
65

Does Blame Shifting Work?

LUKAS LAZAREK, Northwestern University, USA

ALEXIS KING, Northwestern University, USA

SAMANVITHA SUNDAR, Northwestern University, USA

ROBERT BRUCE FINDLER, Northwestern University, USA

CHRISTOS DIMOULAS, Northwestern University, USA

Contract systems, especially of the higher-order flavor, go hand in hand with blame. The pragmatic purpose
of blame is to narrow down the code that a programmer needs to examine to locate the bug when the contract
system discovers a contract violation. Or so the literature on higher-order contracts claims.

In reality, however, there is neither empirical nor theoretical evidence that connects blame with the location
of bugs. The reputation of blame as a tool for weeding out bugs rests on anecdotes about how programmers
use contracts to shift blame and their attention from one part of a program to another until they discover the
source of the problem.

This paper aims to fill the apparent gap and shed light to the relation between blame and bugs. To that end,
we introduce an empirical methodology for investigating whether, for a given contract system, it is possible
to translate blame information to the location of bugs in a systematic manner. Our methodology is inspired
by how programmers attempt to increase the precision of the contracts of a blamed component in order to
shift blame to another component, which becomes the next candidate for containing the bug. In particular, we
construct a framework that enables us to ask for a contract system whether (i) the process of blame shifting
causes blame to eventually settle to the component that contains the bug; and (ii) every shift moves blame
łcloserž to the faulty component.

Our methodology offers a rigorous means for evaluating the pragmatics of contract systems, and we employ
it to analyze Racket’s contract system. Along the way, we uncover subtle points about the pragmatic meaning
of contracts and blame in Racket: (i) the expressiveness of Racket’s off-the-shelf contract language is not
sufficient to narrow down the blamed portion of the code to the faulty component in all cases; and (ii) contracts
that trigger state changes (even unexpectedly, perhaps in the runtime system’s data structures or caches)
interfere with program evaluation in subtle ways and thus blame shifting can lead programmers on a detour
when searching for a bug. These points highlight how evaluations such as ours suggest fixes to language
design.

CCS Concepts: • Theory of computation → Program specifications; • Software and its engineering

→ Empirical software validation.

Additional Key Words and Phrases: higher-order contracts, blame, programming languages design evaluation

ACM Reference Format:

Lukas Lazarek, Alexis King, Samanvitha Sundar, Robert Bruce Findler, and Christos Dimoulas. 2020. Does
Blame Shifting Work?. Proc. ACM Program. Lang. 4, POPL, Article 65 (January 2020), 29 pages. https://doi.org/
10.1145/3371133

Authors’ addresses: Lukas Lazarek, Northwestern University, USA, lukas.lazarek@eecs.northwestern.edu; Alexis
King, Northwestern University, USA, lexi.lambda@gmail.com; Samanvitha Sundar, Northwestern University, USA,
samanvithasundar2020@u.northwestern.edu; Robert Bruce Findler, Northwestern University, USA, robby@cs.northwestern.
edu; Christos Dimoulas, Northwestern University, USA, chrdimo@northwestern.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).
2475-1421/2020/1-ART65
https://doi.org/10.1145/3371133

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 65. Publication date: January 2020.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3371133
https://doi.org/10.1145/3371133
https://doi.org/10.1145/3371133

65:2 L. Lazarek, A. King, S. Sundar, R. B. Findler, and C. Dimoulas

1 THE ORIGIN STORY OF BLAME

The origins of contracts and blame in higher-order languages [Findler and Felleisen 2002] can be
traced to an apocryphal story.1 Once upon a time, a young PhD Student embarked on the mission
of building a programming environment for a newly-hatched higher-order language. The road to
success was (and still is) strewn with vicious bugs, and the Student fought for days, months and
years to weed out as many of them as possible. Some times though, the battle was impossible to
win... The Student had to deal with havoc-causing faulty callbacks and other powerful values from
other people’s code. All the Student could do was labor hard to trace where the values came from,
and try even harder to convince the authors’ of that other code that the problem was on their end
and their responsibility. After repeating this process again and again, the Student finally made a
wish; łI wish there was a way to say what values others should give to my code, and if they do
not comply then they get blamed!ž. And so contracts and blame came to be. Happily ever after,
contracts caught all the stray values, blame showed where they came from, and the Student had to
worry no more about what piece of code was at fault.

Twenty years on, stories like this sustain the folklore belief in the potency of blame for helping
programmers find software bugs. Papers about higher-order contracts contain claims in the vein of
łblame kicks off the debugging process in the right directionž or łblame narrows down the search
for the bugž, despite a lack of systematic supporting evidence (e.g. [Dimoulas et al. 2013, 2016;
Strickland and Felleisen 2009b; Waye et al. 2017]).
This paper examines whether the reputation of blame is justified. Its contribution is the first

rigorous empirical methodology for phrasing and answering two questions about contract systems
and how their blame assignment relates to the location of bugs. The first question asks whether
programmers that heed blame and focus their attention to blamed components eventually locate
the faulty component. We refer to components as core units of a program’s structure (depending on
language context, examples might include modules, classes, or definitions). The second question
asks whether programmers keep getting łcloserž to uncovering the location of the bug when they
rely on blame for guidance. Together, these questions aim to determine whether programmers
can translate blame information to the location of bugs in a systematic manner. In other words,
the paper introduces a means for evaluating the pragmatics of a contract system. After all, the
pragmatic value of blame assignment, and thus a key element of a contract system, is determined
by its relevance for eliminating bugs.

The main source of inspiration for our methodology is the established programming practice for
dealing with blame.2 If a programmer is convinced that a blamed component does not contain a bug,
then the programmer increases the precision of the contracts between the component and other
components in an attempt to detect faulty values the component received. That is, the programmer
attempts to shift the blame to some other part of the program. Using blame shifting, our two
questions reduce to whether (i) iterative blame shifting culminates in blame settling on the faulty
component, and (ii) blame shifting always moves blame łcloserž to the bug.

To study these questions, inspired by recent work for evaluating gradual type systems [Takikawa
et al. 2016], we start with a program with a number of components out of which one is known to
be faulty, and we construct a lattice with elements that correspond to different configurations of
the program. Each configuration describes a different choice of precision for the contracts of the
program and, therefore, the lattice enables us to systematically explore the relationship between
contract precision and blame. Specifically, we can use the lattice to answer our first question;

1This story is a work of fiction. Names, characters, business, events and incidents are the products of the authors’ imagination.
Any resemblance to actual persons, living or dead, or actual events is purely coincidental.
2See for example https://beautifulracket.com/jsonic-2/contracts.html.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 65. Publication date: January 2020.

https://beautifulracket.com/jsonic-2/contracts.html

Does Blame Shifting Work? 65:3

whether repeated increase of the precision of the contracts of a program results in blame shifting
which eventually causes blame to point to the faulty component of the program.

Similarly, we use the configuration lattice to answer our second question; whether increasing
the precision of contracts shifts blame łcloserž to the faulty component. To define closer, we draw
inspiration from the theory of correct blame [Dimoulas et al. 2011]. While this theoretical work
says nothing about blame with respect to bugs, it gives meaning to blame through the flow of
the witness of the contract violation, i.e., the value that failed a contract check. In particular, a
contract system that blames correctly assigns it to a component that controlled the flow of the
witness at some point during the evaluation of a program. This fact jives with the phenomenon
that programmers observe when blame points to a component that is not inherently faulty; the
component gets blamed because it received a faulty value and either tried to use it or passed it along
to another component. For our purposes, the path of the flow of a faulty value from component to
component connects the faulty part of a program to the blamed component and, hence, the length
of this path gives a natural notion of distance between blame and the location of the bug for each
configuration in the lattice.

We have applied our methodology to evaluate Racket’s contract system on a corpus of programs
and we have discovered that, contrary to the folklore, neither question has a positive answer for all
of these programs. First, while blame shifting does identify the faulty component in the majority of
cases, there are specific situations where Racket’s contract language does not support writing the
contracts that would blame the faulty component. Second, while in most cases blame shifting moves
blame closer to the bug, Racket’s contracts can affect the evaluation of a program in surprising
ways that, after blame shifting, lead to an increase rather than a decrease of the distance between
the blamed and the faulty component. These issues highlight how investigations such as ours can
improve language design.

Section 2 describes the main ideas and insights of the paper with a concrete example. Section 3
turns the insights into testable hypotheses and develops in abstract terms our method for examining
whether they hold for a contract system. The instantiation of the method for evaluating Racket’s
contract system comes in section 4 while section 5 discusses the results of the evaluation. We have
collected lessons we learn about contracts and blame in Racket and in general in section 6. Section 7
discusses related work and section 8 gathers some final thoughts about the pragmatic meaning of
contracts and blame.

2 A MOTIVATIONAL EXAMPLE AND THE KEY INSIGHTS

Figure 1 depicts a snippet of a Racket program that calculates an infinite stream of prime numbers
using the Sieve of Eratosthenes. We use this example to demonstrate how programmers react to a
contract violation and how they can use contracts and blame to facilitate debugging. We consider
the top level definitions of the program to be its components. The snippet consists of three such
components:

• sift is a function that consumes a number n and a stream of numbers st, and returns a
stream that contains the same numbers as st except those that are multiples of n;

• sieve consumes a stream st, and constructs a new stream with the same head (hd) as st,
and the recursively sieved tail of st after sifting from it hd;

• primes is the stream that sieve returns when given the stream of all naturals starting at 2.

Two of these definitions come with contracts:3

• the contract for sift, (-> integer? stream? stream?), states that it is a function that
consumes an integer and a stream and produces a stream; while

3In Racket, programmers can opt to accompany some definitions with a contract using the define/contract form.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 65. Publication date: January 2020.

65:4 L. Lazarek, A. King, S. Sundar, R. B. Findler, and C. Dimoulas

#lang racket

_ _ _ _ _ _ a few lines of code plus dependencies _ _ _ _ _ _ _ _

;; `sift n st` Filter all elements in `st` that are divisble by `n`.

;; Return a new stream.

(define/contract (sift n st)

(-> integer? stream? stream?)

(define-values (hd tl) (stream-unfold st))

(cond [(= 1 (modulo hd n)) (sift n tl)]

[else (make-stream hd (λ () (sift n tl)))]))

;; `sieve st` Sieve of Eratosthenes

(define (sieve st)

(define-values (hd tl) (stream-unfold st))

(make-stream hd (λ () (sieve (sift hd tl)))))

;; stream of prime numbers

(define/contract primes

(streamof (and/c integer? prime?))

(sieve (count-from 2)))

_ _ _ _ _ _ _ _ _ _ _ more lines of code _ _ _ _ _ _ _ _ _ _ _ _

Fig. 1. The Sieve of Eratosthenes, with a bug highlighted in red.

• the contract for primes, (streamof (and/c integer? prime?)), states that it is a stream
of integers that are also prime numbers.

These contracts are sufficient to uncover a bug we planted in the implementation of the Eratos-
thenes sieve. In detail, when we run the program and attempt to inspect the first two elements
of primes, the contract system complains that the stream’s second element is 4, an integer that
is definitely not prime. Thus it fails the prime? part of the contract of primes. Together with the
information about which value failed what contract, the contract system provides blame informa-
tion that identifies the definition responsible for the problem. In this case, blame points to primes,
which promised to be a stream of primes.

However, even a cursory inspection of primes indicates that the problem is not actually there.
As the highlighted condition in figure 1 shows, the problem is with sift. In contrast to what it
is supposed to do, sift fails to remove from its st argument elements that are multiples of its n
argument. Unfortunately the contract of sift is not precise enough to detect this discrepancy, and
sieve does not have a contract at all. This reflects a fundamental aspect of the design of contract
systems; programmers can choose the level of precision of the contracts of their components and
the contract system reports only a mismatch between the contracts and the program’s behavior.
Hence, in the absence of precise contracts, blame points to the component whose contracts detect
that it handles a faulty value. However, this value may have reached the blamed component from
somewhere else in the code under contracts that are insufficient (if there are any at all) to detect the
bug contracts. Specifically in our example, primes ends up getting blamed because it has blindly
trusted these two components to produce values about which primes makes promises in its own
contract [Dimoulas and Felleisen 2011; Dimoulas et al. 2011].
The above justification of blame is the source of the key insight of this work: if we make the

contract of primes more precise, then the contract system should be able to detect the problem
and give us blame information that is more accurate with respect to the location of the bug, that is
the contract system should detect that primes received a faulty value. In general terms, heeding

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 65. Publication date: January 2020.

Does Blame Shifting Work? 65:5

;;;;;;;;;;;;;;;;;;;;;;;; (a) contracts for sieve ;;;;;;;;;;;;;;;;;;;;;;;;;;

;; (a.1) a tag-checking contract for sieve

(-> stream? stream?)

;; (a.2) a type-like contract for sieve

(-> (streamof integer?) (streamof integer?))

;; (a.3) a very precise contract for sieve

(-> (streamof integer?) sieved-stream/c)

;;;;;;;;;;;;;;;;;;;;;;;; (b) contracts for sift ;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; (b.1) a type-level contract for sift

(-> integer? (streamof integer?) (streamof integer?))

;; (b.2) a very precise contract for sift

(->i ([n integer?]

[st (streamof integer?)])

[result (n)

(streamof (and/c integer?

(not/c (divisible-by/c n))))])

Fig. 2. A precision progression of contracts for (a) sieve and (b) sift.

blame and increasing the precision of the contracts in a program should eventually lead to the
identification of the component that contains the bug. It is worth noting, however, that it is not
always possible for a programmer to write a sufficiently precise contract to detect a problemwithout
re-structruring their program. That said, for this study, we elect to consider how we can increase
the precision of contracts while leaving the program proper intact. In other words, we examine the
relation between blame and bugs within the margins of the expressive power of a contract system
and a fixed set of programs.
Back to our example: even though primes seems to be as precise as possible, in fact, it is

missing something important; primes interacts and receives values from sieve. Thus increasing
the precision of the contract of primes requires making the contract of sievemore precise, at least
for the use of sieve in primes.4

Figure 2 shows three candidate contracts for sieve ordered by increasing precision.5 The first,
(a.1), states properties of the tags of the argument and result of sieve. Of course, this is insufficient
to change the behavior of the program; sieve does indeed produce a stream when given a stream.
Thus, attempting to inspect the first two elements of primes with this new contract results in
exactly the same contract error that blames primes. The second contract, (a 2), is also insufficient;
the result stream does contain integers, just not the right ones.
Further increasing the precision of the contract requires considering the expected behavioral

properties of sieve beyond łtype-levelž descriptions. In particular, sieve should produce a stream
where no integer in the stream is divisible by any of its predecessors. To check this property, the

4This is a subtle point of the design of Racket’s contract system. Even though we refer to the contract of a component as a
single entity that regulates all its interactions with any other component in a program, Racket’s contract system pushes
programmers to split the contract into multiple contracts spread across a number of components. For the purpose of this
study, we treat all of these pieces as the single contract of a component.
5In Racket, contracts are ordinary values that programmers can construct with the help of a small domain specific language
of contract combinators such as the function contract combinator -> and predicates such as prime?.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 65. Publication date: January 2020.

65:6 L. Lazarek, A. King, S. Sundar, R. B. Findler, and C. Dimoulas

last contract for sieve in figure 2, (a.3), replaces the range of the previous contract, (a.2), with
the custom contract sieved-stream/c. The contract verifies that the stream’s tail contains only
numbers indivisible by its head; then it attaches itself recursively to the tail of that stream, thereby
building up the property that no element of the stream is a factor of any later element.

Given this precise contract that captures the functional correctness of sieve, inspecting the first
few elements of primes leads to a new contract error that blames sieve. Blame does not yet detect
the faulty sift but at least it now draws the attention of the programmer to a point earlier in the
path of the faulty value from sift to primes; it singles out the intermediary sieve. In this way,
blame shifts closer to the location of the bug.
Since an inspection of sieve confirms that the bug is not there, the next step is to revisit the

contracts of sift, the component sieve receives values from. The bottom part of figure 2 shows
how we can enhance gradually the precision of the contract of sift to obtain a contract that,
similar to the last one for sieve, describes precisely the expected behavior of the function. This
dependent contract, (b.2), uses the function contract combinator ->i instead of ->. The former
supports naming the arguments and result values of a function to use them to construct other
portions of the contract. In this case, the contract for the result of sift depends on the argument
n, and uses it to enforce that the elements of the result are not divisible by n.6 Hence it is now
sufficiently precise to detect the bug and blame finally shifts to sift, the definition that contains
the bug.

The above exposition offers a view of two promising properties about blame assignment:

• Blame Trail: If blame points to a component, either:
ś The component contains the bug, or
ś If a programmer increases the precision of the contracts between the blamed component
and those from which it receives values, then blame shifts to another component;

• Search Progress: When blame shifts from one component to another due to increasing the
precision of contracts, blame moves closer to the bug in the program.

The pragmatic consequence of these properties is that repeating the blame shifting process makes
blame eventually settle on the faulty component while at each point programmers make progress
towards uncovering the bug. Thus, determining whether or not these properties hold for a contract
system helps us evaluate the design of the contract system.

3 FROM THE IDEAS TO AN EXPERIMENTAL DESIGN

This section develops our method for examining the truthfulness of the Blame Trail and Search
Progress properties for a contract system. The description offers a blueprint to any language
designer that would like to use the method to evaluate the design of the contract system of their
language. Inspired by Takikawa et al. [2016], the starting point of the method is a set of programs
and a lattice of program configurations that we can explore systematically for each one of the
programs.

3.1 The Configuration Lattice

There are two requirements for selecting suitable programs for our experiment: (i) each program
should contain a number of different components; and (ii) there should be exactly one fault in the
program.
Since the central goal of the method is to explain how, in a given contract system, blame

assignment changes when modifying the contracts of a program, we assign a list of contracts to

6Indeed, the contract for the result of sift is identical to the non-recursive portion of sieved-stream/c from the last
contract for sieve except that the latter uses the head of the result of sieve instead of n.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 65. Publication date: January 2020.

Does Blame Shifting Work? 65:7

each component of the selected programs. The list of contracts will be used to automatically select
contracts at a given precision level for each component. To that end, the list is ordered in terms
of increasing precision; that is, for any two contracts, one (the more precise) must supersede the
other. A contract k supersedes a contract k ′ iff a program using k instead of k ′ signals a contract
violation when the program using k’ does so. Intuitively, k should check everything that k ′ checks,
and possibly more. For example, the least precise contract of a contract list may describe a trivial
correctness property that every component satisfies;7 the most precise contract may describe the
partial functional correctness of the component and a contract of intermediate precision may
describe a type-like property of the component.
Defining the precision comparison in this manner may catch the careful reader by surprise.

Since, as we discuss in section 2, the goal of our methodology is to examine blame shifting, the
straight-forward approach is to compare the precision of the contracts based on the precision of
the contracts for the inputs of a component independently of the precision of the output contracts.
In contrast, our comparison takes into account the precision of contracts for inputs and outputs
alike. However, from the perspective of blame shifting this does not matter; if a component gets
blamed then its output contracts already detect the issue and increasing their precision further
is inconsequential. Thus, we opt for a stronger precision comparison that in turn simplifies our
experimental setup without loss of generality.
We leave the details about how contract system designers that want to run our experiment

should select programs and contracts intentionally abstract beyond their crucial properties. Both
the programs and the contracts are parameters of the experimental design.
With programs and contracts in hand, we can create a number of variants of each program,

dubbed configurations. Configurations are complete programs obtained by selecting a specific
contract for every component from its list. Hence, configurations differ from each other in the
contracts of their components. For example, in one configuration we may select the least precise
contract from the contract list of a component and in another configuration the most precise.
We can run a configuration to determine if the contract system detects any bug, and if so which
component it blames.
The following definitions summarize the important bits about configurations:

• A contract map KMAP relates each component c of a program with a list of contracts ordered
by precision {K1K2...Kn}.

• A configuration CONF maps each component of a program to an element of KMAP(c); that
is, it maps each component to a specific contract in the component’s ordered contract list.

Naturally, we can relate configurations to each other based on the precision of their contracts.
Given a software systemC and a contractmapKMAP , we say a configurationCONF is a ascendant of
a configurationCONF

′ iff there exists a component c such thatKMAP(c) = {k1, ...,kn},CONF (c) =

kj+1 andCONF
′(c) = kj , and for all other c ′,CONF (c ′) = CONF

′(c ′). That is, given a configuration,
we can obtain its ascendant by replacing the contract of one component c with the immediately
more precise contract in c’s ordered contract list. We call c the distinction point between the
configuration and its ascendant. Generalizing the ascendant relation, a configurationCONF is above
a configurationCONF

′ iffCONF = CONF
′, or there exist configurationsCONF0, . . . ,CONFn such

that CONFi+1 is a ascendant of CONFi for 0 ≤ i < n and CONF = CONF0 and CONF
′
= CONFn .

In other words,CONF is aboveCONF
′ iff there exists a chain of ascendants fromCONF toCONF

′.
Consequently, the configurations of a programC with contractmapKMAP form a complete lattice

L⟦C,KMAP⟧ of size
∏ |C |

i=1 |KMAP(ci)|. The top element of the lattice is the configuration where all
components have their most precise contracts, and the bottom element is the configuration where

7In Racket, this corresponds to the any/c contract.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 65. Publication date: January 2020.

65:8 L. Lazarek, A. King, S. Sundar, R. B. Findler, and C. Dimoulas

Fig. 3. The lattice for the example from section 2.

all components have their least precise contracts. Figure 3 illustrates the lattice for the example
from section 2, if the only components were sieve, sift, and primes.

3.2 The Experimental Procedure

We use the configuration lattice to formalize the relationship between blame and bugs, and to
examine whether Blame Trail and Search Progress from section 2 hold for a contract system. First,
we introduce a few necessary definitions. We say:

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 65. Publication date: January 2020.

Does Blame Shifting Work? 65:9

Fig. 4. A blame trail for the example from section 2.

• a configuration CONFr is significant in L⟦C,KMAP⟧ iff evaluating CONFr results in a
contract violation.

• a blame trail in L⟦C,KMAP⟧ is a sequence of significant configurationsCONF0, . . . ,CONFn

such that CONFi+1 is a ascendant of CONFi and evaluating CONFi blames the distinction
point between CONFi and CONFi+1.

• the configuration CONF0 in a blame trail CONF0, ...,CONFn is the root of the blame trail.
• the configuration comparison ≤X

L
is a function that consumes two configurations in a blame

trail and returns whether the first produces blame closer to the faulty component than the
second. This function is parameterized over a particular lattice (L⟦C,KMAP⟧) and faulty
component (X).

Figure 4 depicts the lattice for the running example from section 2 along with a blame trail. The
root configuration of the trail evaluates to blame that points to primes. The next configuration
along the trail differs from the root in the precision of the contract of primes, so it is a ascendant
of the root with distinction point primes.

Each of the configurations in the lattice may exhibit blame that is closer or further from the bug
than the blame of other configurations. For example, the root configuration points to primes as
the culprit for the contract violation while the bug is in sift. In contrast, another configuration
blames sift, which is the component containing the bug. That is, in terms of the configurations in

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 65. Publication date: January 2020.

65:10 L. Lazarek, A. King, S. Sundar, R. B. Findler, and C. Dimoulas

figure 4, we have C ≤X
L
A. In section 2, we informally describe a distance comparison based on the

path that the witness of a contract violation follows from component to component. In section 4 we
revisit this comparison in detail. Here, however, we use the configuration comparison to abstract
a relative notion of how far the blame of a configuration is from a bug compared to another. In
particular, the configuration comparison is not defined precisely beyond its interface with the rest
of the experiment.
Hence, together with the selection of the programs for the experiment and the contract map

of each program, the configuration comparison is one of the three parameters of the experiment
that capture factors that may vary depending on the intentions of the contract system designer
that runs the experiment. For instance, contract system designers can choose different sets of
programs to study how (a part of) their contract system interacts with a set of language features.
Similarly, one designer may want to understand how the contract system behaves for a spectrum
of łreasonablež contracts, that is, contracts that the designer deems programmers usually write. In
contrast, another designer may be interested in the full spectrum of expressiveness of a contract
system. Our experimental design can accommodate both, as they can select their contract map
accordingly. Finally, designers can experiment with different configuration comparisons to model
the different systematic ways blame shifting makes progress towards the detection of a faulty
component, each offering a different perspective on blame in a contract system. We revisit the
practical implications of the selection of these parameters in section 4, where we discuss the
instantiation of the experimental design for Racket.

Figure 4 suggests howwe can use blame trails, contract maps, and the configuration comparison to
restate the Blame Trail and Search Progress properties from section 2. The process of shifting blame
from component to component by strengthening the precision of the contract around the blamed
component forms a blame trail, and that trail should end with blame on the buggy component.
Furthermore, each step of the process should bring blame closer to the bug according to ≤X

L
.

Specifically, given a program C with a faulty component c , contract map KMAP , and configuration
comparison ≤X

L
, we define the properties more precisely as follows:

• Blame trail: For every significant configurationCONFr in L⟦C,KMAP⟧, all trails that start
at CONFr and cannot be further extended terminate at a configuration CONFt that blames
the faulty component c . In other words, every blame trail in L⟦C,KMAP⟧ ends with blame
on the faulty component.

• Search progress: For every blame trail CONF0, ...,CONFn in L⟦C,KMAP⟧,

CONFi+1 ≤
X
L CONFi

In other words, we turn the two properties into testable hypotheses that we can verify or disprove
with the configuration lattice. The rest of the experiment is divided into two phases, one per
hypothesis, that we repeat for all programs we have selected after constructing their configuration
lattice. Figure 5 extends figure 4 with annotations for how elements of the trail contribute to
checking each of the hypotheses.
Phase I: Testing Blame Trail. Given a lattice, the first step is to separate its significant configu-

rations from those that do not produce blame. For example, a configuration may not produce blame
because certain bugs may cause the configuration to produce a runtime error before any contract
violation. Alternatively, some bugs may produce behavior which the configuration’s contracts are
unable to distinguish from correct behavior because they are not precise enough. To distinguish
significant from non-significant configurations we simply run all configurations and check whether
they result in blame. Of course, it is possible that no configuration in the lattice is significant and
thus the whole lattice is irrelevant. We can quickly exclude such scenarios by running the top
configuration of the lattice. After all, if the contracts of that configuration are not precise enough

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 65. Publication date: January 2020.

Does Blame Shifting Work? 65:11

Fig. 5. Checking a blame trail for the two hypotheses.

to detect the bug, then no other configuration can be because the top configuration contracts
supercede all others.

After isolating the significant configurations, we use them as starting points to examine whether
all blame trails in the lattice reach configurations that blame the faulty component. To that end, we
treat each significant configuration as the root of a blame trail in the lattice. In particular, we check
if the configuration has a ascendant with distinction point equal to the configuration’s blamed
component. If such a ascendant exists, it becomes the next configuration along the blame trail that
we examine. We therefore say that we follow the blame trail by repeating the process from the
ascendant configuration. If no matching ascendant exists, we check whether the configuration
blames the faulty component of our program. If it does, then the property holds for this blame trail
and we continue inspecting the lattice until all blame trails have been considered. In the opposite
case, we have discovered a violation of Blame Trail.

Before concluding the discussion of phase I, we must consider how blame assignment interacts
with a fundamental pragmatic property of contracts. Contracts are typically written in the same
language as program’s components, which allows programmers to use familiar reasoning, tools,
and abstractions in both the specification and implementation of a program. Naturally, however,
that aspect makes contracts prone to the same kinds of bugs as the implementation of components.
In fact, contracts occasionally share code with components, hence a bug in a component might

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 65. Publication date: January 2020.

65:12 L. Lazarek, A. King, S. Sundar, R. B. Findler, and C. Dimoulas

Fig. 6. Overview of experimental procedure.

manifest simultaneously as a bug in a contract, which in turnmay affect the properties that contracts
check. For example, if a contract uses a faulty version of a predicate then it may detect a violation
where it should not and blame an innocent bystander. On the other hand, it may fail to detect a
violation when it should, making bogus any result the program produces, including blame.

To account for this in our experimental design, any references inside contract code to program
components are always protected by the most precise contracts from the contract map for those
components. The intuition behind this precaution is that if a contract uses a faulty component,
then the component’s most precise contract is the best we can do to detect the issue before it affects
contract checking. This reflects that blame, similar to the contract checks that produce it, is only
meaningful if contracts are not faulty. In practical terms, it means that programmers must exercise
extra caution in the implementation of contracts in order for blame information to be meaningful.
Phase II: Testing Search Progress. We test Search Progress by a post mortem analysis of

data collected during the first phase. For each blame trail CONF0, . . . ,CONFn , we check whether
CONFi+1 ≤X

L
CONFi for all 0 ≤ i < n. If for a pair of configurations CONF1 and CONF2 that

appear in a blame trail,CONF2 is aboveCONF1 butCONF2 ≤
X
L
CONF1 returns false, then we have

discovered a violation of Search Progress. Computing these comparisons may require instrumenting
the configuration evaluations during the first phase to record sufficient information about every
pair of a configuration and its ascendant visited. Different comparisons will require different
information and hence instrumentation, but all likely require at least the faulty component and
blamed component of each configuration.

As a final remark on the experimental design, the description so far prescribes that the experiment
should examine the full configuration lattice for a program. However, doing so may not be feasible
if the program has a large number of components. In this case, we can sample the lattice for
significant configurations and focus only on the blame roots starting from these configurations,
with the number of samples depending on the desired confidence in the results. Figure 6 depicts a
summary of the method using the sampling option.

4 EVALUATING RACKET’S CONTRACT SYSTEM

In order to evaluate the utility of the proposed experimental design, we apply it to Racket’s contract
system. Herein, we explain how we instantiate each of the parameters that we discuss in section 3.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 65. Publication date: January 2020.

Does Blame Shifting Work? 65:13

Table 1. Benchmarks summary.

Program Description (author) Features exercised
Dungeon An imperative program that generates floor maps for an

RPG game. (Vincent St-Amour)
lists, structs, first-
class classes, objects,
vectors, mutable
hashes

Forth An interpreter for the Forth programming language using
the object-oriented command pattern. (Ben Greenman)

lists, classes, objects,
lists, ho functions

KCFA A functional implementation of a control flow analysis
for the lambda calculus. (Matt Might)

structs, lists, hashes,
sets

MBTA An imperative, object-oriented knowledge base that an-
swers queries about the Boston transit system. (Matthias
Felleisen)

lists, classes, objects,
hashes

Morsecode An imperative implementation of the Levenshtein dis-
tance algorithm plus some Morse coding. (Neil Van Dyke
and John Clements)

lists, vectors, hashes,
ho functions

Sieve Defines a simple stream data type and uses it to imple-
ment the Sieve of Eratosthenes. (Ben Greenman)

structs, lists

Snake A functional implementation of the classic Snake game
using basic recursive list processing. (David Van Horn)

structs, lists

4.1 Selection of Programs

We selected seven programs from the gradual typing performance benchmarks of Takikawa et al.
[2016] based on the diversity of their features. Some of those programs are highly imperative, some
are functional, and others follow an object-oriented design. Furthermore, the programs combine a
wide range of Racket constructs such as first class functions, classes, objects, andmutable data. These
programs therefore exercise a correspondingly diverse set of Racket’s contract system features.
Each benchmark comes with an included driver that runs the program on pre-determined inputs,
which do a good job of covering the programs; according to Racket’s coverage tool, the inputs
achieve at least 90% coverage. We summarize the benchmarks in figure 1.

In accordance with the first program selection requirement from section 3, each of these programs
consists of a number of components. Specifically, we treat each top level definition per module
as a component. This results in a large number of components with involved dependencies and
interactions.
The seven programs, though, fail to meet the second program selection requirement; running

them does not raise any errors. To remedy this, inspired by mutation testing DeMillo et al. [1988,
1978]; Lipton [1971], we modify the program to produce a synthetic bug8 in each program in the
form of a small syntactic modification, called a mutation. For example, figure 7 depicts the original
syntax of the Sieve benchmark at the top, and a mutation at the bottom that flips the highlighted
conditional expression. In fact, the red highlighted bug in the code from section 2 is the product of

8 Actually, mutation may lead to an equivalent program, but such cases are already handled by the relevance check in Phase
I of the experimental procedure. Section 6.2 discusses further the relationship between mutations and bugs.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 65. Publication date: January 2020.

65:14 L. Lazarek, A. King, S. Sundar, R. B. Findler, and C. Dimoulas

(define (sift n st)

(define-values (hd tl)

(stream-unfold st))

(cond [(= 0 (modulo hd n))

(sift n tl)]

[else

(make-stream

hd

(λ () (sift n tl)))]))

(define (sift n st)

(define-values (hd tl)

(stream-unfold st))

(cond [(not (= 0 (modulo hd n)))

(sift n tl)]

[else

(make-stream

hd

(λ () (sift n tl)))]))

Fig. 7. A mutation of sift in the Sieve benchmark.

Table 3. Summary of mutation operators.

operator description examples
constants Replace constants with similar values 0↔ 1, True ↔ False

arithmetic Swap arithmetic operators +↔ -, * ↔ /

relational Swap relational operators <↔ <=, =↔ !=

logical Swap logical operators and↔ or

conditional Negate conditional expressions if A↔ if !A

statement Delete statements in sequences A; B; C→ B; C

argument Swap argument ordering f(A, B)↔ f(B, A)

hide-method Hide public methods public A()→ private A()

another mutation that changes the constant 0 to 1. As these examples illustrate, we can mutate
any given component in many ways. We systematically generate a large number of variants for
each program, dubbed mutants, using one of the syntactic transformations summarized in figure 3,
which are drawn from the standard set of mutation operators Coles [[n. d.]]; DeMillo et al. [1988].
We treat the set of mutants of the original programs as the programs analyzed by our experiment
and figure 2 collects the number of mutants for each program along with its number of components
and lines of code.

4.2 The Contract Maps
Table 2. Program overview.

program LOC components mutants
Dungeon 541 59 829
Forth 257 27 131
KCFA 230 31 63
MBTA 469 39 177
Morsecode 159 31 105
Sieve 35 10 17
Snake 159 30 89

We have manually implemented contracts for
each of the definitions in the selected programs.
The contracts come in three levels of precision.
The first level, none, is the trivial correctness
property that holds for any component; we have
implemented it using Racket’s any/c. The second
level, type, captures type-like properties. For this
level, since the programs originate from Typed Racket’s performance evaluation benchmark suite,
we have translated the Typed Racket types of their definitions into contracts. The third level, max,
aims for partial functional correctness; it consists of the most precise specification we can express
for each definition using Racket’s contract combinators and predicates. This level does not aim to
be the maximum precision contract that can possibly be implemented, nor do we require them to
be so. For instance, we did not implement any contracts that use state to monitor extra-functional
properties like how many times a function is invoked. Instead, our selection of contract levels

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 65. Publication date: January 2020.

Does Blame Shifting Work? 65:15

#lang flow-trace

_ _ _ _ _ _ a few lines of code plus dependencies _ _ _ _ _ _ _ _

;; `sift n st` Filter all elements in `st` that are equal to `n`.

;; Return a new stream.

(define/component (sift n st)

(contract-map

[max (-> (streamof integer?) sieved-stream/c)]

[type (-> (streamof integer?) (streamof integer?))])

(define-values (hd tl) (stream-unfold st))

(cond [(= 0 (modulo hd n)) (sift n tl)]

[else (make-stream hd (λ () (sift n tl)))]))

;; `sieve st` Sieve of Eratosthenes

(define/component (sieve st)

(contract-map

[max (->i ([n integer?]

[st (streamof integer?)])

[result (n)

(streamof (and/c integer?

(not/c (divisible-by/c n))))])]

[type (-> integer? (streamof integer?)

(streamof integer?))])

(define-values (hd tl) (stream-unfold st))

(make-stream hd (λ () (sieve (sift hd tl)))))

;; stream of prime numbers

(define/component primes

(contract-map

[max (streamof (and/c integer? prime?))]

[type (streamof integer?)])

(sieve (count-from 2)))

_ _ _ _ _ _ _ _ _ _ _ _ _ more lines of code _ _ _ _ _ _ _ _ _ _ _ _ _ _

Fig. 8. Sieve and its Contracts

Fig. 9. Racket evaluation experimental procedure.

reflects our effort to understand blame in Racket when programmers take full advantage of its
domain specific contract language to express functional specifications.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 65. Publication date: January 2020.

65:16 L. Lazarek, A. King, S. Sundar, R. B. Findler, and C. Dimoulas

(define/component (sift n st)

(contract-map

[max (-> (streamof integer?)

sieved-stream/c)]

[type (-> (streamof integer?)

(streamof integer?))])

(define-values (hd tl)

(stream-unfold st))

(cond [(not (= 0 (modulo hd n))) (sift n tl)]

[else

(make-stream

hd

(λ () (sift n tl)))]))

(define/component primes

(contract-map

[max (streamof (and/c integer? prime?))]

[type (streamof integer?)])

(sieve (count-from 4)))

Fig. 10. Two mutations of Sieve and their impact on tracing. The solid arrows denote the flow of a faulty

value.

Figure 8 revisits Sieve and shows the contracts of level type and max for three of its components.
We denote components with the define/component construct, which allows to specify the list of
possible contracts for each component. Since level none maps trivially to any/c, we omit it. The
contracts in the figure are mostly the same as those for these three definitions in figure 2 from
section 2. The two differences are that (i) we omit the tag-level contract (a.1) for sift, and we add
a simple type level contract for primes alongside the partial-functional-correctness contract from
figure 1. Moreover, in this version of the program we bundle all the contracts of each definition in
the macro contract-map. To obtain the different configurations of the program, we choose a level
for each definition at compile time, and keep only the contract of that level in the code we run.
Put differently, with the contract-map macro we encode the configuration maps for a program’s
components in the program directly. Finally, since all mutants of Sieve have the same components
as the original Sieve, we first add contracts to the latter and then mutate the components (but not
the contracts). Figure 9 displays this process.

4.3 The Configuration Comparison

While the Blame Trail hypotheses tells us whether blame achieves its pragmatic goal of helping to
narrow down the location of bugs, the Search Progress hypothesis examines whether it does so in a
predictable and systematic manner. As we discuss briefly in section 3, the configuration comparison
models what it means for blame shifting to move blame łcloserž to the faulty component. Hence,
the selection of the configuration comparison determines what we learn from examining the Search
Progress hypothesis for a contract system.

Specifically, an unfortunate choice of configuration comparison can make the hypothesis trivially
true for all contract systems and therefore uninteresting. For example, consider a comparison that
returns true if a configuration is closer to the top of the lattice than another. By the construction

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 65. Publication date: January 2020.

Does Blame Shifting Work? 65:17

(define/component (include? hd n)

(contract-map

[max (->i ([hd integer?]

[n integer?])

[result (hd n)

(= hd (* n (/ hd n)))])]

[type (-> integer? integer? boolean?)])

(not (= 0 (modulo hd n))))

(define/component (sift n st)

(contract-map

[max (-> (streamof integer?)

sieved-stream/c)]

[type (-> (streamof integer?)

(streamof integer?))])

(define-values (hd tl)

(stream-unfold st))

(cond [(include? hd n) (sift n tl)]

[else

(make-stream

hd

(λ () (sift n tl)))]))

Fig. 11. A refactoring of sift and its impact on tracing. The dotted arrows denote influence, while the solid

arrows denote the flow of a faulty value.

of the lattice, this is trivially true for all pairs of a configuration and its ascendant along a blame
trail, independently of the design of the contract system. Indeed, we do not even need to run the
experiment to decide that Search Progress holds!
Other comparisons that at first glance seem like promising candidates turn out to be equally

uninteresting. For example, an instinctive choice is to define the comparison based on the distance
between the blamed component and the component that contains the fault in the stack trace of a
contract violation. However, the stack trace may contain neither the blamed component nor the
faulty component. The first mutation of Sieve in figure 10 results in a program with such behavior.
In a configuration of the mutant where sift has its max contract, the program raises a contract
violation as it accesses elements of the primes stream. The violation points to sift, which is also
the faulty component in this case, but sift is not on the stack of the program when the contract
system signals the violation. Hence, this choice of comparison does not help us understand the
relationship between blame and bugs even in simple scenarios.
In this light, we have constructed a specialized comparison for our Racket experiment based

on the run time flow of the witness of a contract violation from component to component as we
discuss in section 2. We cannot argue that our choice is canonical Ð indeed as we hint with the
discussion about configuration comparisons we doubt that a canonical choice exists. That said, we
are confident that our metric is suitable for this first study for two reasons. First, the comparison is
based on the propagation of ownership annotations from the theory of blame [Dimoulas et al. 2011,
2012]. That theory formalizes intuitions from the practice of contracts in Racket, and has itself
lead to numerous enhancements of Racket’s contract system (e.g. [Dimoulas et al. 2011; Moore

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 65. Publication date: January 2020.

65:18 L. Lazarek, A. King, S. Sundar, R. B. Findler, and C. Dimoulas

et al. 2016; Takikawa et al. 2012]). Second (and post-facto), as we discuss in sections 5 and 6, the
comparison has revealed interesting and subtle facts about Racket’s contract system.
At a first approximation, our comparison relies on an execution trace that keeps track of the

flow from one component to another of the witness of the contract violation. The right-hand side
of figure 10 shows that information for two different mutations of Sieve. In the first mutation, sift
places faulty values in its stream result that trickle all the way down to primes. In the second one,
primes constructs a wrong starting stream for sieve and when the latter returns its result, the
result contains multiples of 4. In both cases, our trace marks what components contribute directly
in the flow of the faulty values that trigger the contract violation.
However, a direct role in the flow of these values is not the only way that a bug can cause a

contract violation. Figure 11 shows a slight refactoring of the first mutant of Sieve from figure 10
where the faulty component include? influences indirectly the contract violation9. If we ignore this
indirect influence and run this variant of Sieve in a configuration where the contract of include? is
at max level, then the contract system blames the faulty include? but the latter is not on the trace.
To remedy such situations, our trace keeps track not only of direct control of components on the
witness of a contract violation but also indirect influence. The right-hand side of figure 11 explains
the trace for this variant of Sieve pictorially. The interested reader can find a precise description of
how we compute traces in the appendix in the form of a formal (PLT Redex) model.
Given now two traces for two significant configurations, such that the traces are related by

a prefix relation, we define the result of the comparison to be true iff the distance between the
occurrences of the blamed and faulty components in the first trace is less than or equal to that
in the second trace. Because there may be multiple such occurrences, we conservatively pick the
last occurrence of the blamed component and the first occurrence of the faulty one to compute
the comparison. This choice is conservative in that it assumes that the bug was encountered the
first time that the buggy component has control in the execution, even though the bug may not
be triggered until a later point in the computation. We call the difference between the index of
the faulty component and the blamed component the blame-fault distance of a configuration. For
example, if the trace for a configuration that blames component B is [A,B,C,F,C,B,A,C,F,B]
and the faulty component is F, then the blame-fault distance for the configuration is 6 since the
first occurrence of F is at index 3 and the last occurrence of B is at index 9. Comparisons between
blame-fault distances are only meaningful if they correspond to traces that are related by a prefix
relation. For example, consider another trace entirely unrelated to the one above: [F,C,B]. The
fact that the blame-fault distance for the configuration that produces this trace is only 2 has no
meaningful relation to the blame-fault distance of 6 for the configuration above, because the traces
represent completely different computations. Hence, our comparison is not defined on such pairs
of configurations.

We have implemented an instrumentation framework that produces the trace for a program as a
Racket language called flow-trace. In the first phase of the experiment we run each configuration
under the instrumentation framework, and we stash each trace to analyze it in the second phase.

Our comparison must deal with a characteristic of contracts; contracts consist of ordinary code.
Contract checking can therefore contribute to the trace of the program proper. Our instrumentation
framework explicitly excludes contract code from extending the trace. After all, extensions to the
trace due to contracts do not correspond to behavior of the program.
Extending the trace is not the only way that contract code can influence our comparison. The

process of checking contracts may itself produce contract violations. There are two subtly different

9The post-condition of the new ->i contract in figure 11 uses a Racket idiom; if hd is divisible by n then the post-condition
evaluates to #t which is the contract that accepts only the value #t, and correspondingly for the opposite case

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 65. Publication date: January 2020.

Does Blame Shifting Work? 65:19

Table 4. Results summary.

program lattice size mutants blame trails Blame Trail Search Progress
Dungeon 1.41 × 1028 20 3728 × (276) ✓

Forth 7.62 × 1012 48 8920 ✓ ✓

KCFA 6.17 × 1014 34 6547 ✓ × (3)
MBTA 4.05 × 1018 32 5999 ✓ ✓

Morsecode 6.17 × 1014 25 6011 ✓ ✓

Sieve 5.90 × 104 14 2658 ✓ ✓

Snake 2.05 × 1014 55 9882 ✓ ✓

ways that this can occur. First, a contract may check a property of a value and this check may
cause the value to violate another contract. Second, contract code may use a value from a faulty
component that in turn triggers a contract violation. Since programmers cannot distinguish contract
violations that occur in these ways from those that arise otherwise, our experiment treats all contract
violations the same. We give concrete examples from our experiment for both of the above cases as
part of the discussion of our experimental results in section 5.

4.4 Lattice Sizes and Sampling

As we mention above we treat each definitions as a component. A consequence of this decision is
that examining the whole lattice for each of the mutants becomes unfeasible. As figure 2 shows,
most of the programs contain dozens of definitions resulting in lattices with as many as 1.41 × 1028

configurations. Since running a single configuration can take 10 minutes or more (due to contract
checking and instrumentation), running every possible configuration is impractical. Evidence from
similar contexts suggests that randomly sampling the lattice instead of an exhaustive exploration
is an effective alternative [Greenman et al. 2019]. Hence we randomly sample enough significant
configurations from the lattice to obtain a confidence of 0.95 (with margin of error 0.05) about
whether our hypotheses hold or not. See accompanying appendix for the details of the calculations
for the sufficient size of samples for this estimate. Exploring more of the lattice would yield higher
confidence in the generalizability of our results for each benchmark in cases where no violations of
a property (e.g. Blame Trail) are found. In such cases, we could be more certain that we did not
simply miss the configuration(s) that reveal the violation by exploring the lattice more fully. Our
choice of random sample counts reflects the (informal) standard practice of estimating results to 95
percent or higher confidence.

5 RESULTS

We run our experiment on Northwestern University’s Quest cluster and we set a maximum timeout
of 4 hours and space limit of 6 GB per configuration.
The table in figure 4 summarizes the results of our experiment. For each program it reports:

• lattice size. Since mutants have all the same number of components and contract maps, the
size of the lattice is the same for all mutants of program.

• mutants. Exploring all mutants of a program is not feasible. As we discuss in section 3, some
mutants do not result in blame even for the top configuration of the lattice. Others have
configurations that do not terminate within reasonable time or space constraints.

• blame trails. The cumulative number of trail paths we sampled for all considered mutants of
a program.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 65. Publication date: January 2020.

65:20 L. Lazarek, A. King, S. Sundar, R. B. Findler, and C. Dimoulas

• Blame Trail. Whether or not all blame trails across all mutants for a program satisfy the
Blame Trail hypothesis (and count of how many blame trails violate it if any).

• Search Progress. Whether or not all blame trails across all mutants for a program satisfy the
Search Progress hypothesis (and count of how many blame trails violate it if any).

We have uncovered violations of both hypotheses. In the remainder of this section we discuss these
violations and what they imply for the design of Racket’s contract system.

5.1 Blame Trail

Dungeon is the only program with mutants that fail Blame Trail. Since there are mutants with
blame trails that terminate at a configuration that blames a component other than the faulty one,
blame shifting in Dungeon does not always settle on the component containing the bug.
All of the problematic mutants exhibit a common pattern. In particular, the all such mutants

have bugs which affect the order in which different components of Dungeon call a function that
produces a stream of numbers; the order of such calls turns out to be critical for the functional
correctness of the program.
To make the discussion concrete, consider the simplified program inspired by Dungeon in

figure 12. Its next-number! function produces numbers from a pre-defined sequence and func-
tions asks-for-2-small-numbers and asks-for-1-small-number use next-number!’s results
to call small-number-please. The latter requires that its arguments are less than 10, and it
has a contract that captures this constraint. The first function (asks-for-2-small-numbers)
obtains numbers from the sequence and passes them to small-number-please in a loop that
iterates twice; it does not verify that the numbers are appropriately sized. The second function
(asks-for-1-small-number) does the same but only once. The original version of the program
completes without issue because the sequence of numbers is constructed to start with three small
numbers. asks-for-2-small-numbers provides the first two of those to small-number-please,
and asks-for-1-small-number provides the third.
However, the mutation noted in asks-for-2-small-numbers causes a failure. It changes the

number of iterations of the loop from 2 to 3, resulting in asks-for-2-small-numbers obtaining all
three small numbers from the sequence. As a result, asks-for-1-small-number receives 30 from
next-number! and the contract of small-number-please blames asks-for-1-small-number.
The bug, however, is in asks-for-2-small-numbers, and none of Racket’s contract combina-
tors can be used to create a contract for asks-for-1-small-number that shifts the blame to
asks-for-2-small-numbers. Hence, the blame settles on asks-for-1-small-number despite it
not being the faulty component, violating Blame Trail.

In effect, the program assumes a protocol specifying the number of calls of next-number!, and
Racket’s contract combinators cannot express that protocol. While it is possible to write contracts
that communicate using shared state to enforce the protocol, Racket’s combinators provide no
support for specifying such properties. As a result, the bug evades the contracts of the components
of Dungeon and eventually changes the functional behavior of some component unrelated to the
bug. The contracts therefore do detect the deviation from functional correctness, but the contract
system cannot trace it back to the faulty component.

5.2 Search Progress

The table of results also shows that a few of themutants of KCFA violate Progress Search. This means
that, for those mutants, there are blame trails where strengthening the precision of contracts causes
blame to move further rather than closer to the bug according to our configuration comparison.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 65. Publication date: January 2020.

Does Blame Shifting Work? 65:21

#lang flow-trace

(define numbers '(1 2 3 30))

(define (next-number!)

(define n (first numbers))

(set! numbers (rest numbers))

n)

(define/component

(small-number-please n)

((<=/c 10) . -> . void?)

#| omitted |#)

(define (asks-for-2-small-numbers)

(for ([i (in-range 2 #| mutate to 3 |#)])

(small-number-please

(next-number!))))

(define (asks-for-1-small-number)

(small-number-please

(next-number!)))

(asks-for-2-small-numbers)

(asks-for-1-small-number)

Fig. 12. Simple program inspired by Dungeon that

causes a Blame Trail violation.

#lang flow-trace

(define/component (wrap x)

(-> (box/c number?)

(box/c number?))

x)

(define/component (wrap-again x)

(contract-map

[type (-> (box/c number?)

(box/c number?))])

(wrap x))

(define/component the-box

(box/c number?)

(wrap-again (box #f) #| BUG |#))

(define/component (main x)

(-> (λ (x) (number? (unbox x)))

number?)

(unbox x))

(main the-box)

Fig. 13. Simple program inspired by KCFA that

causes a Progress Search violation.

Blame eventually does settle on the faulty component, as no mutant of KCFA violates Blame Trail,
but in the process blame shifting seemingly leads to a detour.

These violations also fall into a common pattern that has to do with a quirk of our configuration
comparison and, in particular, the way we compute the blame-fault distance. The simple program
in figure 13 demonstrates the problem concretely. The program defines three functions (wrap,
wrap-again and main), and a box (the-box). The box contains a boolean but, as the comment
implies, should contain a number. All box/c contracts are łlazyž; the contract system checks them
when a component attempts to access a box that has such a contract. The contract of main, in
contrast, forces strict checking by accessing the box directly. In the configuration where the contract
of wrap-again is at the none level, the contract system blames wrap-again, while in an ascendant
configuration ś where we strengthen the latter function’s contract to the type level ś the contract
system blames the-box. The difference in blame is due to the different box/c contracts the-box
accumulates as it flows through the program to main in the two configurations. The trace, which is
common for both configurations, captures this flow:

[wrap,wrap-again,the-box,wrap-again,wrap,wrap-again,the-box,main]

The first seven entries correspond to the evaluation of the definitions while the last one comes
from the call to main. The sub-trace

[the-box,wrap-again,wrap,wrap-again,the-box]

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 65. Publication date: January 2020.

65:22 L. Lazarek, A. King, S. Sundar, R. B. Findler, and C. Dimoulas

indicates the direct flow of the box through these functions. The first configuration blames
wrap-again, and the second blames the-box. Hence, the blame-fault distance for the first is
smaller than the second, despite the second blaming the faulty component. This is because we
compute the blame-fault distance as the difference between the index of the first occurrence of the
faulty component and the last of the blamed one.
In fact, the decrease in distance is an artifact of excluding contract code from the trace, as we

discuss in section 4. Specifically, the trace does not contain any entries due to the contract of main
accessing the-box. If we include those entries, evaluating the first configuration would extend the
actual trace with the following suffix on the left, while the running the second configuration would
extend the trace with the suffix on the right

[the-box,wrap-again,wrap], [the-box,wrap-again,wrap,wrap-again]

In both cases, the traces would end with the point of the contract violation rather than the failed
call to main, and the distance would decrease as expected.
In other words, in some cases where evaluating contract code triggers other contract checks,

even if a configuration blames the faulty component, our comparison conservatively decides that
it is further from the bug than a configuration that does not blame the faulty component. As the
example demonstrates, this is necessary to obtain sound results given that our traces ignore points
where a component influences the evaluation of contract code to capture only the behavior of the
program proper we examine.

6 TO SHIFT OR NOT TO SHIFT?

The paper begins with a question; łCan programmers follow blame to find a bug?ž. Our results
do not provide a definite answer. Both Blame Trail and Search Progress hold for the majority of
programs and bugs we examined. This implies that in these scenarios, programmers can trust
blame, increasing the precision of contracts along the blame trail, and reach the bug. However,
the hypothesis violations we discovered indicate that this is not a generalizable strategy, at least
for the Racket contract system today. Even though the outcome seems bleak, our experiment has
highlighted both actionable limitations of Racket’s contract system design and fundamental but
subtle issues about the interactions of contracts with the code they monitor. It is worth noting
that the theory of blame [Dimoulas et al. 2011, 2012] cannot uncover the same problems. First, the
theory focuses on the semantics of blame rather than its pragmatic relation with bugs. Second, the
theory deals with abstract models that capture the essence of contract system design without the
corner cases of practical implementations. In that sense, the experiment has demonstrated that our
experimental design is a method complementary to the theory of blame that deserves a place in
the toolkit of programming language designers. This is especially timely in the context of recent
work on contract systems and gradual typing that, for pragmatic reasons, explores different blame
strategies (e.g. Reticulated Python [Vitousek et al. 2017]).

6.1 Lessons Learned

Each of the two ways that our experiment violated the hypotheses brought up distinct points about
Racket’s contract system and contracts generally. First, the violation of Blame Trail exemplifies
an expressiveness problem for Racket contracts. Racket’s contract combinators cannot express
protocols like the one identified in Dungeon, even though they are quite common in real programs.
For example, file system APIs implicitly come with protocols about when operations can be applied
to a file, and in what order: an open file cannot be re-opened, a closed file cannot be read or written
to, and so on. Protocols do not only describe temporal properties, but also other restrictions on the
proper use of components, such as security. Thus, protocols are a natural extension for Racket’s

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 65. Publication date: January 2020.

Does Blame Shifting Work? 65:23

contract system. In general, there have been some steps towards protocol contracts [Dimoulas et al.
2016; Disney et al. 2011; Heidegger et al. 2012; Moore et al. 2016, 2014; Scholliers et al. 2015], but
understanding how to design and implement them remains largely an open research question.

The violations of Search Progress illustrate a nuanced point about how contracts affect program
behavior beyond raising contract violations as expected; the experiment has highlighted a number
of the subtle ways that this can manifest. The most obvious way that this happens is related to the
length of a program trace. We would anticipate that increasing the precision of contracts always
results in traces that are shorter (or equal) to the original, because more precise contracts should
detect problems earlier. However, contracts may increase the length of a trace because checking
contracts entails running more code than the original program (see for instance [Findler et al.
2007]). We describe this situation together with how our configuration comparison accounts for it
by suppressing traces due to contract code in section 4.
Another way that contracts can affect programs is that they use program values that already

have contracts. Contract code triggers violations of those contracts that may not manifest in a
program with different contracts. That is, these violations are not related to the behavior of the
program proper, but rather are due to the contracts exploring the code on their own10. In section 5,
we explain how this is the cause of violations of Search Progress.

#lang racket

(struct data (x))

(define s (set (data "a")))

(define/contract (f x)

(-> (λ (x)

(not (set-member? s x)))

void?)

(void))

(define d (data "d"))

(define e (data "e"))

(f e)

(eq-hash-code d) ;; => 12266959

(eq-hash-code e) ;; => 12266958

Fig. 14. The interplay between contracts and

eq-hash-codes.

Beyond raising contract errors and extending the
program trace, because contracts are ordinary code,
they can cause arbitrary effects that in turn may
influence the behavior of a program in unexpected
ways. For example, in the course of analyzing prelim-
inary data for KCFA, we discovered traces from pairs
of configurations that differed substantially in ways
that were difficult to explain. These situations arise
because the contracts in one configuration subtly
alter the internal state of the runtime in ways that
the other configuration does not. These contracts
do nothing unusual, they merely check whether a
value is a member of a set. However, in Racket, ev-
ery value can be assigned an identifying number
by the runtime called an eq-hash-code; the way
the runtime assigns these numbers is using a simple
counter that increments on every request. If a value
does not have such a number, asking whether that
value is a member of a non-empty set causes the run-
time to assign one. Thus, checking a contract can
cause the runtime to assign more eq-hash-codes
than in a program without the contract. Figure 14
demonstrates this situation with a small program; the program creates a set s of data structs and a
function f which expects an argument that is not in the set. When we provide to f one such value,
we observe that it is assigned an eq-hash-code. The last two lines of the example illustrate that
e has been assigned an eq-hash-code before d due to f’s contract (the function eq-hash-code

returns the code of its argument, requesting a new code if necessary). Normally, the behavior of
programs should not rely on eq-hash-codes; however, the eq-hash-code of values in some data

10This extra exploration is a well-known phenomenon of contracts which has an interesting interplay with laziness [Chitil
et al. 2003; Degen et al. 2009, 2012; Dimoulas and Felleisen 2011; Hinze et al. 2006].

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 65. Publication date: January 2020.

65:24 L. Lazarek, A. King, S. Sundar, R. B. Findler, and C. Dimoulas

structures, such as a set, can influence the iteration order of elements in the data structure (along
with other similar effects). Hence, the traces revealed how contract code that causes the runtime to
assign more eq-hash-codes in one configuration but not the other can easily lead to changes in
the program behavior. Since this situation can make the traces of two configurations incomparable
for the experiment, our instrumentation framework replaces Racket’s data structures with versions
that do not depend on eq-hash-code.11 As defined in section 4, configurations are only comparable
if they produce traces related by a prefix relation. Hence, this compromise is necessary and we
discuss its effect on the validity of our results in the next subsection.

In sum, our experiment has provided evidence for the need to understand the interaction between
contracts and effects. This interaction goes both ways: how contracts can express the correct
behavior of effectful programs, for example with protocols; and how we can protect both programs
and contracts from unintentional interference due to effects.

6.2 Threats to Validity

We have identified a number of threats to the validity of our conclusions. First, even though we
selected programs with a wide variety of Racket features exercising most of the interesting aspects
of Racket’s contract system, the programs do not cover the full range of Racket. For example, none
of the programs use continuations. Furthermore, the programs don’t use any concurrency and
parallelism features, the interactions of which with contracts is in fact another largely unexplored
area for contracts research [Shinnar 2011].
Second, another threat lies in our use of mutation to inject synthetic bugs. It remains unclear

how the synthetic bugs from the mutation operators we use relate to bugs in the wild (compare for
example Gopinath et al. [2014] and Just et al. [2014]), especially since many real faults may not
even be attributable to a single location in a program [Thung et al. 2012] (this is a limitation of
the experimental design as a whole). That said, mutation allows us to apply the experiment in a
controlled manner: the nature of mutations being single syntactic variations makes defining the
specific location of the fault obvious, and mutations allow us to inject a single fault in programs
that we are highly confident are correct.
Third, our selection of contracts for the experiment is also a source of bias. There are many

different properties of components one can select to express in a contract, and there are many ways
one can implement a contract for a particular property. We implemented the contracts manually, so
this opens the possibility that our conclusions fail to generalize to other contracts. To mitigate this
threat, we focused on two non-trivial representative kinds of properties: type-like specifications,
and partial functional correctness. For the type-like specifications, we followed closely the Typed
Racket interfaces that came with the programs. As for functional correctness, we believe that
variations in contract implementation are most significant in selecting relatively weak properties
to enforce, and that as contracts approach a maximal specification such vagaries are minimized.

Fourth, as we state throughout the paper, the configuration comparison is an important parameter
of the experiment and determines the interpretation of the second hypothesis. So our conclusions
about how strengthening contracts shifts blame closer to the bug are not generalizable to other
notions of distance. However, we have picked this particular comparison because we believe it
captures the order in which different components contribute to a contract violation.

Fifth, our decision to use data structures with iteration order independent of eq-hash-codes, as
we discuss above, is necessary given our selection of configuration comparison, but it deviates in
some scenarios from the implementation of Racket. Nonetheless, the behavior of the data structures
in our infrastructure conforms with the non-deterministic semantics of Racket about hash-based

11According to the Racket documentation, the order of iteration for these data structures is unspecified.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 65. Publication date: January 2020.

Does Blame Shifting Work? 65:25

data structure iteration according to its documentation. The only program that we observed being
affected by this discrepancy is KCFA.
Sixth, our ability to explore the lattices of the mutants was subject to the constraints of the

running environment; it is possible that having access to more powerful machines would have
allowed us to explore a larger portion of each lattice as well as more mutants.

7 RELATED WORK

Our work builds on a wide range of results across the areas of programming languages, software
engineering, and security. Foremost, we draw inspiration from and rely upon research investigating
contract systems and blame. Next, as we describe an evaluation of blame in terms of its relation to
the location of bugs in programs, our work relates to research on fault localization and error report
accuracy. Finally, our instantiation of the experiment for Racket builds upon ideas from program
tracing, provenance, and mutation testing.

7.1 Contracts and Blame

Eiffel is the first programming language to popularize the idea and practice of contracts with
the introduction of the łDesign by Contractž methodology [Meyer 1988, 1991, 1992]. Findler and
Felleisen [2002] use delayed checks to lift contracts to the world of higher order functions. This work
has since led to a significant body of research on the design of higher order contract systems [Disney
et al. 2011; Feltey et al. 2018; Findler and Blume 2006; Findler et al. 2007; Greenberg 2015; Greenberg
et al. 2010; Heidegger et al. 2012; Hinze et al. 2006; Jia et al. 2016; Keil and Thiemann 2015; Moore
et al. 2016, 2014; Scholliers et al. 2015; Strickland and Felleisen 2009a,b; Strickland et al. 2012; Swords
et al. 2015; Takikawa et al. 2012; Waye et al. 2017] and their semantics [Blume and McAllester 2006;
Degen et al. 2008, 2009, 2010, 2012; Dimoulas and Felleisen 2011; Dimoulas et al. 2011, 2012; Findler
et al. 2004].

An aspect of the research on the semantics of contracts is to formally describe correctness criteria
for blame [Dimoulas et al. 2011]. This work gives meaning to blame as a view of the flow of the
witness of a contract violation, but does not investigate the pragmatic relationship between blame
and bugs in programs, which is the aim of our paper. However, the theoretical work about blame
has been a source of inspiration for the design of our experiment.
Blame also plays an important role in gradual typing [Ahmed et al. 2009; Garcia 2013; Igarashi

et al. 2017; Siek et al. 2009, 2015a,b; Siek and Wadler 2010; Vitousek et al. 2014; Wadler and Findler
2009; Williams et al. 2018]. We anticipate that the experimental design we present is also applicable
in that setting to explore and evaluate design strategies. For example, Vitousek et al. [2017] modify
blame assignment dramatically to meet real-world practical constraints for gradual typing, and our
method could help clarify whether blame in this setting can help narrow the search for the bug.

7.2 Fault Localization

The well-established area of fault localization is also related to our work. Its origins go back to the
interactive debugging approach of Shapiro [1983], and modern automatic fault localization research
build on the work of Agrawal ([Agrawal 1991; Agrawal et al. 1995]) and Jones et al. [2002], who
use comparisons of successful and failing executions of a program to deduce a set of likely faulty
program statements. Tangentially related along the thread of fault localization is extensive work on
the accuracy of type checker error messages, the foundations of which are summarized by Heeren
[2005]. However, we expressly do not aim (i) to propose a technique or evaluation method for fault
localization, or (ii) to improve the accuracy of the error messages that a contract system produces.
Rather, our goal is to analyze blame from a pragmatic perspective, and use this analysis to evaluate
contract systems.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 65. Publication date: January 2020.

65:26 L. Lazarek, A. King, S. Sundar, R. B. Findler, and C. Dimoulas

7.3 Provenance and Tracing

Our Racket experiment uses a configuration comparison defined over program traces, and hence
we build upon a large body of work on program tracing. The tracing semantics of Perera et al.
[2012] are a source of inspiration for our traces, though they focus on the application of tracing for
debugging. Our traces also have high level similarities to work on provenance. Acar et al. [2013]
describe a generic model of data provenance for higher order functional programming languages.
Cheney et al. [2007] investigate a formulation of provenance in terms of dependency analysis,
and they apply this understanding to databases. Cheney [2011] provides a formal definition of
provenance with the aim of defining common security properties in terms of provenance. While
these results are clearly related to our traces, we are unable to find a form of provenance or tracing
that corresponds precisely to our traces.

7.4 Mutation Testing

Our Racket experiment obtains faulty programs using mutations. Research on mutation testing
began with the work of DeMillo et al. [1988, 1978] and Lipton [1971], and has since seen significant
interest in the field of software engineering. Jia and Harman [2011] provide a cogent overview
of the history of mutation testing, its prevalent techniques, and its limitations. While mutation
testing was first developed in the context of imperative programming languages, Le et al. [2014]
describe the application of mutation testing techniques to higher order functional programs and
demonstrate its effectiveness. However, the applicability of mutation testing techniques to generate
faults in place of real faults in research is not immediately clear, and the kinds of faults generated
by mutation are often quite distinct from those in real programs, as described by Gopinath et al.
[2014]. On the other hand, Just et al. [2014] describe the traditional use of mutation testing for fault
injection, and provides empirical evidence that such faults effectively simulate real faults in the
context of test suite evaluation. We discuss what this implies for our work in section 6.

8 PRAGMATICS, NOT ONLY SEMANTICS

This paper introduces a principled method to explore whether the design of a contract system
realizes the true purpose of blame; helping programmers track down bugs. As evidence in favor of
our method, we use it to evaluate Racket’s contract system. Even though the result of the evaluation
is not definitive, the method highlights corner cases that demonstrate its utility as an analytical
tool for understanding the pragmatic meaning of blame.
The pragmatic meaning of blame captures aspects of contract systems that semantics alone

does not. In particular, it reflects how informative blame is with respect to bugs. Hence, language
designers can use our method to guide the evolution of contract systems based on factors beyond
semantic correctness. For example, the designers of Racket can now ask, łDoes the introduction
of the semantically correct ->i result in pragmatic gains?ž, while the designers of Reticulated
Python can ask, łHow do practically-motivated tradeoffs that affect the precision of blame impact
its pragmatic value?ž In this light, this paper is a call to investigate the pragmatics of contract
systems alongside their semantics.

ACKNOWLEDGMENTS

We would like to thank the POPL reviewers for their insightful feedback. Many thanks to Matthias
Felleisen, Ben Greenman, Shu-Hung You, and Spencer Florence for their comments on earlier drafts
of this work. Thanks to Quest for providing the resources to run our experiment. Thanks to the
AEC reviewers for their comments on our artifact. Thanks to the NSF for their support of this work.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 65. Publication date: January 2020.

Does Blame Shifting Work? 65:27

REFERENCES

Umut A. Acar, Amal Ahmed, James Cheney, and Roly Perera. 2013. A core calculus for provenance. Journal of Computer

Security 21, 6 (2013), 919ś969.
Hiralal Agrawal. 1991. Towards automatic debugging of computer programs. PhD thesis, Purdue University, SERC (1991).
Hiralal Agrawal, Joseph R Horgan, Saul London, and W Eric Wong. 1995. Fault localization using execution slices and

dataflow tests. In Proceedings of Sixth International Symposium on Software Reliability Engineering. IEEE, New York, NY,
143ś151.

Amal Ahmed, Robert Bruce Findler, Jacob Matthews, and Philip Wadler. 2009. Blame for All. In Proceedings for the 1st

Workshop on Script to Program Evolution. ACM, New York, NY, USA, 1ś13.
Matthias Blume and David McAllester. 2006. Sound and complete models of contracts. Journal of Functional Programming

16, 4-5 (2006), 375ś414.
James Cheney. 2011. A formal framework for provenance security. In Computer Security Foundations Symposium (CSF).

IEEE, New York, NY, 281ś293.
James Cheney, Amal Ahmed, and Umut A. Acar. 2007. Provenance as dependency analysis. In International Symposium on

Database Programming Languages. Springer, New York, NY, 138ś152.
Olaf Chitil, Dan McNeill, and Colin Runciman. 2003. Lazy assertions. In Symposium on Implementation and Application of

Functional Languages. Springer, New York, NY, 1ś19.
Henry Coles. [n. d.]. Mutators Overview. http://pitest.org/quickstart/mutators/. Accessed: 2019-07-02.
Markus Degen, Peter Thiemann, and Stefan Wehr. 2008. Contract Monitoring and Call-by-name Evaluation. In Nordic

Workshop on Programming Theory. Tallinn, Estonia.
Markus Degen, Peter Thiemann, and Stefan Wehr. 2009. True lies: Lazy contracts for lazy languages (faithfulness is better

than laziness). In 4. Arbeitstagung Programmiersprachen. Lübeck, Germany.
Markus Degen, Peter Thiemann, and Stefan Wehr. 2010. Eager and delayed contract monitoring for call-by-value and

call-by-name evaluation. The Journal of Logic and Algebraic Programming 79, 7 (2010), 515ś549.
Markus Degen, Peter Thiemann, and Stefan Wehr. 2012. The Interaction of Contracts and Laziness. In Proceedings of the

ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation. ACM, New York, NY, USA, 97ś106.
Richard A. DeMillo, Dana S. Guindi, Kim King, Mike M. McCracken, and Jefferson A. Offutt. 1988. An extended overview of

the Mothra software testing environment. In Proceedings of the Second Workshop on Software Testing, Verification, and

Analysis. IEEE, New York, NY, 142ś151.
Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. 1978. Hints on test data selection: Help for the practicing

programmer. Computer 11, 4 (1978), 34ś41.
Christos Dimoulas and Matthias Felleisen. 2011. On Contract Satisfaction in a Higher-Order World. ACM Transactions on

Programming Languages and Systems 33, 5 (2011), 16:1 ś 16:29.
Christos Dimoulas, Robert Bruce Findler, and Matthias Felleisen. 2013. Option contracts. In ACM Conference on Object-

Oriented Programming Systems, Languages & Applications. ACM, New York, NY, 475ś494.
Christos Dimoulas, Robert Bruce Findler, Cormac Flanagan, and Matthias Felleisen. 2011. Correct Blame for Contracts: No

More Scapegoating. In ACM Symposium on Principles of Programming Languages. ACM, New York, NY, 215 ś 226.
Christos Dimoulas, Max S New, Robert Bruce Findler, and Matthias Felleisen. 2016. Oh Lord, please don’t let contracts be

misunderstood (functional pearl). In ACM International Conference on Functional Programming. ACM, New York, NY,
117ś131.

Christos Dimoulas, Sam Tobin-Hochstadt, and Matthias Felleisen. 2012. Complete monitors for behavioral contracts. In
European Symposium on Programming. Springer, New York, NY, 214ś233.

Tim Disney, Cormac Flanagan, and Jay McCarthy. 2011. Temporal higher-order contracts. In ACM International Conference

on Functional Programming. ACM, New York, NY, 176ś188.
Daniel Feltey, Ben Greenman, Christophe Scholliers, Robert Bruce Findler, and Vincent St-Amour. 2018. Collapsible contracts:

fixing a pathology of gradual typing. Proceedings of the ACM on Programming Languages 2, OOPSLA (2018), 133.
Robert Bruce Findler and Matthias Blume. 2006. Contracts as Pairs of Projections. In Proceedings of the 8th International

Symposium on Functional and Logic Programming. Springer, New York, NY, 226ś241.
Robert Bruce Findler and Matthias Felleisen. 2002. Contracts for Higher-Order Functions. In ACM International Conference

on Functional Programming. ACM, New York, NY, 48ś59.
Robert Bruce Findler, Matthias Felleisen, and Matthias Blume. 2004. An investigation of contracts as projections. Technical

Report TR-2004-02. University of Chicago, Computer Science Department.
Robert Bruce Findler, Shu-yu Guo, and Anne Rogers. 2007. Lazy Contract Checking for Immutable Data Structures. In

Revised Papers of the 16th International Workshop on Implementation of Functional Languages (IFL). Springer, New York,
NY, 111ś128.

Ronald Garcia. 2013. Calculating Threesomes, with Blame. In ACM International Conference on Functional Programming.
ACM, New York, NY, 417ś428.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 65. Publication date: January 2020.

http://pitest.org/quickstart/mutators/

65:28 L. Lazarek, A. King, S. Sundar, R. B. Findler, and C. Dimoulas

Rahul Gopinath, Carlos Jensen, and Alex Groce. 2014. Mutations: How close are they to real faults?. In Software reliability

engineering (ISSRE), 2014 IEEE 25th international symposium on. IEEE, New York, NY, 189ś200.
Michael Greenberg. 2015. Space-Efficient Manifest Contracts. In ACM Symposium on Principles of Programming Languages

(POPL ’15). ACM, New York, NY, USA, 181ś194.
Michael Greenberg, Benjamin C. Pierce, and Stephanie Weirich. 2010. Contracts Made Manifest. In ACM Symposium on

Principles of Programming Languages. ACM, New York, NY, 353ś364.
Ben Greenman, Asumu Takikawa, Max S. New, Daniel Feltey, Robert Bruce Findler, Jan Vitek, and Matthias Felleisen. 2019.

How to evaluate the performance of gradual type systems. Journal of Functional Programming 29 (2019), e4.
Bastiaan J Heeren. 2005. Top quality type error messages. Utrecht University.
Phillip Heidegger, Annette Bieniusa, and Peter Thiemann. 2012. Access permission contracts for scripting languages. In

ACM Symposium on Principles of Programming Languages. ACM, New York, NY, 111ś122.
Ralf Hinze, Johan Jeuring, and Andres Löh. 2006. Typed contracts for functional programming. In International Symposium

on Functional and Logic Programming. Springer, New York, NY, 208ś225.
Atsushi Igarashi, Peter Thiemann, Vasco T. Vasconcelos, and Philip Wadler. 2017. Gradual Session Types. Proceedings of the

ACM on Programming Languages 1, ICFP, Article 38 (Aug. 2017), 28 pages.
Limin Jia, Hannah Gommerstadt, and Frank Pfenning. 2016. Monitors and Blame Assignment for Higher-order Session

Types. In ACM Symposium on Principles of Programming Languages. ACM, New York, NY, 582ś594.
Yue Jia and Mark Harman. 2011. An analysis and survey of the development of mutation testing. IEEE transactions on

software engineering 37, 5 (2011), 649ś678.
James A Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of test information to assist fault localization. In

International Conference on Software Engineering. IEEE, New York, NY, 467ś477.
René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes, and Gordon Fraser. 2014. Are mutants a

valid substitute for real faults in software testing?. In Proceedings of the 22nd ACM SIGSOFT International Symposium on

Foundations of Software Engineering. ACM, New York, NY, 654ś665.
Matthias Keil and Peter Thiemann. 2015. Blame Assignment for Higher-order Contracts with Intersection and Union. In

ACM International Conference on Functional Programming. ACM, New York, NY, USA, 375ś386.
Duc Le, Mohammad Amin Alipour, Rahul Gopinath, and Alex Groce. 2014. Mucheck: An extensible tool for mutation testing

of Haskell programs. In Proceedings of the 2014 international symposium on software testing and analysis. ACM, New York,
NY, 429ś432.

Richard J Lipton. 1971. Fault diagnosis of computer programs.
Bertrand Meyer. 1988. Object-oriented Software Construction. Prentice Hall, London, UK.
Bertrand Meyer. 1991. Design by Contract. In Advances in Object-Oriented Software Engineering. Prentice Hall, London, UK,

1ś50.
Bertrand Meyer. 1992. Eiffel: The Language. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.
Scott Moore, Christos Dimoulas, Robert Bruce Findler, Matthew Flatt, and Stephen Chong. 2016. Extensible access control

with authorization contracts. In ACM Conference on Object-Oriented Programming Systems, Languages & Applications.
ACM, New York, NY, 214ś233.

Scott Moore, Christos Dimoulas, Dan King, and Stephen Chong. 2014. SHILL: A Secure Shell Scripting Language. In
Proceedings of the 11th USENIX Conference on Operating Systems Design and Implementation. USENIX Association,
Berkeley, CA, USA, 183ś199.

Roly Perera, Umut A. Acar, James Cheney, and Paul Blain Levy. 2012. Functional programs that explain their work. In ACM

International Conference on Functional Programming. ACM, New York, NY, 365ś376.
Christophe Scholliers, Éric Tanter, and Wolfgang De Meuter. 2015. Computational Contracts. Science of Computer Program-

ming 98, P3 (Feb. 2015), 360ś375.
Ehud Y. Shapiro. 1983. Algorithmic Program DeBugging. MIT Press, Cambridge, MA, USA.
Avraham Ever Shinnar. 2011. Safe and effective contracts. Harvard University, Boston, MA.
Jeremy Siek, Ronald Garcia, and Walid Taha. 2009. Exploring the design space of higher-order casts. In European Symposium

on Programming. Springer, New York, NY, 17ś31.
Jeremy Siek, Peter Thiemann, and Philip Wadler. 2015a. Blame and Coercion: Together Again for the First Time. In ACM

Conference on Programming Language Design and Implementation. ACM, New York, NY, USA, 425ś435.
Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, Sam Tobin-Hochstadt, and Ronald Garcia. 2015b. Monotonic references

for efficient gradual typing. In European Symposium on Programming Languages and Systems. Springer, New York, NY,
432ś456.

Jeremy G. Siek and Philip Wadler. 2010. Threesomes, with and Without Blame. In ACM Symposium on Principles of

Programming Languages. ACM, New York, NY, 365ś376.
T. Stephen Strickland and Matthias Felleisen. 2009a. Contracts for first-class modules. In Proceedings of the Symposium on

Dynamic Languages. ACM, New York, NY, 27ś38.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 65. Publication date: January 2020.

Does Blame Shifting Work? 65:29

T. Stephen Strickland and Matthias Felleisen. 2009b. Nested and Dynamic Contract Boundaries. In International Workshop

on Implementation of Functional Languages (IFL). Springer, New York, NY, 141 ś 158.
T. Stephen Strickland, Sam Tobin-Hochstadt, Robert Bruce Findler, and Matthew Flatt. 2012. Chaperones and Impersonators:

Run-time Support for Reasonable Interposition. In ACM Conference on Object-Oriented Programming Systems, Languages

& Applications. ACM, New York, NY, 943ś962.
Cameron Swords, Amr Sabry, and Sam Tobin-Hochstadt. 2015. Expressing Contract Monitors As Patterns of Communication.

In ACM International Conference on Functional Programming. ACM, New York, NY, 387ś399.
Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S New, Jan Vitek, and Matthias Felleisen. 2016. Is sound gradual

typing dead?. In ACM Symposium on Principles of Programming Languages. ACM, New York, NY, 456ś468.
Asumu Takikawa, T Stephen Strickland, Christos Dimoulas, Sam Tobin-Hochstadt, and Matthias Felleisen. 2012. Gradual

typing for first-class classes. In ACM Conference on Object-Oriented Programming Systems, Languages & Applications.
ACM, New York, NY, 793ś810.

Ferdian Thung, David Lo, Lingxiao Jiang, et al. 2012. Are faults localizable?. In Proceedings of the 9th IEEE Working Conference

on Mining Software Repositories. IEEE, New York, NY, 74ś77.
Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek, and Jim Baker. 2014. Design and Evaluation of Gradual Typing for

Python. In Proceedings of the Symposium on Dynamic Languages. ACM, New York, NY, USA, 45ś56.
Michael M. Vitousek, Cameron Swords, and Jeremy G. Siek. 2017. Big types in little runtime: open-world soundness and

collaborative blame for gradual type systems. In ACM Symposium on Principles of Programming Languages. ACM, New
York, NY, 762ś774.

Philip Wadler and Robert Bruce Findler. 2009. Well-Typed Programs Can’t Be Blamed. In Proceedings of the 18th European

Symposium on Programming Languages and Systems. Springer, New York, NY, 1ś16.
Lucas Waye, Stephen Chong, and Christos Dimoulas. 2017. Whip: higher-order contracts for modern services. Proceedings

of the ACM on Programming Languages 1, ICFP (2017), 36.
Jack Williams, J. Garrett Morris, and Philip Wadler. 2018. The Root Cause of Blame: Contracts for Intersection and Union

Types. Proceedings of the ACM on Programming Languages 2, OOPSLA, Article 134 (Oct. 2018), 29 pages.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 65. Publication date: January 2020.

	Abstract
	1 The Origin Story of Blame
	2 A Motivational Example and the Key Insights
	3 From the Ideas to An Experimental Design
	3.1 The Configuration Lattice
	3.2 The Experimental Procedure

	4 Evaluating Racket's Contract System
	4.1 Selection of Programs
	4.2 The Contract Maps
	4.3 The Configuration Comparison
	4.4 Lattice Sizes and Sampling

	5 Results
	5.1 Blame Trail
	5.2 Search Progress

	6 To Shift or not to Shift?
	6.1 Lessons Learned
	6.2 Threats to Validity

	7 Related Work
	7.1 Contracts and Blame
	7.2 Fault Localization
	7.3 Provenance and Tracing
	7.4 Mutation Testing

	8 Pragmatics, not Only Semantics
	Acknowledgments
	References

