322 and the missing pieces of the back-end
Instruction selection is part of the backend
Example of instruction selection

(v1 <- 1) \rightarrow movq $1, %v1

(v1 <- v2) \rightarrow movq %v2, %v1

(v2 <- (mem v1 0)) \rightarrow movq 0(%v1), %v2

From L1 to x64 assembly
Problem of our current instruction selection

(v1 *= 4)

(v2 ← (mem v1 0))

... but x64 has

movq 0($4,%v1), %v2

Instruction selection may depend on the context!
The problem of having multiple choices

(v1 *= 4)
(v2 <- (mem v1 0))
(v3 <- v1)

movq 0($4, %v1), %v2
imulq %v1, 4
movq %v1, %v3
imulq %v1, 4
movq 0(%v1), %v2
movq %v1, %v3
Instruction selection: it isn’t that easy

(v1 *= 5) imulq %v1, $5
(v2 ← (mem v1 0)) movq 0(%v1), %v2

\[\text{movq } 0(\$5, \%v1), \%v2 \]
Instruction selection as tree matching

- In order to take context into account, instruction selectors often use pattern-matching on IR trees
 - Use a tree-based IR
 - Each assembly instruction defines a tile (pattern) that can be used to cover the tree
 - Used tiles (patterns) = selected assembly instructions to generate

\[(v1 \ast= 4)\]
\[(v2 \leftarrow (\text{mem } v1 \ 0))\]
Example: tiles and tiling

- `imulq`:
 - `imulq`, `*=`
 - `VAR`, `CONST`

- `movq`:
 - `move`, `movq`, `VAR`, `VAR`

- Expressions:
 - `(v1 *= 4)`
 - `(v2 <- v1)`
 - `(v2 *= 5)`
Multiple tiles for an assembly instruction

- `imulq`:
 - Multiple types of inputs
 - `movq %%v1, %%v2`
 - `movq 0(%%v1), %%v2`

- `movq`:
 - Multiple tiles for an instruction
 - `move`:
 - `VAR`
 - `mem`
 - `=`
 - `=`
 - `VAR`
 - `=`
 - `VAR`
 - `mem`
 - `=`
 - `VAR`
 - `mem`
 - `=`
 - `VAR`
 - `mem`
 - `=`
 - `VAR`
Tiles and tiling

• Tiles capture compiler’s understanding of instruction set

• In general, for any given tree, many tilings are possible
 • Each resulting in a different instruction sequence

• We can ensure pattern coverage by covering, at a minimum, all atomic IR trees
Problem

• How to pick tiles that cover IR statement tree with minimum execution time?
• Need a good selection of tiles
 • Small tiles to make sure we can tile every tree
 • Large tiles for efficiency
• Usually want to pick large tiles: fewer instructions
• Instructions ≠ cycles: RISC core instructions take 1 cycle, other instructions may take more
Timing model

• Idea: associate cost with each tile (proportional to # cycles to execute)
 • Caveat: cost is fictional on modern architectures
• Estimate of total execution time is sum of costs of all tiles

Total cost: 5
Global vs. local optimal solution

• We want the “lowest cost” tiling
 • Take into account cost/delay of each instruction (i.e., timing model)

• Optimum tiling:
 lowest-cost tiling

• Locally Optimal tiling:
 no two adjacent tiles can be combined into one tile of lower cost
Locally optimal tilings

• A simple greedy algorithm works extremely well in practice: **Maximal munch**

• Choose the largest pattern with lowest cost, i.e., the “maximal munch”

• Algorithm:
 • Start at root
 • Use “biggest” match (in # of nodes)
 • This is the munch
 • Use cost to break ties
 • Recursively apply maximal much at each subtree of this munch
Maximal munch example

(v1 *= 4)
(v2 <- v1)
(v2 += 5)
(v3 <- (mem v1 0))
Example: tiles

- `imulq`:

 ![Tree Diagram]

 - `*=`
 - `mem` ➔ `VAR`
 - `CONST`
 - `Cost:1`

- `movq`:

 ![Tree Diagram]

 - `move`
 - `mem` ➔ `VAR`
 - `CONST`
 - `VAR`
 - `1, 2, 4`
 - `Cost:5`

 ![Tree Diagram]

 - `move`
 - `mem` ➔ `VAR`
 - `CONST`
 - `VAR`
 - `Cost:4`
Example: tiles (2)

- **addq**

 ![Diagram](image)

- **lea**

 ![Diagram](image)
Maximal munch example

Total cost: 7

(v1 *= 4)
(v2 <- v1)
(v2 += 5)
(v3 <- (mem v1 0))

movq 0($4,%v1), %v3
imulq %v1, $4
movq %v1, %v2
addq %v2, 5
Maximal munch

• Maximal munch does not necessarily produce the optimum selection of instructions

• But:
 • it is easy to implement
 • it tends to work “well” for current instruction-set architectures
... but if we want the optimum?
Finding optimum tiling

• **Goal**: find minimum total cost tiling of tree

• **Algorithm**:
 • For every node, find minimum total cost tiling of that node and sub-tree

• **Lemma**:
 • Once minimum cost tiling of all children of a node is known,
 • We can find minimum cost tiling of the node by trying out all possible tiles matching the node

• **Therefore**: start from leaves, work upward to top node
Optimum selection

• To achieve optimum instruction selection: Dynamic programming

• In contrast to maximal munch, the trees are matched bottom-up

• But
 • Significantly more complex to implement
 • More time and memory consuming than maximal munch
Dynamic programming

• First pass: tiling
 • Working bottom up
 • Given the optimum tilings of all subtrees, generate optimum tiling of the current tree
 • Consider all tiles for the root of the current tree
 • Sum cost of best subtree tiles and each tile
 • Choose tile with minimum total cost

• Second pass: code generation
 • Generates the code using the obtained tiles
Dynamic programming example

Total cost: 5

(v1 *= 4)
(v2 <- v1)
(v2 += 5)
(v3 <- (mem v1 0))
Maximal munch example

Total cost: 7

(v1 *= 4)
(v2 <- v1)
(v2 += 5)
(v3 <- (mem v1 0))

movq 0($4,%v1), %v3
imulq %v1, $4
movq %v1, %v2
addq %v2, 5
Value of instruction selection

• The simpler the target ISA is, the less important obtaining the optimum is
 • Reduced Instruction Set Computing (RISC)

• The more complex the target ISA is, the bigger is the gap between the solution found by a simple (e.g., maximal munch) instruction selection and the optimum one (e.g., dynamic programming)
 • Complex Instruction Set Computing (CISC)
Instruction selection complexity

• Finding the optimum for tree: P

• Finding the optimum for DAG: NP
 • Countless number of heuristics proposed

• Most (all) of programs we run are DAGs
Instruction selection is part of the backend
Register allocation after instruction selection

Total cost: 5

(v1 * = 4)
(v2 < v1)
(v2 += 5)
(v3 <- (mem v1 0))
Register allocation after instruction selection

`lea (5+%v1*4), %v2`
`subq %v2, %v1`
`movq 0(%v1), %v3`

A register allocation
- v1 -> rax
- v2 -> rbx
- v3 -> stack O

`lea (5+%rax*4), %rbx`
`subq %rbx, %rax`
`movq 0(%rax), %r10`
`movq %r10, O(%rsp)`
Register allocation after instruction selection (2)

lea (5+%v1*4), %v2
subq %v2, %v1
movq 0(%v1), %v3
movq %v3, %v4

A register allocation
v1 -> rax
v2 -> rbx
v3 -> stack O
v4 -> r8

lea (5+%rax*4), %rbx
subq %rbx, %rax
movq 0(%rax), %r10
movq %r10, O(%rsp)
movq O(%rsp), %r8

Peephole matching

Wait, I thought we found the optimum …
Peephole matching

IR

＞

Instruction selection → Register allocation → Peephole matching

Assembly
Peephole matching

• Basic idea: compiler can discover local improvements locally
 • Look at a small set of adjacent operations
 • Move a “peephole” over code & search for improvement

• Example: store followed by load

\[
\begin{align*}
\text{movq} & \ %r10, \ O(\%rsp) \\
\text{movq} & \ O(\%rsp), \ %r8
\end{align*}
\]

Peephole matching

\[
\begin{align*}
\text{movq} & \ %r10, \ O(\%rsp) \\
\text{Movq} & \ %r10, \ %r8
\end{align*}
\]
Are we happy now with the generated assembly?

Of course NOT!
The problem left

le a (5+%rax*4), %rbx
subq %rbx, %rax
movq 0(%rax), %r10
movq %r10, O(%rsp)
movq %r10, %r8
subq %r9, %r10
movq %r10, 0(%r11)

Is this a better code?
Putting them all together

IR

Instruction selection → Register allocation → Peephole matching → Instruction scheduling

Back-end

Assembly
Thank you!