub1 and div2 operations on b1 will take at
most 3˚ pn´1q units of time. Adding these together, the sequence of operations takes
no more than 3n units of time in total.

In the even case, for a non-zero binary number b of n bits, the list representation of
b must begin with some number, k, of zeros followed by a 1 and then the representation
of some smaller binary number. Therefore, there exists a b1 such that b “ 0 ¨ ¨ ¨0 ¨1 ¨b1

with kď n zeros at the front of the number. Subtracting 1 from this number takes k`1
units of time, therefore one combination of subtraction and division takes k` 2 units
of time and results in a number of the form 1 ¨ ¨ ¨1 ¨0 ¨b1 with k´1 ones at the front of
the list. It is clear that the next k´1 iterations will each take 2 units of time. Thus, to
reduce to the number 0 ¨b1 of length n´ k takes 3k units of time. Finally, applying the
induction hypothesis to the smaller number 0 ¨b1 completes the proof.

This proof shows that repeatedly subtracting by 1 and dividing by 2 in each recur-
sive call and terminating at 0 requires time that is linear in the number of recursive
calls. Therefore, each use of subtraction followed by division takes amortized constant
time in functions such as copy_log_sq, and ignoring these primitive operations does
not affect our analysis of their running time.

8.3. Branching with Subtraction and Division

The implementation of diff, reproduced below, exposes another problematic re-
cursion pattern. In the body of the last pattern match, (bt_node x s t, S m’), the
function branches on the parity of its input, m, and if the input is even subtracts 2 then
divides by 2, in the odd case we see the recursion described above of subtracting 1 then
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dividing by 2. Clearly, if control flow never reaches the even case then these opera-
tions are constant time and we may safely ignore them. If the evaluation of diff does
reach the even case, however, then we must be certain that the subtraction and division
operations do not change our analysis. Subtracting 1 twice from an even number takes
logarithmic time in the worst case. The first subtraction may traverse the entire number,
but the second subtraction is from an odd number and takes constant time. Figure 7
presents a plot of the average3 amount of abstract time required by subtraction and
division in each recursive call of diff. Although the graph only extends from 0 to
1024 this pattern extends to larger numbers as well. The plot suggests that primitive
operations used by diff could be characterized. The plot clearly shows it is less than
linear, and we speculate it requires only amortized constant time. The plot suggests
that a proof of this claim should be possible, but we leave the detailed analysis and
formalization to future work.

Program Fixpoint diff {A:Set} (b:@bin_tree A) (m:nat) {measure m}
: {! res !:! nat !<! c !>!

diff_result A b m res c !} :=
match b, m with

| bt_mt, _ =>
+= 4;
<== 0

| bt_node x _ _, 0 =>
+= 4;
<== 1

| bt_node x s t, S m' =>
if (even_odd_dec m)
then (o <- diff t (div2 (m' - 1));

+= 13;
<== o)

else (o <- diff s (div2 m');
+= 11;
<== o)

end.

8.4. A Tree of Subtraction and Division

Finally, the definition of copy_linear presents the most complicated recursion
pattern, the function recursively calls itself on n/2 and (n-1)/2. Figure 8 is a plot
of the running time of the sub1 calls that copy_linear makes. In gray is a plot of
λx.31x` 29, which we believe is an upper bound for the function. Proving that the
uses of div2 and sub1 in this function contribute only a linear factor to the overall run
time is a significant challenge. Compared to our proof that the primitive operations
in functions like copy_log_sq which deals with a linear sequence of operations, a
proof for the primitive operations in copy_linear must consider a tree of all possible
sequences of the operations that evaluate n/2 and (n-1)/2. A similar proof should be
possible with the insight that each expensive computation of (n-1)/2 takes the same

3The average here is the total amount of abstract time used by the primitive operations in a call to diff
divided by the number of recursive calls.
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Figure 8: Running time of copy_linear

number of operations to reach the next expensive computation regardless of the path
taken down the tree, however, we have not attempted a formal proof of this claim.

Program Fixpoint copy_linear {A:Set} (x:A) (n:nat) {measure n}
: {! res !:! bin_tree !<! c !>!

copy_linear_result A x n res c !} :=
match n with

| 0 =>
+= 3;
<== bt_mt

| S n' =>
l <- copy_linear x (div2 n);
r <- copy_linear x (div2 n');
+= 14;
<== (bt_node x l r)

end.

8.5. Primitive Operations Cost Recap

The informal analysis presented above suggests that, although we have not ac-
counted for all language primitives, our calculations of asymptotic run times remain
unchanged. We have presented arguments that support that it is safe to ignore certain
uses of language primitives, providing proof where possible and suggesting directions
for more formal arguments in the remaining cases.

An alternative approach is to assign a symbolic constant to the cost of each one of
these primitives following Jost et al. (2009) and Aspinall et al. (2007). This amounts
to a vector-based cost semantics where each element of the vector records the number
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of times the corresponding operation is used. Since this is compositionally additive, it
may be used in place of our default semantics. This approach would lend itself well
to experimentally estimating the costs, to formalize them separately, or to collapsing
them into units (as we do in the present version).

9. Related Work

The most closely related work to ours is Danielsson (2008), which presents a monad
that carries a notion of abstract time. Unlike our monad, his does not carry an invariant
– in our terms his construction does not have the P argument. In our opinion, figuring
out the design of monad operations that support the P argument is our primary tech-
nical advance. Accordingly, his system cannot specify the running time of many of
the Braun functions, since the size information is not available without the additional
assumption of Braunness. Of course, one can bake the Braun invariants into the Braun
data-structure itself, which would provide them to his monad via the function argu-
ments, but this restricts the way the code is written, leaves residue in the extracted
code, and moves the implementation away from an idiomatic style. Also, his monad
leaves natural numbers in the extracted code; avoiding that is a major goal of this work.

While Crary and Weirich (2000)’s work does not leverage the full expressiveness
of a theorem proving system like Coq’s, it does share a similar resemblance to our
approach in that it verifies the bounded termination of programs but does not infer
them. Also like Danielsson (2008)’s and unlike ours, it does not provide a place to
carry an invariant of the data structures that can be used to establish running times.

Weegen and McKinna (2008) give a proof of the average case complexity of Quick-
sort in Coq. They too use monads, but design a monad that is specially tailored to
counting only comparison operations. They side-step the extraction problem by ab-
stracting the implementation over a monad transformer and use one monad for proving
the correct running times and another for extraction.

Xi and Pfenning first seriously studied the idea of using dependent types to describe
invariants of data structures in practical programming languages (Xi 1999a,b; Xi and
Pfenning 1999) and, indeed, even used Braun trees as an example in the DML language,
which could automatically prove that, for example, size_log_sq is correct.

Filliâtre and Letouzey (2004) implemented a number of balanced binary tree im-
plementations in Coq with proofs of correctness (but not running time), with the goal of
high-quality extraction. They use an “external” approach, where the types do not carry
the running time information, whereas we use an “internal” approach. We discuss the
distinction and our preference in section 2.

Swierstra (2009)’s Hoare state monad is like our monad in that it exploits monadic
structure to make proof obligations visible at the right moments. However, the state
used in their monad has computational content and thus is not erased during extraction.

Charguéraud (2010) and Charguéraud and Pottier (2015)’s characteristic formula
generator seems to produce Coq code with obligations similar to what our monad pro-
duces, allowing one to reason about running times. They use a different notion of
resources, however, specifically the number of function entry points visited.

Others have explored automatic techniques for proving that programs have partic-
ular resource bounds using a variety of techniques (Gulwani et al. 2009; Hoffmann

24



and Shao 2015; Hofmann and Jost 2003; Hughes and Pareto 1999) These approaches
are all less expressive and apply to fewer programs as compared to our approach, but
provide more automation and so are better when they work.

Similarly, others have explored different approaches for accounting for various re-
source bounds and costs, but we do not provide any contribution in this area. Instead,
we take an off-the-shelf cost semantics (Rosendahl (1989)’s) and use it. We believe
our approach applies to other cost models.

We have consistently used the word “monad” to describe what our library pro-
vides and believe that that is a usefully evocative word to capture the essence of our
library. However, they are not technically monads for two reasons. First, the monad
laws are written using an equality, but we use an equivalence relation appropriate to
our type. Second, our types have more parameters than the single parameter used in
monads, due to the proof information residing in the types, so our “monad” is actu-
ally a generalized form of a monad, a specialization of Atkey (2009)’s or Altenkirch
et al. (2010)’s. Swierstra (2009) and Swamy et al. (2013) follow this same evocative
naming convention.

Our code uses Sozeau (2006)’s Program facility in Coq for writing dependently-
typed programs by separating idiomatic code and detail-oriented proofs in the program
source. Without Program, our programs would have to mix the running time proofs in
with the program, which would greatly obscure the code’s connection to the original
algorithm, as one does in Danielsson (2008).

Charguéraud and Pottier (2015)’s work supports imperative code, whereas we have
only experimented with imperative programs by combining our monad’s types with
a variation of the Swierstra (2009) and Swamy et al. (2013) monads. The types and
proofs work out, but are considerably more complicated, due in part to the complexity
of proofs about imperative programs. We consider it future work to study whether there
is a more elegant approach and develop a detailed case study.
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