
242

Rhombus: A New Spin on Macros without All the Parentheses

MATTHEW FLATT, University of Utah, USA

TAYLOR ALLRED, University of Utah, USA

NIA ANGLE, independent, USA

STEPHEN DE GABRIELLE, independent, UK

ROBERT BRUCE FINDLER, Northwestern University, USA

JACK FIRTH, independent, USA

KIRAN GOPINATHAN, National University of Singapore, Singapore

BEN GREENMAN, Brown University, USA

SIDDHARTHA KASIVAJHULA, independent, USA

ALEX KNAUTH, independent, USA

JAY MCCARTHY, Reach, USA

SAM PHILLIPS, independent, USA

SORAWEE PORNCHAROENWASE, University of Washington, USA

JENS AXEL SØGAARD, independent, Denmark

SAM TOBIN-HOCHSTADT, Indiana University, USA

Rhombus is a new language that is built on Racket. It o�ers the same kind of language extensibility as Racket
itself, but using conventional (in�x) notation. Although Rhombus is far from the �rst language to support
Lisp-style macros without Lisp-style parentheses, Rhombus o�ers a novel synthesis of macro technology that is
practical and expressive. A key element is the use of multiple binding spaces for context-speci�c sublanguages.
For example, expressions and pattern-matching forms can use the same operators with di�erent meanings and
without creating con�icts. Context-sensitive bindings, in turn, facilitate a language design that reduces the
notational distance between the core language and macro facilities. For example, repetitions can be de�ned and
used in binding and expression contexts generally, which enables a smoother transition from programming
to metaprogramming. Finally, since handling static information (such as types) is also a necessary part of
growing macros beyond Lisp, Rhombus includes support in its expansion protocol for communicating static
information among bindings and expressions. The Rhombus implementation demonstrates that all of these
pieces can work together in a coherent and user-friendly language.

CCS Concepts: • Software and its engineering→ Extensible languages.

Additional Key Words and Phrases: macros, in�x syntax, binding spaces

Authors’ addresses: Matthew Flatt, University of Utah, Salt Lake City, USA, m�att@cs.utah.edu; Taylor Allred, University
of Utah, Salt Lake City, USA, taylor.c.allred@utah.edu; Nia Angle, Concord, CA, USA, rokitna@hotmail.com; Stephen
De Gabrielle, London, UK, spdegabrielle@gmail.com; Robert Bruce Findler, Northwestern University, Evanston, IL, USA,
robby@cs.northwestern.edu; Jack Firth, Sunnyvale, CA, USA, jackh�rth@gmail.com; Kiran Gopinathan, National Uni-
versity of Singapore, kirang@comp.nus.sg.edu; Ben Greenman, Brown University, Providence, RI, USA, benjaminlgreen-
man@gmail.com; Siddhartha Kasivajhula, Oakland, CA, USA, sid@countvajhula.com; Alex Knauth, Williamsport, PA,
USA, alexander@knauth.org; Jay McCarthy, Reach, USA, jay.mccarthy@gmail.com; Sam Phillips, Oakland, CA, USA, samd-
phillips@gmail.com; Sorawee Porncharoenwase, University of Washington, Seattle, USA, sorawee@cs.washington.edu;
Jens Axel Søgaard, Skjern, Denmark, jensaxel@soegaard.net; Sam Tobin-Hochstadt, Indiana University, Bloomington, USA,
samth@cs.indiana.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).
2475-1421/2023/10-ART242
https://doi.org/10.1145/3622818

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 242. Publication date: October 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0001-8994-2552
HTTPS://ORCID.ORG/0009-0000-7238-1816
HTTPS://ORCID.ORG/0009-0000-0646-0401
HTTPS://ORCID.ORG/0009-0000-1706-5212
HTTPS://ORCID.ORG/0000-0002-4245-2000
HTTPS://ORCID.ORG/0009-0000-7795-4986
HTTPS://ORCID.ORG/0000-0002-1877-9871
HTTPS://ORCID.ORG/0000-0001-7078-9287
HTTPS://ORCID.ORG/0009-0007-5036-2877
HTTPS://ORCID.ORG/0009-0006-7286-0044
HTTPS://ORCID.ORG/0000-0002-2061-7396
HTTPS://ORCID.ORG/0009-0009-1224-3468
HTTPS://ORCID.ORG/0000-0003-3900-5602
HTTPS://ORCID.ORG/0009-0002-3868-0593
HTTPS://ORCID.ORG/0000-0003-1302-6499
https://doi.org/10.1145/3622818

242:2 Fla� et al.

ACM Reference Format:

Matthew Flatt, Taylor Allred, Nia Angle, Stephen De Gabrielle, Robert Bruce Findler, Jack Firth, Kiran
Gopinathan, Ben Greenman, Siddhartha Kasivajhula, Alex Knauth, Jay McCarthy, Sam Phillips, Sorawee
Porncharoenwase, Jens Axel Søgaard, and Sam Tobin-Hochstadt. 2023. Rhombus: A New Spin on Macros
without All the Parentheses. Proc. ACM Program. Lang. 7, OOPSLA2, Article 242 (October 2023), 30 pages.
https://doi.org/10.1145/3622818

1 INTRODUCTION

Through decades of experience, the programming-languages community has discovered and re�ned
ideas that should appear in most any language, including functional abstraction and lexically scoped
variables. Beyond the basics, however, there are still more good ideas for programming constructs
than can �t in any one language speci�cation. Language extensibility, especially in the form of
macros, helps to balance the competing goals of a manageable language size versus �t-to-purpose
for a wide range of tasks. Even better, programmers can use macros to tailor a language to better
match a speci�c domain (Felleisen et al. 2018).

The Lisp and Scheme communities have long championed macros, but historically, the message
of macros has been di�cult to detangle from Lisp’s minimalistic, parenthesis-oriented notation.
With macro systems included in newer languages like Scala, Rust, Elixir, and Lean, programmers
are starting to see the concerns of core notation and extensibility detangled. Still, few would argue
that the new batch of macro systems have achieved the expressiveness, �uidity, and central role
of macros as they exist within the Lisp tradition. To some degree, the gap exists because macros
are added on top of a core language, instead of designing the language to take advantage of macro
extensibility from the start or to be a vehicle for de�ning the language’s base forms.

Rhombus is a programmable programming language with conventional notation, designed from
the start around macro extensibility. By “conventional notation,” we mean that most any program-
mer will recognize arithmetic, function calls, indexed access, and �eld accesses based on precedents
from algebra and Algol to JavaScript and Python. At the same time, by building on Racket’s state-
of-the-art facilities for extensibility, and by exposing and extending its facilities to work with
conventional notation, Rhombus provides an especially rich toolbox for language construction.
A combination of previously explored ideas distinguish Rhombus from prior designs:

• Macro expansion uses an intermediate form called shrubbery notation that is analogous
to S-expressions, but defers some grouping decisions to a macro-extensible parsing pass.
For example, f(1 + 2 * 3 > 4) corresponds to a shrubbery form where 1 + 2 * 3 > 4 is
a �at sequence of terms, but nested relative to f. Shrubbery’s nesting puts a limit on the
transformations that macros can perform, so programmers do not need to know every macro
before making some sense of unfamiliar code.

• Pervasive pattern matching and repetition notation in the base language reduces the gap
between everyday programming and metaprograming—in contrast to Scheme, which evolved
to emphasize distinct macro-by-example constructs for syntactic extension. Speci�cally, rep-
etition through ellipses is convenient for many programs that manipulate sequences, not just
syntax sequences, and so Rhombus supports it more generally.

• Expansion integrates support for multiple spaces, which support di�erent bindings for dif-
ferent contexts within a module, in contrast to the single-namespace approach of Scheme.
Bindings and other contexts are macro-extensible in the same way as expression contexts.
The operator ::, for example, can have one meaning and expansion in an expression context
and a di�erent meaning and expansion in a binding context.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 242. Publication date: October 2023.

https://doi.org/10.1145/3622818

Rhombus: A New Spin on Macros without All the Parentheses 242:3

fun factorial(n):

match n

| 0: 1

| _: n * factorial(n - 1)

def N = 10

> factorial(N)

3628800

fun

| factorial(0):

1

| factorial(n):

n * factorial(n - 1)

> factorial(N)

3628800

operator n!:

~stronger_than: + - * /

match n

| 0: 1

| _: n * (n - 1)!

> N!

3628800

Fig. 1. Three ways of writing factorial

• Macro facilities support binding and propagating type-like static information, and macro
expansion can be sensitive to that information. For example, a use_static declaration insists
that every �eld or method selection with . is statically resolved to a �eld or method selector,
excluding the possibility of a “message not understood” for that access.

Although Rhombus’s design includes other elements, these properties are the ones that work
together to extend the reach of macro extensions. The key precedents for Rhombus’s design are
Lisp macros (Hart 1963), Scheme hygienic macros (Kohlbecker et al. 1986; Clinger and Rees 1991;
Dybvig et al. 1993), micros and macros (Krishnamurthi et al. 1999), Racket modules (Flatt 2002) and
languages (Tobin-Hochstadt et al. 2011), scope sets (Flatt 2016), parsing via enforestation (Rafkind
and Flatt 2012; Disney et al. 2014), syntax classes (Culpepper and Felleisen 2012), type systems as
macros (Chang et al. 2017), and language support for DSL creation (Ballantyne et al. 2020).

2 RHOMBUS ESSENTIALS AND EXAMPLES

The goal of this section is not to provide a complete overview of Rhombus, but to introduce speci�c
parts of Rhombus as needed for the rest of the paper, and also to sketch how those parts �t into the
larger implementation picture—all to give a sense of where we’re trying to go.

Rhombus is a whitespace-sensitive language, so line breaks and indentation in the examples are
signi�cant. We show read-eval-print-loop interactions where a leading > represents the prompt,
but we omit the prompt for most de�nitions, since they would normally be written in a module and
do not print a result. Also, we defer an explanation of : and | with their indentation rules until
section 3.1—but because so much of the syntax is conventional, the examples in this section should
be readable with just a little explanation.

2.1 Definitions

The left column of �gure 1 shows a de�nition of a function factorial and a constant N, where
the function uses match for pattern matching dispatch among clauses that each start with |, and _

matches anything. The fun form also supports | cases directly, so the factorial could be written
equivalently as shown in the middle column of �gure 1.
The def and fun forms are part of the base Rhombus language, but they are implemented as

macros over a primitive binding form. In the case of fun, the expansion has a function expression
for the right-hand side. The match form similarly wraps a primitive conditional-binding protocol.
Binding positions are macro-extensible, and many prede�ned binding forms implement patterns,
which means that pattern matching is pervasively available in binding positions and not just part
of match.1

1This is partly why def and fun are separate: to distinguish using a pattern constructor in a de�nition from binding a
function name. For example, fun Pair(x, y) starts a de�nition of a function named Pair, while def Pair(x, y)

starts the de�nition of x and y by pattern-matching a right-hand side that constructs a pair.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 242. Publication date: October 2023.

242:4 Fla� et al.

To de�ne a pre�x, in�x, or post�x operator, use the operator form as shown in the right column
of �gure 1.2 The ~stronger_than declaration there gives ! a higher precedence than basic arithmetic
operators.3 Absent other declarations, an expression that has ! with some other operator, such as
==, would require parentheses to disambiguate association. The keyword ~other can be used in a
precedence declaration to stand for all operators that are not otherwise mentioned. An operator’s
associativity can be speci�ed with ~associativity followed by ~left (the default), ~right, or ~none.
If parsing �nds two operators with undeclared or incompatible precedence relationships, then it
raises a syntax error asking for disambiguation.

Operator de�nitions can be local, and precedence relationships refer to bindings, not to symbolic
operator names. Parsing a sequence of operators and operands based on precedence is part of
macro expansion, so a precedence declaration ultimately must be attached to a macro. The operator
macro is a shorthand for de�ning a function plus a macro to call to the function, which means that
operator is a de�nition-generating and macro-generating macro.

2.2 Lists and Repetitions

List constructions and patterns are written with [] around comma-separated items. The List.first
and List.rest functions o�er one way to access the head and tail of a list.

fun

| sum([]): 0

| sum(ns): List.first(ns) + sum(List.rest(ns))

> sum([1, 2, 3])

6

A better approach is to use ... in the [] binding form, which binds the preceding element pattern
as a repetition. The [] expression form similarly supports ... to reference a repetition. Binding
and expression forms cooperate (Flatt et al. 2012) so that this variant generates essentially the same
code as the previous version (that is, no new list is created for the recursive call):

fun

| sum([]): 0

| sum([n, m, ...]): n + sum([m, ...])

The [] formmay appear hardwired into the language, but is treated as an implicit use of a macro that
the Rhombus base language de�nes as an expression and pattern form to construct and match lists.
The binding form recognizes ..., and it converts the preceding pattern so that it binds repetitions.
The expression form also recognizes ..., and it treats the preceding form as a repetition context,
which can refer to repetition bindings.4

Operators and the function-call form are de�ned so that they map over their arguments when
they appear in repetition contexts:

> def [n, ...] = [1, 2, 3]

> [factorial(n), ..., n!, ...]

[1, 2, 6, 1, 2, 6]

> [n+1, ...]

[2, 3, 4]

2Shrubbery notation distinguishes operator tokens from identi�er tokens, but operator allows either as an operator name,
while the fun form expects an identi�er for a function name.
3A ~ pre�x converts an identi�er to a keyword, which is never an expression or binding operator on its own.
4A reader may wonder whether it matters that ... appears after the , instead of before. Putting ... after , means that a
list element is being repeated to create multiple elements, as opposed to a repetition that forms a single element of the list.
This distinction is especially relevant in macro patterns and templates.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 242. Publication date: October 2023.

Rhombus: A New Spin on Macros without All the Parentheses 242:5

Mapping + over n works because literals like 1 act as repetitions of depth 0, and ... replicates
shallower repetitions to �ll deeper ones. This treatment of nested and mixed repetitions, which
was worked out in iterations of Scheme’s macros-by-example (Kohlbecker and Wand 1987; Clinger
and Rees 1991; Dybvig et al. 1993), is useful and expressive for many non-macro applications.5

2.3 Classes

A class declaration creates a new class and binds the class’s name to a constructor procedure for
expressions, a pattern form for bindings, and more:6

class Posn(x :: Int, y :: Int)

fun

| vector_sum([]): Posn(0, 0)

| vector_sum([p :: Posn, q, ...]):

let Posn(xs, ys) = vector_sum([q, ...])

Posn(p.x + xs, p.y + ys)

// or, equivalently

fun vector_sum([Posn(x, y), ...]):

Posn(sum([x, ...]), sum([y, ...]))

> vector_sum([Posn(1, 2), Posn(3, 4), Posn(5, 6)])

Posn(9, 12)

The :: binding operator expects an annotation afterward. Some annotations, like Int, are prede�ned,
and class de�nes the class name also as an annotation. An annotation with :: implies a run-time
check to ensure that a value satis�es the annotation, and it adjusts the binding to propagate static
information. As a result, for example, p.x can be statically resolved to an access of the x �eld of a
Posn. Static information is itself implemented through the macro system, taking advantage of the
fact that binding positions are macro-extensible and can expand to expansion-time de�nitions as
well as de�nitions of run-time variables.

The class form connects a new datatype with many di�erent facets of a program, including
expression, binding, and static-information concerns. The resulting implementation complexity
is tamed by implementing class as a macro that expands to many di�erent de�nitions of more
primitive forms, each generally handling a di�erent facet of class’s role.

2.4 Syntax

A pair of single quotes '' in Rhombus creates a syntax object (not a string), which is a representation
of syntax that has nested term structure intact. Syntax-object printing re�ects structure with a «»
; notation that is not whitespace-sensitive, which in the following example helps clarify that the
content of a syntax object is not merely text:

> def noisy_identity_stx = 'fun (x):

println(x)

x'

> noisy_identity_stx

'fun (x):« println (x); x »'

In terms of structure, the syntax object preserves the fact println(x) is one group and x by itself is
another, but that both pieces are in the block after fun (x).

5Rhombus also supports a & pre�x splicing operator in lists, maps, sets, and function arguments, both for patterns and
constructions/calls, which is like a * pre�x in Python or a ... pre�x in JavaScript.
6This example uses let, which is like def, but it binds names that are visible only later within its context. The def form
tends to be more convenient at the top level, where exports and mutually recursive references are common, while let
tends to be more convenient within a local block, because it allows shadowing by later lets.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 242. Publication date: October 2023.

242:6 Fla� et al.

The $ pre�x operator serves as an escape within a syntax quotation. When a ''-quoted form is
an expression, $ escapes back to expression mode to compute a value that is substituted into the
syntax-object template. When a ''-quoted form is a binding pattern, $ escapes back to binding
mode for a nested pattern to match against a portion of an input syntax object.

> '[1, 2, 3].map($noisy_identity_stx)'

'[1, 2, 3] . map (fun (x):« println (x); x »)'

> match noisy_identity_stx

| 'fun ($arg): $body': [arg, body]

['x', 'println (x); x']

A ... can be used in syntax patterns and templates to bind and use repetitions. To make those
patterns and templates more readable, ... is implicitly escaped instead of being treated as literal;
otherwise, $ would be needed before each ... that is intended as repetition.7

def '$f($arg, ...)' = 'expt(2, 5+5)'

> [f, arg, ...]

['expt', '2', '5 + 5']

> 'lazy_call($f, fun(): $arg, ...)'

'lazy_call (expt, fun ():« 2 », fun ():« 5 + 5 »)'

Figure 2 shows a metacircular interpreter for a small Rhombus-like language using syntax objects
to represent programs, which is analogous to reusing S-expressions in Lisp. In a syntax pattern,
annotated escapes like x :: Identifier and x :: Int resemble general binding annotations, but
they are more precisely uses of syntax classes that are speci�c to syntax-pattern contexts. The
interpreter’s implementation also uses {} notation for constructing a map, the ++ operator for
functional union of maps, [] for indexing a map with a key, and the unwrap method of a syntax
object to extract a raw number or symbol. The point of this example is (1) to demonstrate how
Rhombus includes all of the ingredients needed to make a compact metacircular interpreter, and
one that is Lisp-like by working directly on syntax representations; and (2) to demonstrate how
pervasive pattern matching and uni�ed repetition notation are useful, especially in the fun case
where they seamlessly span syntax matching, dictionary construction, and variadic functions.

2.5 Macros

Syntax objects work nicely for the interpreter in �gure 2, but they are more typically used to
implement macros. The macro form expects a pattern to match against a use of the macro, and then
a block containing an immediate template to produce the result of macro expansion.

macro 'thunk: $body':

'fun (): $body'

> def delayed_three = thunk: 1 + 2

> delayed_three()

3

More generally, macros can be implemented with arbitrary expansion-time code, which requires
that expr.macro and expansion-time Rhombus are imported from rhombus/meta.8 Figure 3 uses
expr.macro to de�ne prims, which locally de�nes to_symbol and to_function expansion-time func-
tions. The to_symbol function normalizes an operator to an identi�er using unwrap_op at expansion
time, and to_function wraps an operator implementation as a two-argument function.

7A $ or ... with nothing before or after is treated as literal instead of an escape, so to write a literal $ or ... in a larger
pattern or template, escape to an immediate quote using $'$' or $'...'.
8An open modi�er makes all imported names available without the module name as a pre�x.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 242. Publication date: October 2023.

Rhombus: A New Spin on Macros without All the Parentheses 242:7

fun interp(e, env :: Map):

match e

| 'fun ($x, ...): $e': fun (arg, ...):

interp(e, env ++ {x.unwrap(): arg, ...})

| '$rator($rand, ...)': interp(rator, env)(interp(rand, env), ...)

| '$(x :: Identifier)': env[x.unwrap()]

| '($e)': interp(e, env)

| '$(x :: Int)': x.unwrap()

| '[$x, ...]': [interp(x, env), ...]

| '$x ... $(op :: Operator) $y ...': env[op.unwrap_op()](interp('$x ...', env),

interp('$y ...', env))

| 'block: let $x = $rhs; $body': interp('(fun ($x): $body)($rhs)', env)

def init_env:

{ 'cons'.unwrap(): List.cons,

'first'.unwrap(): List.first,

'rest'.unwrap(): List.rest,

'+'.unwrap_op(): fun(x, y): x + y,

'-'.unwrap_op(): fun(x, y): x - y,

'*'.unwrap_op(): fun(x, y): x * y }

> interp('block:

let swap = fun (x): [first(rest(x)), first(x)]

first(swap([1, 2])) + 3',

init_env)

5

Fig. 2.Metacircular interpreter

import: rhombus/meta open

expr.macro 'prims { $name: $impl, ... }':

fun | to_symbol(name :: Operator): name.unwrap_op()

| to_symbol(name :: Identifier): name.unwrap()

fun | to_function(impl :: Operator): 'fun(x, y): x $impl y'

| to_function(impl): impl

'{ '$(to_symbol(name))'.unwrap(): $(to_function(impl)), ... }'

def init_env = prims { cons: List.cons, first: List.first, rest: List.rest, +: +, -: -, *: * }

Fig. 3. A macro to simplify initial-environment construction

3 RHOMBUS SYNTAX AND REPRESENTATION

The Rhombus program-processing pipeline starts with source text, uses a reader to convert text into
an intermediate token tree representation, parses that token tree into an AST, and �nally compiles
the AST to an executable:

fun f(x):
 x + 1

source

top

fun f ()

x

:

x + 1

token tree

defnition

f lambda

x add

x 1

abstract syntax (AST)

macro expansion

010011

110110

011010

100111

executable

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 242. Publication date: October 2023.

242:8 Fla� et al.

fun f(x :: Int, y :: Int):
 def z = x * y
 z + 1 <group>

fun f ()

<group>

x :: Int

<group>

y :: Int

:

<group>

def z = x * y

<group>

z + 1

Fig. 4. Example shrubbery form and its parse tree

This is the same pipeline as used by Racket or most any dialect of Lisp, but Rhombus’s reader
converts text into shrubbery representation instead of an S-expression representation. Basic syntactic
ingredients like :, indentation for blocks, and | for alternatives are not tied to Rhombus keywords,
but are instead de�ned at the shrubbery layer. On top of that layer, in the same way that Lisp
provides quasiquote and unquote to make working with S-expressions easier, Rhombus provides
a generic set of pattern and template facilities that are tuned to the structure of shrubbery notation.

3.1 Shrubbery Notation

An idealized S-expression grammar of terms has just two productions: atoms (like numbers,
booleans, identi�ers, and strings) and a parenthesized sequence of terms.

〈term〉 ::= 〈atom〉 | (〈term〉*)

This ideal sweeps many details under the rug, such as dot notation for raw pairs and the syntax
of atoms, but it captures the feeling of programming with S-expressions: conceptual simplicity
at the price of lots of parentheses. This approach has some appeal—enough that an alternative
M-expression notation for Lisp famously never materialized (McCarthy 1978)—but S-expression
notation also has drawbacks. Some characterize programming with S-expressions as “writing in
ASTs,” which is not the same “AST” as in the picture at the start of this section, but re�ects the
sense that programmers must write out a kind of parse tree with all grouping made explicit.
Many approaches to improving Lisp notation make use of whitespace or other delimiters as

an alternative to parentheses, but aim for the same underlying S-expression structure. Those ap-
proaches include I-expressions (Möller 2003), Parendown (Angle 2017), the Scribble reader (Barzilay
2009), Sweet-expressions (Wheeler 2013), and Wisp (Babenhauserheide 2015). Another common
adjustment is to add support for in�x sections, including SIX in Gambit (Feeley 2019) or Curly-
in�x (Wheeler 2013); such extensions accommodate traditional arithmetic forms, but still in the
context of an S-expression conversion, and not in a generally extensible way. Some Lisp and Scheme
implementations, including Racket, allow [] and {} grouping as a synonym for parentheses. Clojure
goes a step further, making [] and {} core parts of the grammar with meanings distinct from ()

in the base language.
Rhombus’s approach is most like Clojure’s in that it has a richer core notation, and Rhombus

notation is even richer while still smaller and more general than a parsed AST. That richer base is
only half of Rhombus’s strategy, however. The other half is to reduce the amount of grouping that
the base notation is expected to encode, and instead leave �ne-grained grouping to an additional
parsing pass. That second pass is integrated with macro expansion so that it can be extended by
de�ning macros, including macros in nested scopes or through macro-generated macros. The base
notation is called shrubbery notation, because it tends to have shallower nesting and grouping than
S-expression trees. The parsing component that is interleaved with expansion, which �nishes the
construction of S-expression-like trees, is called enforestation (Rafkind and Flatt 2012).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 242. Publication date: October 2023.

Rhombus: A New Spin on Macros without All the Parentheses 242:9

The core shrubbery grammar resembles an S-expression grammar in that it has 〈term〉s and
nesting under parentheses and other brackets, but it introduces an extra 〈group〉 layer. A 〈group〉

represents an unenforested sequence of 〈term〉s that optionally ends with a : block and/or |
alternatives, where : and | create nesting in a way similar to parentheses. A 〈group〉 is never empty.

〈term〉 ::= 〈item〉 | 〈block〉 | 〈alts〉

〈item〉 ::= 〈atom〉 | (〈group〉*) | [〈group〉*] | { 〈group〉* } | ' 〈group〉* '

〈group〉 ::= 〈item〉* 〈block〉? 〈alts〉? — must be nonempty

〈block〉 ::= : 〈group〉*
〈alts〉 ::= (| 〈group〉*)+

This grammar omits a description of how 〈group〉s are separated within a 〈group〉*, which is where
line and indentation rules come into play, plus ; and , separators. Figure 4 illustrates the parse tree
for an example shrubbery form, which uses some of these rules:

• Each 〈group〉 either starts on a new line, or it is separated from the previous 〈group〉 by ;.
When a subsequent 〈group〉 in a sequence starts on a new line, it must be indented the same
as the �rst 〈group〉 in the sequence.

• Within (), [], and {} line and indentation rules still apply, but immediate groups must be
separated by , (instead of ;), even when a group starts on a new line. Line and indentation
rules still apply within ', but the group separator is ; and optional.

• If the �rst 〈group〉 after a : is on its own line, it must be indented more than the 〈group〉 that
contains the :. If a | starts on a new line, it must be indented the same as the 〈group〉 that
contains the |.

• For each subsequent | in an 〈alts〉, when it starts on a new line, it must line up with the �rst
| in the 〈alts〉.

We leave full details to the Rhombus and shrubbery documentation. The details of the indentation
rules, as well as the choice of indentation-sensitive parsing, are less important than (1) the approxi-
mate size and shape of the grammar that it encodes, and (2) having the grammar contain a small
amount of nesting structure while prominently featuring 〈group〉 as a �at sequence of 〈term〉s.

3.2 Shrubbery Pa�erns and Templates

Armed with the concepts of term, group, and block from section 3.1, we can explain more details
about syntax patterns and templates that section 2.4 glosses over. These details make patterns and
templates convenient in practice.
A Rhombus syntax object is an example of concrete syntax (Aasa et al. 1988). A syntax object

is a shrubbery form that is enriched with source-location and binding information at the term
level. A syntax object can contain a single term, a multi-term group, or a multi-group sequence.
For example, the syntax object '1 + 2' represents a single group with three terms: the integer
1, the operator +, and the integer 2. The syntax object 'f(1, 2)' is a group with two terms, and
the second term has two nested groups each with a single term: 1 and 2, respectively. The syntax
object 'print("hi"); print("bye")' is a two-group sequence, where each group starts with the
term print; the same syntax object (except for source locations) could be written with a newline
instead of ;. A term’s source location sticks with the term when it is matched by a macro pattern
and expanded into another context.
Syntax patterns in Rhombus match raw shrubbery forms, not parsed Rhombus expressions. In

most contexts, an escape in a pattern is matched against a single term.

> match '1 + 2 + 3'

| '$a + 3': "does not get here"

| '$a + $b + 3': [a, b]

['1', '2']

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 242. Publication date: October 2023.

242:10 Fla� et al.

In this example, a repetition match could be used, instead, to match any leading sequence of terms:

> match '1 + 2 + 3'

| '$a ... + 3': [a, ...]

['1', '+', '2']

That repetition sequence can be put into a list, as above, or it can be put into a syntax object that
represents a multi-term group:

> match '1 + 2 + 3'

| '$a ... + 3': '$a ...'

'1 + 2'

When a ... is the only term within a group that follows a group, then it matches repetitions of the
preceding group, and escapes within the repeated group are bound as repetitions for corresponding
matching parts.

> match '(1 + 2, 3 * 4, 5 - 6)'

| '($n $op $m, ...)': [op, ...]

['+', '*', '-']

These rules would be enough to write Rhombus macro patterns, but working always at the term
level can become tedious. In many cases, ... repetitions would be needed to generalize terms to
sequences. Rhombus streamlines pattern matching of syntax by adopting a few additional rules:

• The end of a group in a pattern is special. An escape in that position is allowed to match a
sequence of terms without using ...:

> match '1 + 2 + 3'

| '1 + $c': c

'2 + 3'

• Along similar lines, if an escape is the only form within a block, then it is allowed to match a
sequence of groups:

> match 'thunk:

def x = 1

x + 1'

| 'thunk: $body': body

'def x = 1; x + 1'

• To insist on a single-term match, an escape can be annotated with the Term syntax class:

> match 'thunk: def x = 1; x + 1'

| 'thunk: $(body :: Term)': body

| ~else: "no match"

"no match"

The Group syntax class similarly constrains a match to a single-group match, and it can only
be used in an escape at the end of a group.

Rhombus programmers can de�ne their own syntax classes, along the same lines as define-
syntax-class and define-splicing-syntax-class in Racket (Culpepper and Felleisen 2012).
Templates are more permissive than patterns because an escape in any position automatically

splices a multi-term group. The following example splices an unparsed sequence:

> match '1 + 2 + 3'

| '1 + $c': '4 * $c'

'4 * 2 + 3'

Beware that the result '4 * 2 + 3' computes a di�erent number than '4 * (2 + 3)' would. This
is because match and substitution are faithful to the shrubbery structure, but not to an expression

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 242. Publication date: October 2023.

Rhombus: A New Spin on Macros without All the Parentheses 242:11

import: rhombus/meta open

defn.macro 'datatype $(type :: Identifier)

| $(variant :: Identifier)($field, ...)

| ...':

'interface $type

class $variant($field, ...): implements $type

...'

datatype Type

| VarType(t :: String)

| ArrowType(dom :: Type, rng :: Type)

datatype Expr

| Lambda(id :: String, t :: Type, body :: Expr)

| App(rator :: Expr, rand :: Expr)

| Var(id :: String)

Fig. 5. Defining an ML-like datatype form on top of Rhombus’s interface and class forms

structure that involves precedence for the * and + operators. Use the expr_meta.Parsed syntax class
to parse a term sequence into an expression and prevent the splicing:

> match '1 + 2 + 3'

| '1 + $(c :: expr_meta.Parsed)': '4 * $c'

'4 * #{(parsed #:rhombus/expr (+ (quote 2) (quote 3)))}'

The output here shows #{} and parsed within the result syntax object. The #{} wrapper is a
shrubbery-level escape to S-expression notation, and a parsed S-expression is like an atom in that
it is opaque to further shrubbery pattern matching. Meanwhile, the content of the parsed form is
a Racket expression, because that’s the meaning of parsing for Rhombus expressions. Di�erent
contexts have di�erent parsed forms, but they are all represented as opaque S-expression objects.
Having to write expr_meta.Parsed in all macro de�nitions would be tedious and error-prone.

As we will see in section 4.1, macro-de�nition forms automatically convert certain escapes into
parsed-form escapes; the intent is that most macro authors will not need to deal with this detail.

4 MACROS AND EXPANSION

Shrubbery patterns and templates provide the starting point for Rhombus macros, which use those
facilities at expansion time (a.k.a. compile time) to transform code. A macro-de�nition form like
macro or expr.macro creates a bridge between a run-time context for macro uses and an expansion-
time context for the macro’s implementation. In this section, we show how macros are de�ned in
Rhombus, and then we provide details about the implementation of macro expansion.

4.1 Defining Macros

The examples in section 2.5 demonstrate expression macros, but Rhombus additionally supports
de�nition macros, binding macros, and several other forms. As an example, Figure 5 uses a de�nition
macro (via defn.macro from rhombus/meta) to create an ML-like datatype form using Rhombus’s
class and interface forms. The type name and variant names are constrained to be identi�ers via
the Identifier syntax class. The field escape matches any sequence of terms, including a name
with an annotation, because it is the only escape within its group.

The type_of function in �gure 6 best re�ects the notation of its domain with calls written as
type_of(env ` expr). Figure 6 de�nes an ` expression form to pair the environment and expression

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 242. Publication date: October 2023.

242:12 Fla� et al.

expr.macro '$env ` $expr': ~weaker_than ~other; '[$env, $expr]'

bind.macro '$env ` $expr': '[$env :: Env, $expr :: Expr]'

expr.macro '$dom → $rng': 'ArrowType($dom, $rng)'

bind.macro '$dom → $rng': 'ArrowType($dom, $rng)'

fun | type_of(Γ ` Lambda(id, t, body)):

let body_type = type_of(Γ ++ {id: t} ` body)

t → body_type

| type_of(Γ ` App(rator, rand)):

match type_of(Γ ` rator)

| dom → rng:

if dom != type_of(Γ ` rand):

| error("actual and formal domain mismatch")

| rng

| ~else error("not a function")

| type_of(Γ ` Var(id)):

Γ[id]

Fig. 6. Defining type_of with ` and →

as a list, and it also de�nes ` as a binding form so that the formal argument of type_of can be
written with `. While we’re at it, → is de�ned as an alias for ArrowType. The ` and → expression
forms could have been implemented more concisely using operator, but we use expr.macro here to
focus on the kind of macro de�nition that operator generates.

In the de�nition of the ` expression and binding forms, the env and expr escapes are intended to
match multi-term expression and binding forms on either side of the `. Since that intent is the most
common case, macro de�nition forms like expr.macro and bind.macro implicitly treat escapes as
parsed terms when the overall pattern has the shape of a pre�x, in�x, or post�x operator pattern.
That implicit treatment of escapes corresponds to annotating the escape with expr_meta.Parsed,
bind_meta.Parsed, or whatever syntax class corresponds to the context.
Treating the left-hand side of the pattern as a parsed term turns out to be necessary for the

overall parsing algorithm to discover an in�x operator. For a right-hand side, Rhombus’s parsing
strategy allows more �exibility. For example, the . operator for �eld access is implemented as an
in�x macro that expects an expression on its left-hand side, but its right-hand side must be an
identi�er (not an expression) that is used as the name of a �eld. The pattern for . uses a syntax
class to override the treatment of its right-hand side pattern:

expr.macro '$obj . $(field :: Identifier)':

resolve_dot(obj, field)

This implementation relies on a resolve_dot expansion-time function to perform the main work of
the . expansion and return a syntax object. Calling a helper function is allowed because, unlike
macro, the expr.macro form allows an arbitrary expansion-time expression to implement a macro
(in exchange for importing expansion-time bindings via rhombus/meta or similar).

The de�nition of . still does not use the most general form of a macro transformer. The most
general form accepts all remaining terms of the enclosing group, consumes as many terms as it
wants, and returns two values: the expansion result and any remaining terms. In that case, the
macro is free in its choice of how to consume terms, but it can consume only terms from the
remainder of the group; it cannot a�ect parsing in later parts of the token tree.
As an example of the most general in�x macro form, the following no_fail macro catches an

exception and conditionally replaces it with either the result of the expression after no_fail if

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 242. Publication date: October 2023.

Rhombus: A New Spin on Macros without All the Parentheses 242:13

〈document〉 ::= (top 〈group〉 ...)

〈group〉 ::= (group 〈term〉 ... 〈tail-term〉)

〈term〉 ::= 〈atom〉 | (op 〈symbol〉)

| (parens 〈group〉 ...) | (brackets 〈group〉 ...)

| (braces 〈group〉 ...) | (quotes 〈group〉 ...)

〈tail-term〉 ::= 〈term〉 | 〈block〉 | (alts 〈block〉 ...)

〈block〉 ::= (block 〈group〉 ...)

Fig. 7. Representation of a shrubbery form as an S-expression form

one is supplied, or #false by default. To implement that choice, the macro accepts all terms after
no_fail and detects the case that the sequence is empty, parsing the sequence as an expression if it
is non-empty. The macro returns two syntax objects. The �rst is its expansion and the second is
the (possibly-empty) unparsed tail of the sequence:

expr.macro '$expr no_fail $tail ...':

~weaker_than ~other

match '$tail ...'

| '': values('try: $expr; ~catch _: #false', '')

| '$(rhs :: expr_meta.AfterInfixParsed('no_fail'))':

values('try: $expr; ~catch _: $rhs',

'$rhs.tail ...')

> 1/0 no_fail

#false

> fun divide(x, y): x/y no_fail "undefined for " +& x +& " and " +& y

> divide(1, 0)

"undefined for 1 and 0"

The second match case in no_fail uses the expr_meta.AfterInfixParsed syntax class, which is like
expr_meta.Parsed, but it stops at an operator with lower precedence than a given one (no_fail in
this case). The expr_meta.AfterInfixParsed syntax class delivers both the parsed expression as
rhs and the remaining unparsed terms as a repetition rhs.tail. Shorthands that implicitly parse
expressions or preserve tail terms can be implemented using this general form, and a post�x macro
can be implemented as an “in�x” macro that consumes no terms after the operator. A pre�x macro
has a similar general form, but without a parsed left-hand side.

4.2 Expansion and Enforestation Algorithm

Enforestation and macro expansion in Rhombus are driven by the Racket macro expander. Toward
that end, the Rhombus implementation encodes shrubbery forms as S-expression forms using the
grammar shown in �gure 7. The encoding includes a top wrapper for a top-level sequence of
〈group〉s, includes an op form to distinguish operators from identi�ers (since both are represented
as symbols), and uses block for both a 〈block〉 and 〈alt〉. Here’s an example of a shrubbery form
and its S-expression encoding:

fun f(x :: Int, y :: Int):

x * y + 1

(top (group fun f (parens (group x (op ::) Int)

(group y (op ::) Int))

(block

(group x (op *) y (op +) 1))))

The example illustrates that the S-expression encoding is too verbose for direct use, despite being a
convenient vehicle to inherit Racket’s hygiene, optimizing compiler, and IDE support (Findler et al.
2002; Flatt 2016; Flatt et al. 2019).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 242. Publication date: October 2023.

242:14 Fla� et al.

〈term〉 ::= | 〈tree〉

〈tree〉 ::= (parsed 〈expr 〉)

〈expr 〉 ::= 〈identi�er 〉 | (〈expr 〉 ...) | (lambda (〈id〉 ...) 〈expr 〉)

| | (rhombus-expression 〈group〉)

Fig. 8. Extension of figure 7 to represent mixtures during expansion

Rhombus expansion involves a mixture of shrubberies and parsed trees. To support this mixture,
�gure 8 extends the grammar of 〈term〉 to include (parsed 〈expr〉), where 〈expr〉 represents
a Racket expression form; we use the non-terminal 〈tree〉 as a shorthand for (parsed 〈expr〉).
A Racket rhombus-expression form as an 〈expr〉, meanwhile, can wrap a 〈group〉 to return to
Rhombus expansion of (S-expression encodings of) shrubbery forms. This mixture allows parsing
of outer forms that produce de�nitions, which are handled by Racket’s macro expander, to in�uence
parsing of more nested forms that are delayed under rhombus-expression.
While Lisp-style macro expansion is driven by the initial term of a parenthesized sequence,

〈group〉 parsing in Rhombus needs a strategy that supports pre�x, in�x, and post�x operators. The
remainder of this section describes a variant of enforestation (Rafkind and Flatt 2012) as realized
for Rhombus as an expansion-time enforest function, where enforestation is a variant of Pratt
precedence parsing (Pratt 1973). The enforest here is more general than the original presentation
because it works beyond expression contexts and because it accommodates operators where the
right-hand side is not parsed (as for the . operator).
The enforest function takes a sequence of 〈term〉s and returns a parsed 〈tree〉. More generally,

enforest takes a sequence of 〈term〉s plus a current in�x or pre�x 〈name〉, so it can stop at in�x
names that have a lower precedence. The result from enforest is a parsed 〈tree〉 plus a sequence
of 〈term〉s that remain to be parsed. The rhombus-expression Racket macro starts enforestation
with a dummy 〈name〉 whose precedence is lower than all other names, so parsing will either
consume all terms or fail due to an unbound name.

Figure 9 shows the essential cases of the enforest function. In the �rst case of enforest, a variable
reference parses as itself. The next three cases use a lookup function that is supplied by the macro
expander to access expansion-time values for macro bindings:

• When the input sequence starts with a name that is bound as a pre�x macro, then the macro’s
〈transformer〉 function is called. The function receives a sequence of 〈term〉s, and it returns
a parsed 〈tree〉 plus a sequence of remaining 〈term〉s. Technically, there’s no requirement
that the remaining terms are a tail of the input sequence, but that’s the intent. Enforestation
recurs with the parsed 〈tree〉 and remaining 〈term〉s as the new sequence.

• When the input sequence starts with a parsed 〈tree〉 followed by a 〈name〉 that is bound as an
in�x macro, and when the name has a higher precedence than current name (as represented
by the > relation), then the in�x macro’s 〈transformer〉 function is called. The function
receives the parsed 〈tree〉 plus the remaining 〈term〉s.

• When the input sequence starts with a parsed 〈tree〉 and a 〈name〉 that is bound as an in�x
macro but with lower precedence, then enforestation pauses. The returned 〈tree〉 is likely
used as the parsed right-hand side for a pre�x or in�x transformation in progress.

The shorthands Prefx and Infx shown in �gure 9 illustrate how a transformer for a pre�x or
in�x macro can recur to enforest to parse a right-hand side. The shorthand constructors take
a 〈transformer〉 that consumes a parsed right-hand form, instead of a term sequence, and the
〈transformer〉 is wrapped in a new function that combines it with a use of enforest. The 〈name〉

provided to Prefx and Infx is meant to be the same as the one bound to the macro, and the Rhombus
forms that trigger this shorthand use the same name automatically. The most general protocol

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 242. Publication date: October 2023.

Rhombus: A New Spin on Macros without All the Parentheses 242:15

variable enforest[[(ïnameï ïtermï ...), ïnameïafter]] ó enforest[[((parsed ïnameï) ïtermï ...), ïnameïafter]]
 where lookup[[ïnameï]] ó Variable

prefx enforest[[(ïnameï ïtermï ...), ïnameïafter]] ó enforest[[(ïtreeï ïtermïrest ...), ïnameïafter]]
 where lookup[[ïnameï]] ó PrefxMacro(ïtransformerï),

and ïtransformerï((ïtermï ...)) ó (ïtreeï ïtermïrest ...)

infx enforest[[(ïtreeïlhs ïnameï ïtermï ...), ïnameïafter]] ó enforest[[(ïtreeï ïtermïrest ...), ïnameïafter]]
 where lookup[[ïnameï]] ó InfxMacro(ïtransformerï),

ïnameï > ïnameïafter,
and ïtransformerï(ïtreeïlhs, (ïtermï ...)) ó (ïtreeï ïtermïrest ...)

enforest[[(ïtreeïlhs ïnameï ïtermï ...), ïnameïafter]] ó (ïtreeïlhs ïnameï ïtermï ...)

 where lookup[[ïnameï]] ó InfxMacro(ïtransformerï),
and ïnameï < ïnameïafter

shorthands Prefx(ïtransformerï, ïnameï) = PrefxMacro(» ((ïtermï ...)).

enforest[[(ïtermï ...), ïnameï]] ó (ïtreeïrhs ïtermïrest ...)

(ïtransformerï(ïtreeïrhs) ïtermïrest ...))

Infx(ïtransformerï, ïnameï) = InfxMacro(» (ïtreeïlhs, (ïtermï ...)).

enforest[[(ïtermï ...), ïnameï]] ó (ïtreeïrhs ïtermïrest ...)

(ïtransformerï(ïtreeïlhs, ïtreeïrhs) ïtermïrest ...))

implicits enforest[[(ïatomï ïtermï ...), ïnameïafter]] ó enforest[[(#%literal ïatomï ïtermï ...), ïnameïafter]]
 where ïatomï is not a ïnameï

enforest[[((parens ïgroupï ...) ïtermï ...), ïnameïafter]]
 ó enforest[[(#%parens (parens ïgroupï ...) ïtermï ...), ïnameïafter]]

enforest[[(ïtreeï (parens ïgroupï ...) ïtermï ...), ïnameïafter]]
 ó enforest[[(ïtreeï #%call (parens ïgroupï ...) ïtermï ...), ïnameïafter]]

......

Fig. 9. Enforestation function implementation

for Rhombus macros corresponds to using PrefxMacro and InfxMacro directly, calling enforest

indirectly through the expr_meta.AfterPrefixParsed or expr_meta.AfterInfixParsed syntax class.
The use of < and > for precedence comparisons suggests an order, but whether to apply an

in�x transformer depends only on the current and new 〈name〉s, so it can be any relation. As
in Fortress (Steele et al. 2011), the comparison consults only information that is declared with
one of the two names in reference to the other. That information includes both precedence and
associativity, and the comparison reports an error if precedence and associativity information from
the two names is inconsistent or inconclusive.
The remaining cases of enforest enable control over the meaning of a literal, a parenthesized

term, a function-call form, and so on. The enforest function rei�es the implicit form by inserting an
explicit form name: #%literal, #%parens, #%call, or other implicit names (not shown) to cover
the use of square brackets, curly braces, and quotes.9 By default, these explicits consume the �rst
term of a sequence, process it, and return the tail unchanged. If an explicit name is unbound, then
the implementation of enforest in Rhombus substitutes a transformer that reports a speci�c error,
which is more helpful than an unbound-identi�er error.

9A #% pre�x is generally allowed for shrubbery identi�ers. The pre�x is special only in that it connotes a name that is
normally not written out, but explicit use of the name is also allowed.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 242. Publication date: October 2023.

242:16 Fla� et al.

5 SPACES

A Rhombus space represents a particular kind of program context, such as an expression context,
binding context, or annotation context. A Rhombus module starts out in an expression context,
and then some expression forms create other kinds of contexts, such as the binding context created
for the left-hand side of def or the annotation context created on the right-hand side of ::. Each
space has its own sublanguage of forms that are implemented as macros speci�c to that space, but
the same name can have a meaning in multiple spaces. For example, a class name like Posn works
as a constructor in an expression context, as a pattern constructor in a binding context, and as an
instance check in an annotation context.
Other languages similarly allow di�erent bindings for di�erent program contexts, such as

expression versus pattern forms in Relit (Omar and Aldrich 2018) or extending di�erent grammar
productions in Fortress (Allen et al. 2009). Rhombus uses a di�erent strategy where support for
binding spaces is built directly into the representation of binding within a syntax object.

5.1 Space Scopes

Rhombus inherits Racket’s handling of scope for macros, because it builds on Racket’s macro
expander and uses Racket syntax objects to implement Rhombus syntax objects. Through Racket’s
syntax objects, the de�nitions reached by an identi�er are represented as a set of scopes (Flatt 2016),
which generalizes normal lexical scope. Scope sets accommodate identi�ers that are introduced by
macro expansion, including identi�ers that are put into mutually recursive de�nition contexts or
transported from one module to another by expansion of an imported macro.
Rhombus takes further advantage of scope sets to implement spaces. Each space has a distinct

interned scope, so the scope for a particular space is common to all modules and across all phases
of expansion and evaluation. This shared scope allows di�erent modules to cooperate by de�ning
and referencing names in a way that is speci�c to the space. When a name is de�ned in a particular
space, such as the repetition space, an interned scope is added to the de�ned name in addition to
whatever other scopes the name has acquired through expansion. Similarly, when resolving a name
in a particular sublanguage, an interned scope is �rst added to the name before attempting to �nd
the de�nition through the Racket macro expander’s lookup mechanism. Interned scopes were �rst
added to Racket to implement Hackett (King 2018), which is a Haskell-like language that also needs
to de�ne names with di�erent meanings in di�erent sublanguages (e.g., types and expressions).

The extra scope explains how ` can be bound both as an expression operator and binding operator
in �gure 6. The expr.macro form de�nes names in the expression space, while the bind.macro form
de�nes names in the (Rhombus) binding space; the latter has an extra scope that the former does
not, making the de�nitions distinct.
When a name is shadowed in some spaces but not others, there’s a risk of breaking up sets of

bindings that are meant to work together. As an example, imagine that the :: operator is locally
de�ned as an alias for List.cons, instead of checking a value against an annotation. If the expression
and binding spaces have separate scopes, then the new :: de�nition for expressions would be
out-of-sync with :: for binding contexts, where it would continue to associate a pattern with an
annotation. To reduce this kind of mismatch, the Rhombus expression space does not use an extra
scope. Shadowing :: in the expression space—without also de�ning it in the binding space—has
the e�ect of disabling :: in the binding space, because a name with both the binding scope and
the shadowing scope will have candidate de�nitions where neither scope set is a superset of the
other, and so neither binding applies. This special treatment can work for only one space, but
de�nitions in the expression space are by far the most common and (based on experience in earlier
iterations of Rhombus) the most likely to create confusing mismatches. We experimented with

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 242. Publication date: October 2023.

Rhombus: A New Spin on Macros without All the Parentheses 242:17

import:

rhombus/meta open

"orig.rhm" as orig

export:

all_from(.orig): except_space bind

`: only_space bind

bind.macro '$env ` $expr': ~weaker_than ~other; '$env orig.(`) $expr'

Fig. 10. Assuming that figure 6 is exported by orig.rhm, replace ` for only the binding space

instead using compile-time multiple inheritance to enable implementation for multiple spaces
and using per-space scopes as a secondary route to extensibility—an approach that minimizes
mismatches, but proved tedious and in�exible in practice.
When a name is exported from a module using the export form, the name is exported in all

spaces that have a de�nition. The import and export forms support modi�ers that omit bindings
from speci�c spaces or propagate bindings only from speci�c spaces. A module can thus �ll in
de�nitions for a name in new spaces, or it can replace de�nitions of a name in some spaces while
re-exporting de�nitions for other spaces.
For example, the de�nition of the binding form in �gure 6 lacks a precedence speci�cation.

Figure 10 demonstrates how to add one without modifying the source �le ("orig.rhm"): import
the original implementation, export a new implementation, and de�ne the new ` that includes a
precedence declaration. Within export, the only_space bind modi�er is not actually needed, since
the only de�nition of ` is the new one de�nedwith bind.macro, while the original is accessed through
the quali�ed path orig.(`). The syntax all_from(.orig), meanwhile, refers to all bindings provided
by the module that is imported as orig. The space name bind is imported from rhombus/meta.

5.2 Defining New Spaces

Rhombus enables the creation of new spaces. Suppose that we want a form rx() for writing
regular expressions, where * and ? within rx() have their usual meaning for regular-expression
notation, and strings always represent literal sequences. For example, rx("."? "^"*) should match
an optional . followed by any number of ^s, independent of whether . and ^ are also regular-
expression operators. Matching can be implemented by using an existing Racket matcher for
regular expressions, but that matcher works in terms of a string encoding like "[.]?\\^*"; the
rx() form can expand to that encoding while proving a more naturally composable syntax. The
module that de�nes rx can de�ne all of the basic regular-expression operators, but we can also
allow programmers to de�ne their own operators.
The rx form should use a new space for regular expression operators like * and ?. Selecting a

new interned-scope identity is only one step of de�ning that new space, and the full de�nition
includes several pieces, demonstrated in �gure 11:

• A name regexp that is bound to the space, analogous to bind as used in �gure 10 to refer to
the space of binding operators. This name doubles as a path quali�er to access the macro-
de�nition form that binds in the space, analogous to the bind pre�x of bind.macro.

• A globally unique path for the space, my/regexp/space, which is used for interning the space’s
scope. This path could be derived automatically from the enclosing module’s path, since the
module path is globally unique, but currently it must be written explicitly.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 242. Publication date: October 2023.

242:18 Fla� et al.

• Aname for the space’smacro-de�nition form, macro, analogous to the macro part of bind.macro.
This name is practically mandatory, because the space is useful only if it includes some way
of adding de�nitions.

• Names for an expansion-time namespace pre�x (regexp_meta) and for enforestation-triggering
syntax classes (Parsed). The pre�x is analogous to the bind_meta pre�x in bind_meta.Parsed,
and typical syntax classes correspond to Parsed, AfterPrefixParsed, and AfterInfixParsed.
The Parsed name is practically mandatory, but the latter two can be omitted if no macros need
to use the annotations. The syntax classes are bound in the expansion-time phase relative to
the enclosing context, as opposed to the run-time phase, since they are intended for use by
macros.

The rx expression macro in Figure 11 bridges to the new space by using the newly de�ned
regexp_meta.Parsed syntax class. That syntax class has the e�ect of converting a regular expression
into a string encoding that can be passed on to the pregexp function from Racket. Four uses of
regexp.macro de�ne four regular-expression operators that implement the conversion: a #%literal

pre�x operator that is implicitly applied to literals like strings, a #%juxtapose in�x operator that is
implicitly placed between expressions that are not separated by an in�x operator, and the * and ?

post�x operators. The implementation of #%literal uses an existing literal-to-pattern conversion
function from Racket.10 The implementations of other operators manipulate the string form of
subexpressions that are parsed as regular expressions, which means that they are represented as
string syntax objects, and unwrap accesses the raw strings.
Exporting the rx expression form allows other modules to use it, but operators in the regexp

space also need to be exported. Four regular expression operators are exported with the modi-
�er only_space regexp to avoid re-exporting bindings from other spaces, such as the plain old
* expression operator. Exporting regexp and regexp_meta provides access to regexp.macro and
regexp_meta.Parsed, so other modules can de�ne new regular-expression operators.

6 STATIC INFORMATION

By default, Rhombus is a dynamic language in the same sense as JavaScript or Python: �eld and
method names using . are found dynamically at run time, array-like access with [] is dispatched
dynamically to a suitable lookup function, and so on. This mode of operation can be convenient, but
it can also create problems for performance and maintainability. In Lisp, a common �x is to replace
the dynamic, procedure-based interface with a static, macro-based one (for example, (Bowman
et al. 2015)). Rhombus adapts ideas from this line of work into the base language. Speci�cally, it
builds on the binding protocol for type systems as macros (Chang et al. 2017) but without forcing
an expansion order.
Static information is currently used in Rhombus to improve performance and reject simple

mismatches. In the scope of a use_static declaration, uses of . or [] are rejected when they would
trigger a dynamic lookup, and function calls are rejected when they have the wrong argument count
or wrong keywords. Those features re�ect one way of using static information, but Rhombus’s
approach lets us explore di�erent points on the spectrum of types and static information. Exploring
at the macro level o�ers a path that is �exible and incremental. Furthermore, exploration is not
solely the province of the Rhombus base language, because Rhombus exposes all of the mechanisms
needed to explore alternatives through new sets of cooperating macros and spaces. Section 7.2
describes an ML-style type checker implemented in this style.

10The use of #{} in #%literal escapes to S-expression notation, which is needed to refer to a name that is not a shrubbery
identi�er, because the name includes a hyphen.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 242. Publication date: October 2023.

Rhombus: A New Spin on Macros without All the Parentheses 242:19

space.enforest regexp:

space_path my/regexp/space

macro_definer macro

meta_namespace regexp_meta:

parse_syntax_class Parsed

expr.macro 'rx ($(pat :: regexp_meta.Parsed))':

'pregexp($pat)'

regexp.macro '#%literal $(s :: String)':

import lib("racket/base.rkt").#{regexp-quote}

'$(#{regexp-quote}(s.unwrap()))'

regexp.macro '$left #%juxtapose $right':

'$(left.unwrap() ++ right.unwrap())'

regexp.macro '$left *':

~stronger_than: #%juxtapose

'$("(?:" ++ left.unwrap() ++ ")" ++ "*")'

regexp.macro '$left ?':

~stronger_than: #%juxtapose

'$("(?:" ++ left.unwrap() ++ ")" ++ "?")'

export:

rx

only_space regexp: #%literal #%juxtapose * ?

regexp

meta: regexp_meta

Fig. 11. Implementing a new space for regular-expression operators and parsing

6.1 Binding Protocol

When a function argument is annotated with :: List or :: Posn as in section 2, the de�nition
of the argument variable is paired with a de�nition of the same name in a static-information
space, where the latter communicates that the variable’s value is a list or an instance of the Posn

class, respectively. When a binding p :: Posn is referenced in p.x, the . operator can consult static
information associated with p to discover an e�cient, Posn-speci�c accessor for x.
The propagation of static information from a function argument to the function body is not

speci�c to function-argument handling, but instead built into the general protocol for expanding
binding positions. The parsed representation of a binding has four parts:

• a set of names to be de�ned by the expansion in the expression space, each with a repetition
depth, and each with static information to associate with the name;

• an expression to check whether a value in a designated input variable matches the binding,
so that the next pattern-matching alternative (if any) can be tried;

• de�nitions that extract elements of a matched value by binding private intermediate variables;
and

• a �nal set of de�nitions, possibly spanningmultiple spaces and possibly using private variables
that are introduced by the extraction step.

Splitting a binding form into these pieces allows binding forms to compose. For example, a
[Posn(x, y), ...] binding pattern is a list pattern, but the list-pattern expansion needs information

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 242. Publication date: October 2023.

242:20 Fla� et al.

fun (ps :: List.of(Posn)): ps[0].x

match 'ps :: List.of(Posn)' using bind_meta.Parsed
match 'List.of(Posn)' using annot_meta.Parsed

match 'Posn' using annot_meta.Parsed
return ïPosn?,

{dot_ref: {x: Posn-x, y: Posn-y}}ï
return ï(lambda (v) (and (list? v) (andmap Posn? v))),

{ref: list-ref,
 ref_result: {dot_ref: {x: Posn-x, y: Posn-y}}}ï

return ï[ïps, {ref: list-ref,
 ref_result: {dot_ref: {x: Posn-x, y: Posn-y}}}ï],

(and (list? arg) (andmap Posn? arg)),
(void),
(define ps arg)ï

return (lambda (arg)
 (unless (and (list? arg) (andmap Posn? arg)))

 (define ps arg)

 (define-syntax ps ; in statinfo space

 {ref: list-ref,
 ref_result: {dot_ref: {x: Posn-x, y: Posn-y}}})

 (rhombus-expression ps[0].x))

(rhombus-expression ps[0].x)

match 'ps[0].x' using expr_meta.Parsed
get static information for left-hand side ps using statinfo_meta.lookup,
 extract ref info to get list-ref, and
 extract ref_result info to get {dot_ref: {x: Posn-x, y: Posn-y}}
return, using statinfo_meta.wrap, (begin

 {dot_ref: {x: Posn-x, y: Posn-y}}

 (list-ref ps 0))
get static information for left-hand side (begin) using statinfo_meta.lookup,
extract dot_ref to get {x: Posn-x, y: Posn-y}, and
extract x to get Posn-x
return (Posn-x (list-ref ps 0))

return (Posn-x (list-ref ps 0))

Fig. 12. Sketch of expansion steps, showing how static information is derived from annotations

in a binding, then used and propagated by expressions. The right-hand column shows the steps

that are taken, in order, with slight indentation to reflect nested expansion. The lines on the le�

identify the macro whose expansion performs the step. Rhombus-like map notation is used to

represent key–value static information.

from the expansion of Posn(x, y) as a pattern to construct the overall list pattern’s expansion.
In particular, it needs to know that Posn(x, y) binds x and y at repetition depth 0 so that it can
convert the associated values to actually bind x and y each as a repetition of depth 1. Similarly,
the match-checking expression for the list expansion must detect a list argument and then map
the match-checking expression from Posn(x, y) over the list. If the Posn class is de�ned with
annotations on its �elds, a Posn(x, y) pattern can propagate each �eld’s static information to x

and y, respectively. The :: binding operator similarly gets static information from the annotation
on its right-hand side to propagate to identi�ers bound by its left-hand side.
An annotation’s expansion, meanwhile, has two parts: a predicate that can be used (e.g., by

matching) to determine whether a value satis�es the annotation, and static information that applies
to any expression or de�nition that satis�es the annotation. Those two pieces are, again, composable
to support annotation operators and constructors like List.of(), which takes another annotation
and constructs a new one that corresponds to a list whose elements satisfy the given annotation.
The �rst half of �gure 12 sketches the expansion steps of a binding with a List.of(Posn)

annotation. The sketch shows how annotation information feeds into a binding’s expansion, and
then how a binding’s expansion is incorporated into an expanded function body.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 242. Publication date: October 2023.

Rhombus: A New Spin on Macros without All the Parentheses 242:21

6.2 Downward and Upward Information

Static information on a de�ned name is a kind of “downward” information �ow, because it goes from
de�nitions to uses of the de�ned name that are typically later in the source text. Some situations
bene�t from an “upward” �ow from a subexpression to an enclosing form. For example, if ps has
static information from ps :: List.of(Posn), then resolving p[0].x to an e�cient access of the x

�eld requires the expansion of the left-hand side p[0] to report the static information of Posn.
An expression macro communicates upward static information by expanding to a particular

Racket expression form: (begin (quote-syntax 〈info〉) 〈expr〉) where 〈info〉 is a packed form of
static information and 〈expr〉 is the Racket expression that parsing would otherwise produce. The
Rhombus helper function statinfo_meta.wrap performs this wrapping, while statinfo_meta.lookup
extracts static information from either this pattern or from binding information (but the latter only
when the given expression is an identi�er). The second half of �gure 12 illustrates in more detail
the expansion a function body that contains ps[0].x.
Upward �ows appear in bindings as well as expressions. For example, a binding of the form

[p, ...] :: List.of(Posn) communicates information “upward” from the right-hand side of ::
into the binding expansion of the list pattern on the left. To support that kind of transfer, the �rst
component of a binding expansion is not actually a list of names to be de�ned, each with its static
information, but instead a function that takes upward information and then reports the names,
each with static information that may incorporate information from the upward �ow.

6.3 From Static Information to Types

In the limit, downward and upward �ows can be combined with uni�cation to implement general
type checking and inference (see section 7.2). Interleaving partial inference and partial expansion
can even enable type-directed macro expansion. The protocols for expansion and propagation can
become complex, since the approach amounts to opening up the implementation of an expressive
type system to �ne-grained extension; the complexity can be addressed through a domain-speci�c
language (Chang et al. 2017) or an expander that can pause a macro until enough information is
available (Barrett et al. 2020). The Rhombus base language currently takes a more modest approach,
demanding upward information only in limited contexts, and in particular not forcing the expansion
of an expression within a block to propagate information outside the block (which avoids a swath
of order-of-expansion problems, especially in recursive de�nition contexts).

Rhombus’s protocol for static information parallels the �exibility of macros and spaces: instead of
a single type system that all static information must inhabit, static information has a key–value form
that enables di�erent constructs to cooperate through any key that they both support. For example,
information keyed by call_result is provided by the function-de�nition form, it is recognized
by the function-call form, and any other macro is free to provide or use that key. When a shared
vocabulary is absent or information does not match up, then information can be simply ignored,
and expansion proceeds the same as if no information is available. At the same time, a macro is free
to complain if it insists on information that it cannot �nd. Rhombus’s use_static form rede�nes
operators like . and [] to fail with a static error if they cannot statically resolve to speci�c accessors.

7 RHOMBUS PROGRAMS

Rhombus is used for building parts of Rhombus and its accompanying libraries, such as drawing
and GUI bindings. The Rhombus documentation is written in a document-oriented variant of
Rhombus based on Scribble (Flatt et al. 2009), and so is this paper. In an artifact accompanying
this paper (Flatt et al. 2023), we provide a set of example programs: Runge-Kutta, which de�nes
lazy streams and array operators; a “heatbugs” simulation and visualization, which has no macros,

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 242. Publication date: October 2023.

242:22 Fla� et al.

but uses the GUI and drawing libraries; and a Rhombus embedding of Esterel (Berry and Gonthier
1992), which includes macros for Rhombus-style syntactic forms layered over a Racket run-time
library. The artifact also has complete versions of the programs from the �gures. We report here on
two larger e�orts: a video game framework (section 7.1) and a language for teaching (section 7.2).

7.1 Video Game Framework

One of the authors, while still a relative newcomer to the language, used Rhombus to implement
a framework for video games.11 The framework includes several internal DSLs implemented via
macros: one to describe game asset bitmaps, one to describe world maps, one to express behavior
trees, one to write dialog, and one to implement an entity-component system (ECS) layer. Figure 13
shows a few fragments of a demo game using the framework’s DSLs.

Rhombus’s notation made it an attractive implementation vehicle for the author of this project.
Shrubbery notation provides the same bene�ts as S-expressions for writing DSLs without having
to consider lower-level parsing concerns, but its rules for grouping and indentation closely match
developer intuitions in a way that enables a more ergonomic syntax. For example, in the DSL for
expressing dialog, notation similar to the industry standard Ink (Inkle 2023) was neatly expressed
through simple Rhombus patterns and templates.
Other DSLs in the framework rely crucially on Rhombus’s support for new de�nition forms,

binding forms, and static information. For example, the framework’s ECS layer provides a set of
de�nition forms that implement an alternative to a conventional class system. The ECS allows
programmers to declare datatypes and behaviors of objects independently and then separately
compose them, a ubiquitous pattern in video games. When programmers de�ne new data types in
the ECS, the macros de�ne an accompanying annotation form, and through Rhombus’s propagation
of static information, those annotations in�uence the behavior of some expression constructs.
Speci�cally, when using a dot accessor after a variable that is annotated as an instance of an ECS
datatype, the access is rewritten to an ECS lookup specialized to that datatype, rather than being
interpreted as a plain Rhombus �eld access. The result is an ECS layer that is integrated into
Rhombus as if it were a built-in language form.

7.2 Shplait Teaching Language

Shplait12 is a language for use in an undergraduate course on programming language concepts.
Students in the course implement a series of interpreters and type checkers in a functional style
following Krishnamurthi (2006). Shplait closely resembles a subset of Rhombus, but it has a type
system based on Standard ML, including type inference.

Shplait is implemented in Rhombus. Its expression forms are implemented as Rhombus expression
macros, its de�nition forms are implemented as Rhombus de�ntion macros, and its type forms
are de�ned in a Shplait-speci�c space that is created with space.enforest. Type information is
communicated through Rhombus’s framework for static information; expression and de�nition
macros declare and consume type information, and they send constraints to a uni�cation engine
that is instantiated when a module is expanded. Polymorphism inference at the module level relies
on a �nishing pass that is triggered by a macro inserted at the end of a Shplait module.
Shplait is a successor to Plait,13 which has the same constructs and type system but resembles

Racket instead of Rhombus. We ported Plait’s uni�cation engine from Racket to Rhombus, but
implemented the rest of Shplait fresh. Rhombus’s features make the Shplait implementation more

11https://github.com/Gopiandcode/rhombus-in-the-rough
12https://docs.racket-lang.org/shplait/
13https://docs.racket-lang.org/plait/

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 242. Publication date: October 2023.

https://github.com/Gopiandcode/rhombus-in-the-rough
https://docs.racket-lang.org/shplait/
https://docs.racket-lang.org/plait/

Rhombus: A New Spin on Macros without All the Parentheses 242:23

// behavior trees examples ------------------

declare_behaviour_state(target, patrol)

behaviour_tree attack_player(this) with state(target):

all_of:

check near_player(this) using state(target)

perform do_attack_player(this, target)

....

behaviour_tree follow_patrol(this) with state(target, patrol):

first_of:

attack_player(this)

follow_player(this)

perform do_follow_patrol(this, patrol)

// dialog example -------------------------

dialog guard_dialog:

guard_a: 1 "Halt! Who goes there?" || "Good ~a!" "day" || "Allo Allo..."

1 "I'm a traveller, passing by" || "Hello again!" || "Just one more thing..."

branch guard_a: "What do you want...."

| "Nevermind...."

["The guard returns to his position."]

~> END

| "What's up?"

guard_a: "None-ya business."

"I'll be on my way then..."

~> END

// ECS example ---------------------------

instance Bat with this:

component position :~ Position = Vector2(280.,350.)

component velocity :~ Velocity = Vector2(0.,0.)

method is_aggroed():

this.has_component(IsAggroedTo)

method perform_attack():

state.state := State.Attacking

....

Fig. 13. Some example uses of DSLs within a video game framework

modular and maintainable than the Plait implementation. Most of Plait lives in a 3.5k-line main
module so that the core forms plus a monolithic type-checking traversal can see each other. The com-
parable part of Shplait is split across more than 40 modules that total only 3k lines of code, primarily
because Shplait takes advantage of Rhombus spaces so that type-checking happens during macro
expansion. The Rhombus static-information layer replaced the monolithic type-checking traversal.

8 RELATED WORK

A typical program processing pipeline starts with source text, parses to an abstract syntax tree
(AST), then compiles the AST to executable code following the thick green arrows below:

fun f(x):
 x + 1

(define (f x)

 (+ x 1))

int f(int x) {
 return x+1;
}

source

d cpp, m4, ...

Lean 4, SugarJ, ...

f

defnition

f lambda

x add

x 1

abstract syntax (AST)

eTemplate Haskell, Scala, ...

010011
110110
011010
100111

executable

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 242. Publication date: October 2023.

242:24 Fla� et al.

This diagram re�ects the general problem of parsing and compilation, and there are many language
workbenches to support implementation at that level, including Spoofax (Kats and Visser 2010),
Rascal (Klint et al. 2009), and Xtext (Eysholdt and Behrens 2010). A system like Rascal, with its
emphasis on pattern matching and term construction using concrete syntax, shares goals and
capabilities with Rhombus. More apt comparisons to Rhombus, however, are macro systems:
languages that allow the grammar of programs to be extended from within the program, as opposed
to requiring changes in a toolchain. A language where syntactic extensions are imported from
another module counts, as long as the import statement is within the program, instead of speci�ed
by changing the compilation command or adjusting a project con�guration.

The most primitive forms of macros d, such as cpp and m4, add a textual preprocessing step on
the left of this picture, before the program is parsed into an AST. There are well-known problems
with this approach. Its expressiveness is limited, and there is a potential mismatch between the
macro processor’s tokenization and scope and the target language’s parsing and scope, which
allows macros to perform transformations that do not respect the structure of the original program.
Rhombus macros are not in this category (nor any of the above).

Instead of textual rewriting, many macro systems instead place expansion in the middle step e,
operating on the AST. Template Haskell (Jones and Sheard 2002), Scala (Burmako 2017; Scala 2023),
OCaml PPX (OCaml 2023), and Elixir (McCord 2015) are examples of languages using this strategy.
Since the text has been parsed into an AST, transformations naturally respect existing structure,
and representing resolved references to bindings in the AST (as opposed to just variable names)
provides basic scope management. Macro systems in the tradition of MetaML (Taha and Sheard
2000) and MacroML (Ganz et al. 2001) are also in this category, although at a less expressive point
in the spectrum where macros cannot introduce new binding forms. Rhombus expansion is better
characterized as operating on a token tree, instead of an AST, as introduced below.

Some languages allow extension at the step of parsing into anASTf, usually through declarations
that extend the parsing grammar while simultaneously rewriting the parsed terms to a more
primitive form. This approach was used in compilation as far as back the 1960s (Leavenworth
1966) with similar work continuing into the 1990s (Cardelli et al. 1993), although more as part
of a compiler than for use within a program. The macro systems of Fortress (Ryu 2009; Allen et
al. 2009; Steele et al. 2011) and Maya (Baker and Hsieh 2002) follow this path with declarative
extensions to di�erent productions in a grammar, and Lean 4 (Ullrich and de Moura 2020) and
Wyvern (Omar et al. 2014) are similar with programmer-extensible productions that are based on
types. Fortress and Isabelle (Nipkow et al. 2002) support post-parsing, type-directed disambiguation
of operators and grouping. Systems like SugarJ (Erdweg et al. 2011) support parsing extensions that
are even more general and still compositional, based on parsing technologies like GLR (Tomita 1985).
Structured editors like MPS (JetBrains 2003) or the hybrid approach of Eco (Diekmann and Tratt
2014) accomodate syntax composition by working with ASTs even while editing. These systems
can o�er greater syntactic choice than Rhombus enables, as discussed below, but we note some
trade-o�s there.

Lisp and related languages instead add an extra reader step in the program-processing pipeline
to turn the text input into a semi-structured token tree, also known as a skeleton syntax tree

(SST) (Bachrach and Playford 1999). The SST is an S-expression in the case of Lisp, but other
choices are possible, such as Rust’s TokenTree, Dylan and JSE’s SST (Bachrach and Playford 1999,
2001), the Sweet.js reader’s output (Disney et al. 2014), or Rhombus’s shrubbery representation.
Krishnamurthi (2006,page 9) characterizes this parsing strategy as bicameral syntax, because the
initial SST layer is responsible for one layer of parsing, and then another level of parsing is built on
that one, and programs must pass both levels.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 242. Publication date: October 2023.

Rhombus: A New Spin on Macros without All the Parentheses 242:25

fun f(x):
 x + 1

(define (f x)

 (+ x 1))

int f(int x) {
 return x+1;
}

source

()

define ()

f x

()

+ x 1

token tree (SST)

defnition

f lambda

x add

x 1

abstract syntax (AST)

gLisp, Scheme, Racket,
Rust, Rhombus, ...

010011
110110
011010
100111

executable

Macro expansiong applies to the SST representation, instead of an AST. More precisely, expansion
involves a mixture of SST terms with parsed terms, since the binding structure discovered by
parsing is needed to de�ne and apply macro transformers. Macro expansion therefore involves
a back-and-forth between the SST representation and a parsed AST, with SSTs at the leaves in
AST nodes that are still being parsed. With some macro systems, including Racket, a macro can
force parsing of an expression subtree within its local context, in which case the SST and AST
structures are further interleaved. Rhombus takes it a step further, allowing a subtree to be parsed
in a designated space, such as the space of expressions, binding patterns, or class clauses.

8.1 Comparing AST and SST Extension

The choice of extension point—AST transformation e, AST parsing f, or SST transformation g—
a�ects the kinds of syntactic extensions that are easily accommodated. In a language that expands
ASTs, new syntax constructs must �t the syntax of a core construct until expansion (where a
function-call form is a typical choice), while an SST intermediate representation as in Rhombus o�ers
more �exibility to new syntactic forms. SST and AST transformations both constrain extensions
to �t a core set of parsing and grouping rules, while custom AST parsing rules at the text level
allow more customization with arbitrary grammar productions, especially with a scannerless parser
as in SugarJ. Local imports of AST grammar extensions are possible through lazy parsing, as
demonstrated in Maya, but languages that allow custom AST parsing rules tend to require those
rules at a coarser granularity, such as at the module level as in SugarJ. AST and SST transformers
can more easily support local and nested extensions.
Rhombus embraces the constraints imposed by an SST representation, motivated by the same

reasoning as for Honu (Rafkind and Flatt 2012), while taking advantage of SST �exibility to enable
local and macro-generating macros. The underlying Racket machinery includes a #langmechanism
to support arbitrary text parsing at the module level, which is how Rhombus is implemented, but our
focus here is on composable language extension using Rhombus’s SST representation. Rhombus’s
parsing framework includes direct support for only pre�x and in�x operators, but an operator can
be bound to a macro that gets control over all subtree terms after the operator, so mix�x forms
are also possible. Such mix�x forms work to the degree that rules for internal delimiters can be
expressed through in�x-operator precedence relations, which is not as general as the longest-match
rule of a parser like Lean’s.
To make the comparison more concrete, here are some examples of extensions that are not

supported by Rhombus:

• Anything that does not conform to shrubbery notation. Every new form must �rst conform
to the grammar of shrubbery notation (section 3.1) before macro bindings are considered.

• A macro m that a�ects the parse of g(c) in the example f(m, b); g(c). The impact of a
macro m is limited for two reasons: parentheses around m, and the fact that f(m, b) is in a
di�erent group than g(c) in the enclosing sequence.

• A mix�x operator such as _ +++ _ --- _ (where _ indicates an argument) independent of
other bindings for +++. That is, an “in�x” +++ binding could choose to recognize ---, but that
parsing has to be built into the sole binding for +++ in a given context. In contrast, indepedent

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 242. Publication date: October 2023.

242:26 Fla� et al.

extension would be possible in many systems that are based on extending a grammar, such
as Fortress or Lean 4.

Directly comparing Rhombus to Honu (Rafkind and Flatt 2012), Rhombus’s enforestation goes
far beyond expressions with support for binding contexts, annotation contexts, and user-de�ned
contexts. Additionally, Rhombus’s pattern and template system for macros is more directly inte-
grated with non-metaprogramming matching, including generalized support for ... repetitions.
Rhombus also adds a built-in system for static information. When it comes to expression enforesta-
tion, Rhombus’s approach is essentially the same as Honu’s, but with a small generalization to
support macro-like in�x operators such as . instead of requiring an in�x operator to have a parsed
expression on the right-hand side.

The goal of Rhombus’s shrubbery notation is similar to the goal of Gel (Falcon and Cook 2009).
Both are meant as a substrate for de�ning languages that use conventional notation, where the sub-
strate itself does not impose a semantics or binding structure on the language. Shrubbery notation is
more constrained; as its authors note, Gel accepts almost any input with balanced grouping symbols
(such as parentheses). Shrubbery notation is more picky about identi�ers, number, operators, and
the delimiters between them, not to mention its newline and indentation requirements. Shrubbery’s
additional grouping structure puts it halfway between Gel and S-expressions and makes it more
convenient for macro patterns and templates.

8.2 Comparing Choices on Expansion and Binding

Another dimension of extension is whether transformations are constrained to pattern-based
rewrites, as in Dylan and older Scheme standards, or implemented by arbitrary functions that run
at expansion time, as in conventional Lisp macros or Template Haskell. Rhombus supports macros
that are implemented by arbitrary functions. These functions can be de�ned in the same module
where they are used, and even within the same binding context where a macro is de�ned; the
module system takes care of phase separation and managing compile-time state (Flatt 2002).

Lisp-style macros have traditionally only supported expansion in expression positions, as opposed
to syntactic positions such as bindings, patterns, term construction, or type declarations. Some
languages make the speci�c case of pattern matching extensible through macros or non-macro
facilities (Wadler 1987; Martin et al. 2006; Syme et al. 2007; Omar and Aldrich 2018). In a su�ciently
capable macro system, authors of new forms can enable extensibility of contexts that appear within
those forms (Ballantyne et al. 2020; Dybvig et al. 1986), including forms for pattern matching (Tobin-
Hochstadt 2011). Rhombus builds on the macro approach, generalizing the approach through spaces
and using it in the base forms so that binding and other positions are pervasively extensible.

Finally, there’s the question of whether macros respect and preserve scope, i.e., whether macros
are hygienic (Kohlbecker et al. 1986; Adams 2015). Rhombus inherits Racket’s support for hygienic
expansion, as well as its hygiene-bending operations and its approach to de�nition contexts that
can contain a mixture of macro de�nitions and uses (which fall outside of existing formal de�ni-
tions of hygiene). Speci�cally, identi�ers in the shrubbery representation are enriched with scope
information that cooperates with parsing and macro expansion, allowing macro transformations to
preserve binding relationships.

8.3 Expressiveness and Practice

Compared to Rhombus, other macro systems also support hygienic macros that are implemented
with arbitrary functions, some allowmacro-introduced de�nition forms, and some others even allow
local macro de�nitions and macro-generating macros. Many other languages also allow operators to
be de�ned with customized precedence and associativity. Rhombus’s speci�c combination of ideas

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 242. Publication date: October 2023.

Rhombus: A New Spin on Macros without All the Parentheses 242:27

is new, however, and intended to provide an especially �uid programming experience, matching the
convenience and expressiveness that have made macros such an e�ective tool in Lisp environments.
Macros are already an important feature of the ecosystem in some non-Lisp languages, such

as Scala, Rust, and Elixir, where libraries often provide macro-based interfaces. Macros in those
languages are still not routinely used to create whole new languages as they are in Racket, however.
Rust (2023) supports simple pattern-matching macros, and it provides a TokenTree-based interfaces
for syntax manipulation at a much lower level, but it does not provide the smoother path that Racket
o�ers to grow simple macros into complex ones. Scala (2023) supports macros as compile-time
functions that receive and manipulate AST trees, and it includes pattern and template facilities for
workingwith quoted code. However, its macros are limited to expression contexts; Racket macros are
commonly used to generate de�nitions and imports, and control over de�nitions is cruicial for imple-
menting new languages throughmacros. Elixir’s support and culture ofmacros is closer in practice to
Racket, re�ected in part by the importance of the macro-based Phoenix (2023) framework for web ap-
plications. Elixir macros can introduce de�nition forms, and the macro system provides a form of hy-
giene. Elixir syntactic extensions manipulate parsed ASTs, which means that they have less control
over parsing at that granularity, and its pattern matching and hygiene support are relatively limited.

We expect that Rhombus macros will preserve the kind of �uidity that Racket o�ers while reduc-
ing the gap between the notations that programmers would prefer to use and the ones that are easily
expressed. Rhombus’s macro system is equipped with enough expressive power to expand all of its
own syntactic constructs down to a few _-calculus-like constructs plus de�nition forms; it is cur-
rently de�ned in terms of Racket’s core forms, but those same forms could just as well be expressed
in Rhombus-native shape using shubbery notation. In short, Rhombus o�ers the �rst macro system
that is uncompromising on both conventional notation and the ability to express its own constructs.

9 CONCLUSION

We have described a combination of ideas that together advance the frontier of macro-extensibility,
especially for languages that do not look like Lisp. The combination not only supports in�x parsing,
but also extensibility for facets of the language such as binding positions and static information. As
evidence that this combination is practical and e�ective, we o�er the Rhombus implementation,
which is available as a Racket package.

Rhombus is still a work in progress, but it is already a rich language, including forms for functions,
classes, interfaces, modules, submodules, local namespaces, loops, list comprehensions, repetitions,
pattern matching, exception handling, and more. This richness is possible because Rhombus is
itself largely implemented as a set of macros—an idea whose value has been recognized since at
least the 1960s, both inside and outside the Lisp community (Hart 1963; Leavenworth 1966). For
layering and bootstrapping, many of the macros are written in Racket notation instead of Rhombus
notation, but still using the Rhombus parsing and enforestation layer in the S-expression encoding.
As a result, the base Rhombus constructs are easy to make extensible at the Rhombus level; the
comprehension form, for example, is macro-extensible to support new iteration clauses as well as
new collection targets. At the same time, the facilities that are used to build the base Rhombus
languages are made available to Rhombus programmers through forms like space.enforest. This
sense of Rhombus being implemented in itself ensures that the language has the same kind of
�exibility and extensibility as a language in the Lisp family.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation. Matthew thanks Ilya Sergey and
National University of Singapore for hosting his sabbatical; much of Rhombus’s implementation
took place in that productive environment. Thanks to Wing Hei Chan for technical corrections.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 242. Publication date: October 2023.

242:28 Fla� et al.

DATA-AVAILABILITY STATEMENT

Example programs and the current implementation of Rhombus at the time of writing are available
as an artifact accompanying this paper (Flatt et al. 2023) as described in section 7.

REFERENCES

Annika Aasa, Kent Petersson, and Dan Synek. Concrete Syntax for Data Objects in Functional Languages. In Proc. Lisp and

Functional Programming, 1988. doi:10.1145/62678.62688
Michael D. Adams. Towards the Essence of Hygiene. In Proc. Principles of Programming Languages, 2015.

doi:10.1145/2775051.2677013
Eric Allen, Ryan Culpepper, Janus Dam Nielsen, Jon Rafkind, and Sukyoung Ryu. Growing a Syntax. In Proc. Foundations of

Object-Oriented Languages, 2009.
Nia Angle. Parendown. 2017. https://github.com/lathe/parendown-for-racket
Arne Babenhauserheide. SRFI-119: Wisp: Simpler Indentation-Sensitive Scheme. 2015. https://sr�.schemers.org/sr�-119/sr�-

119.html
Jonathan Bachrach and Keith Playford. D-Expressions: Lisp Power, Dylan Style. 1999. https://people.csail.mit.edu/jrb/

Projects/dexprs.pdf
Jonathan Bachrach and Keith Playford. The Java Syntactic Extender (JSE). In Proc. Object-Oriented Programming, Systems,

Languages and Applications, 2001. doi:10.1145/504311.504285
Jason Baker and Wilson C. Hsieh. Maya: Multiple-Dispatch Syntax Extension in Java. In Proc. Object-Oriented Programming,

Systems, Languages and Applications, 2002. doi:10.1145/512529.512562
Michael Ballantyne, Alexis King, and Matthias Felleisen. Macros for Domain-Speci�c Languages. In Proc. Object-Oriented

Programming, Systems, Languages and Applications, 2020. doi:10.1145/3428297
Langston Barrett, David Thrane Christiansen, and Samuel Gélineau. Predictable Macros for Hindley-Milner (Extended

Abstract). In Proc. Workshop on Type-Driven Development, 2020.
Eli Barzilay. The Scribble Reader: An Alternative to S-expressions for Textual Content. In Proc. Scheme Workshop, 2009.
Gérard Berry and Georges Gonthier. The Esterel Synchronous Programming Language: Design, Semantics, Implementation.

Science of Computer Programming 19(2), 1992. doi:10.1016/0167-6423(92)90005-V
William J. Bowman, Swaha Miller, Vincent St{-}Amour, and R. Kent Dybvig. Pro�le-Guided Meta-Programming. In Proc.

Programming Language Design and Implementation, 2015. doi:10.1145/2737924.2737990
Eugene Burmako. Uni�cation of Compile-Time and Runtime Metaprogramming in Scala. Ph.D. dissertation, EPFL, 2017.

doi:10.5075/ep�-thesis-7159
Luca Cardelli, Florian Matthes, and Martín Abadi. Extensible Grammars for Language Specialization. In Proc. Workshop on

Database Programming Languages - Object Models and Languages, 1993. doi:10.1007/978-1-4471-3564-7_2
Stephen Chang, Alex Knauth, and Ben Greenman. Type Systems as Macros. In Proc. Principles of Programming Languages,

2017. doi:10.1145/3093333.3009886
William Clinger and Jonathan Rees. Macros that Work. In Proc. Principles of Programming Languages, 1991.

doi:10.1145/99583.99607
Ryan Culpepper and Matthias Felleisen. Fortifying Macros. Journal of Functional Programming 22(4-5), 2012.

doi:10.1017/S0956796812000275
Lukas Diekmann and Laurence Tratt. Eco: A Language Composition Editor. In Proc. Software Language Engineering, 2014.

doi:10.1007/978-3-319-11245-9_5
Tim Disney, Nathan Faubion, David Herman, and Cormac Flanagan. Sweeten Your JavaScript: Hygienic Macros for ES5. In

Proc. Dynamic Languages Symposium, 2014. doi:10.1145/2775052.2661097
R. Kent Dybvig, Daniel P. Friedman, and Christopher T. Haynes. Expansion-Passing Style: Beyond Conventional Macros. In

Proc. Lisp and Functional Programming, 1986. doi:10.1145/319838.319858
R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syntactic Abstraction in Scheme. Lisp and Symbolic Computation 5(4),

1993. doi:10.1007/BF01806308
Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and Klaus Ostermann. SugarJ: Library-Based Syntactic Language Ex-

tensibility. In Proc. Object-Oriented Programming, Systems, Languages and Applications, 2011. doi:10.1145/2076021.2048099
Moritz Eysholdt and Heiko Behrens. Xtext: Implement Your Language Faster than the Quick and Dirty Way. In Proc. 2010,

2010. doi:10.1145/1869542.1869625
Jose Falcon and William R. Cook. Gel: A Generic Extensible Language. In Proc. IFIP TC 2 Working Conference Domain-Speci�c

Languages, 2009. doi:10.1007/978-3-642-03034-5
Marc Feeley. Gambit: Scheme In�x Syntax Extension. 2019. http://www.iro.umontreal.ca/~gambit/doc/gambit.html#Scheme-

in�x-syntax-extension

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 242. Publication date: October 2023.

https://doi.org/10.1145/62678.62688
https://doi.org/10.1145/2775051.2677013
https://github.com/lathe/parendown-for-racket
https://srfi.schemers.org/srfi-119/srfi-119.html
https://srfi.schemers.org/srfi-119/srfi-119.html
https://people.csail.mit.edu/jrb/Projects/dexprs.pdf
https://people.csail.mit.edu/jrb/Projects/dexprs.pdf
https://doi.org/10.1145/504311.504285
https://doi.org/10.1145/512529.512562
https://doi.org/10.1145/3428297
https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1145/2737924.2737990
https://doi.org/10.5075/epfl-thesis-7159
https://doi.org/10.1007/978-1-4471-3564-7_2
https://doi.org/10.1145/3093333.3009886
https://doi.org/10.1145/99583.99607
https://doi.org/10.1017/S0956796812000275
https://doi.org/10.1007/978-3-319-11245-9_5
https://doi.org/10.1145/2775052.2661097
https://doi.org/10.1145/319838.319858
https://doi.org/10.1007/BF01806308
https://doi.org/10.1145/2076021.2048099
https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1007/978-3-642-03034-5
http://www.iro.umontreal.ca/~gambit/doc/gambit.html#Scheme-infix-syntax-extension
http://www.iro.umontreal.ca/~gambit/doc/gambit.html#Scheme-infix-syntax-extension

Rhombus: A New Spin on Macros without All the Parentheses 242:29

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, Eli Barzilay, Jay McCarthy, and Sam Tobin-
Hochstadt. A Programmable Programming Language. Communications of the ACM 61(3), 2018. doi:10.1145/3127323

Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew Flatt, Shriram Krishnamurthi, Paul Steckler, and
Matthias Felleisen. DrScheme: a Programming Environment for Scheme. Journal of Functional Programming 12(2),
2002. doi:10.1017/S0956796801004208

Matthew Flatt. Compilable and Composable Macros: You Want it When? In Proc. International Conference on Functional

Programming, 2002. doi:10.1145/583852.581486
Matthew Flatt. Binding as Sets of Scopes. In Proc. Principles of Programming Languages, 2016. doi:10.1145/2914770.2837620
Matthew Flatt, Taylor Allred, Nia Angle, Stephen De Gabrielle, Robert Bruce Findler, Jack Firth, Kiran Gopinathan, Ben

Greenman, Alex Knauth, Siddhartha Kasivajhula, Jay McCarthy, Sam Phillips, Sorawee Porncharoenwase, Jens Axel
Søgaard, and Sam Tobin-Hochstadt. Artifact for Rhombus: A New Spin on Macros without All the Parentheses. 2023.
doi:10.1145/3580417

Matthew Flatt, Eli Barzilay, and Robert Bruce Findler. Scribble: Closing the Book on Ad Hoc Documentation Tools. In Proc.

International Conference on Functional Programming, 2009. doi:10.1145/1631687.1596569
Matthew Flatt, Ryan Culpepper, Robert Bruce Findler, and David Darais. Macros that Work Together: Compile-Time

Bindings, Partial Expansion, and De�nition Contexts. Journal of Functional Programming 22(2), pp. 181–216, 2012.
doi:10.1017/S0956796812000093

Matthew Flatt, Caner Derici, R. Kent Dybvig, Andrew W. Keep, Gustavo E. Massaccesi, Sarah Spall, Sam Tobin-Hochstadt,
and Jon Zeppieri. Rebuilding Racket on Chez Scheme (Experience Report). In Proc. International Conference on Functional

Programming, 2019. doi:10.1145/3341642
Steven E. Ganz, Amr Sabry, and Walid Taha. Macros as Multi-Stage Computations: Type-Safe, Generative, Binding Macros

in MacroML. In Proc. International Conference on Functional Programming, 2001. doi:10.1145/507635.507646
Timothy P. Hart. MACRO De�nitions for LISP. Massachusetts Institute of technology, AIM-057, 1963.
Inkle. Ink. 2023. https://www.inklestudios.com/ink/
JetBrains. MPS. 2003. https://www.jetbrains.com/mps/
Simon Peyton Jones and Tim Sheard. Template Meta-Programming for Haskell. In Proc. Haskell Workshop, 2002.

doi:10.1145/581690.581691
Lennart C. L. Kats and Eelco Visser. The Spoofax Language Workbench: Rules for Declarative Speci�cation of Languages and

IDEs. In Proc. Object-Oriented Programming, Systems, Languages and Applications, 2010. doi:10.1145/1932682.1869497
Alexis King. The Hackett Programming Language. 2018. https://lexi-lambda.github.io/hackett/
P. Klint, Tijs van der Storm, and Jurgen Vinju. RASCAL: A Domain Speci�c Language for Source Code Analysis and

Manipulation. In Proc. Working Conference on Source Code Analysis and Manipulation, 2009. doi:10.1109/SCAM.2009.28
Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce Duba. Hygienic Macro Expansion. In Proc. Lisp and

Functional Programming, 1986. doi:10.1145/319838.319859
Eugene Kohlbecker and Mitch Wand. Macro-by-Example: Deriving Syntactic Transformations from Their Speci�cations. In

Proc. Principles of Programming Languages, 1987. doi:10.1145/41625.41632
Shriram Krishnamurthi. Programming Languages: Application and Interpretation. 2006.
Shriram Krishnamurthi, Matthias Felleisen, and Bruce F. Duba. From Macros to Reusable Generative Programming. In Proc.

Generative Programming: Concepts and Experiences, 1999. doi:10.1007/3-540-40048-6_9
B. M. Leavenworth. Syntax Macros and Extended Translation. Communications of the ACM 9(11), pp. 790–793, 1966.

doi:10.1145/365876.365879
Odersky, Martin, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth, Stéphane Micheloud, Nikolay Mihaylov,

Michel Schinz, Erik Stenman, andMatthias Zenger. AnOverview of the Scala Programming Language. École Polytechnique
Fédérale de Lausanne, LAMP-REPORT-2006-001, 2006.

John McCarthy. History of LISP. SIGPLAN Notices 31(8), 1978. doi:10.1145/960118.808387
Chris McCord. Metaprogramming Elixir: Write Less Code, Get More Done (and Have Fun!). O’Reilly, 2015.
Egil Möller. SRFI-49: Indentation-Sensitive Syntax. 2003. https://sr�.schemers.org/sr�-49/sr�-49.html
Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: a Proof Assistant for Higher-Order Logic. Springer

Science & Business Media, 2002. doi:10.1007/3-540-45949-9
OCaml. Preprocessors. 2023. https://ocaml.org/docs/metaprogramming
Cyrus Omar and Jonathan Aldrich. Reasonably Programmable Literal Notation. In Proc. International Conference on Functional

Programming, 2018. doi:10.1145/3236801
Cyrus Omar, Darya Kurilova, Ligia Nistor, Benjamin Chung, Alex Potanin, and Jonathan Aldrich. Safely Composable Type-

Speci�c Languages. In Proc. European Conference on Object-Oriented Programming, 2014. doi:10.1007/978-3-662-44202-9_5
Phoenix. Phoenix Framework. 2023. https://www.inklestudios.com/ink/
Vaughan R. Pratt. Top Down Operator Precedence. In Proc. Principles of Programming Languages, 1973.

doi:10.1145/512927.512931

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 242. Publication date: October 2023.

https://doi.org/10.1145/3127323
https://doi.org/10.1017/S0956796801004208
https://doi.org/10.1145/583852.581486
https://doi.org/10.1145/2914770.2837620
https://doi.org/10.1145/3580417
https://doi.org/10.1145/1631687.1596569
https://doi.org/10.1017/S0956796812000093
https://doi.org/10.1145/3341642
https://doi.org/10.1145/507635.507646
https://www.inklestudios.com/ink/
https://www.jetbrains.com/mps/
https://doi.org/10.1145/581690.581691
https://doi.org/10.1145/1932682.1869497
https://lexi-lambda.github.io/hackett/
https://doi.org/10.1109/SCAM.2009.28
https://doi.org/10.1145/319838.319859
https://doi.org/10.1145/41625.41632
https://doi.org/10.1007/3-540-40048-6_9
https://doi.org/10.1145/365876.365879
https://doi.org/10.1145/960118.808387
https://srfi.schemers.org/srfi-49/srfi-49.html
https://doi.org/10.1007/3-540-45949-9
https://ocaml.org/docs/metaprogramming
https://doi.org/10.1145/3236801
https://doi.org/10.1007/978-3-662-44202-9_5
https://www.inklestudios.com/ink/
https://doi.org/10.1145/512927.512931

242:30 Fla� et al.

Jon Rafkind and Matthew Flatt. Honu: Syntactic Extension for Algebraic Notation through Enforestation. In Proc. Generative

Programming: Concepts and Experiences, 2012. doi:10.1145/2371401.2371420
Rust. Macros. 2023. https://doc.rust-lang.org/reference/macros.html
Sukyoung Ryu. Parsing Fortress Syntax. In Proc. Principles and Practice of Programming in Java, 2009.

doi:10.1145/1596655.1596667
Scala. Macros in Scala 3. 2023. https://docs.scala-lang.org/scala3/guides/macros/index.html
Guy L. Steele, Eric Allen, David Chase, Christine Flood, Victor Luchangco, Jan-Willem Maessen, and Sukyoung Ryu. Fortress

(Sun HPCS Language). Encyclopedia of Parallel Computing, 2011. doi:10.1007/978-0-387-09766-4_190
Don Syme, Gregory Neverov, and James Margetson. Extensible Pattern Matching Via a Lightweight Language Extension. In

Proc. International Conference on Functional Programming, 2007. doi:10.1145/1291220.1291159
Walid Taha and Tim Sheard. MetaML and Multi-Stage Programming with Explicit Annotations. Theoretical Computer Science

248(1-2), pp. 211–242, 2000. doi:10.1145/258993.259019
Sam Tobin-Hochstadt. Extensible Pattern Matching in an Extensible Language. 2011. doi:10.48550/arXiv.1106.2578
Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew Flatt, and Matthias Felleisen. Languages as Libraries.

In Proc. Programming Language Design and Implementation, 2011. doi:10.1145/1993316.1993514
Masaru Tomita. An E�cient Context-Free Parsing Algorithm for Natural Languages. In Proc. International Joint Conference

on Arti�cial Intelligence, 1985. doi:10.1145/362007.362035
Sebastian Ullrich and Leonardo de Moura. Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages.

In Proc. International Joint Conference on Automated Reasoning, 2020. doi:10.1007/978-3-030-51054-1_10
Philip Wadler. Views: A Way for Pattern Matching to Cohabit with Data Abstraction. In Proc. Principles of Programming

Languages, 1987. doi:10.1145/41625.41653
David A. Wheeler. Readable Lisp S-expressions Project. 2013. https://readable.sourceforge.io/

Received 2023-04-14; accepted 2023-08-27

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 242. Publication date: October 2023.

https://doi.org/10.1145/2371401.2371420
https://doc.rust-lang.org/reference/macros.html
https://doi.org/10.1145/1596655.1596667
https://docs.scala-lang.org/scala3/guides/macros/index.html
https://doi.org/10.1007/978-0-387-09766-4_190
https://doi.org/10.1145/1291220.1291159
https://doi.org/10.1145/258993.259019
https://doi.org/10.48550/arXiv.1106.2578
https://doi.org/10.1145/1993316.1993514
https://doi.org/10.1145/362007.362035
https://doi.org/10.1007/978-3-030-51054-1_10
https://doi.org/10.1145/41625.41653
https://readable.sourceforge.io/

	Abstract
	1 Introduction
	2 Rhombus Essentials and Examples
	2.1 Definitions
	2.2 Lists and Repetitions
	2.3 Classes
	2.4 Syntax
	2.5 Macros

	3 Rhombus Syntax and Representation
	3.1 Shrubbery Notation
	3.2 Shrubbery Patterns and Templates

	4 Macros and Expansion
	4.1 Defining Macros
	4.2 Expansion and Enforestation Algorithm

	5 Spaces
	5.1 Space Scopes
	5.2 Defining New Spaces

	6 Static Information
	6.1 Binding Protocol
	6.2 Downward and Upward Information
	6.3 From Static Information to Types

	7 Rhombus Programs
	7.1 Video Game Framework
	7.2 Shplait Teaching Language

	8 Related Work
	8.1 Comparing AST and SST Extension
	8.2 Comparing Choices on Expansion and Binding
	8.3 Expressiveness and Practice

	9 Conclusion
	Acknowledgments
	Data-Availability Statement
	References

