How to Design Programs

How to (in Racket):

• represent data
 ◦ variants
 ◦ trees and lists

• write functions that process the data

See also

http://www.htdp.org/
Running Example: GUls

Pick a fruit: Apple, Banana, Coconut

Possible programs:

• Can click?
• Find a label
• Read screen
Representing GUIs

- labels
 - a label string

- buttons
 - a label string
 - enabled state

- lists
 - a list of choice strings
 - selected item

(define-type GUI
 [label (text string?)])
[button (text string?)
 (enabled? boolean?)]
[choice (items (listof string?))
 (selected integer?)])
; read-screen : GUI -> list-of-string
(define (read-screen g)
 (type-case GUI g
 [label (t) (list t)]
 [button (t e?) (list t)]
 [choice (i s) i]))

(test (read-screen (label "Hi")))
'("Hi")
(test (read-screen (button "Ok" true)))
'("Ok")
(test (read-screen (choice '("Apple" "Banana") 0)))
'("Apple" "Banana")
Assemblings GUls

- label
- buttons
- lists
- vertical stacking
 - two sub-GUIs
- horizontal stacking
 - two sub-GUIs

(define-type GUI
 [label (text string?)]
 [button (text string?)
 (enabled? boolean?)]
 [choice (items (listof string?)
 (selected integer?)]
 [vertical (top GUI?)
 (bottom GUI?)]
 [horizontal (left GUI?)
 (right GUI?)])
Assemblings GUIs

- label
- buttons
- lists
- vertical stacking
 - two sub-GUIs
- horizontal stacking
 - two sub-GUIs

```
(define guil
  (vertical
    (horizontal
      (label "Pick a fruit:"
        (choice '("Apple" "Banana" "Coconut") 0))
      (horizontal
        (button "Ok" false)
        (button "Cancel" true)))))
```
; read-screen : GUI -> list-of-string
(define (read-screen g)
 (type-case GUI g
 [label (t) (list t)]
 [button (t e?) (list t)]
 [choice (i s) i]
 [vertical (t b) (append (read-screen t)
 (read-screen b))]
 [horizontal (l r) (append (read-screen l)
 (read-screen r))]))

; ... earlier test cases ...
(test guil
 '("Pick a fruit:
 "Apple" "Banana" "Coconut"
 "Ok" "Cancel"))
Function and Data Shapes Match

(define-type GUI
 [label (text string?)]
 [button (text string?)
 (enabled? boolean?)]
 [choice (items (listof string?))
 (selected integer?)]
 [vertical (top GUI?)
 (bottom GUI?)]
 [horizontal (left GUI?)
 (right GUI?)])

(define (read-screen g)
 (type-case GUI g
 [label (t) (list t)]
 [button (t e?) (list t)]
 [choice (i s) i]
 [vertical (t b) (append (read-screen t)
 (read-screen b))]
 [horizontal (l r) (append (read-screen l)
 (read-screen r))])))
Design Steps

• Determine the representation
 ○ define-type

• Write examples
 ○ test

• Create a template for the implementation
 ○ type-case plus natural recursion, check shape!

• Finish implementation case-by-case
 ○ usually the interesting part, but good test cases make it less interesting (i.e., easier!)

• Run tests
Enable Button

The **name** argument is “along for the ride”:

```lisp
; enable-button : GUI string -> GUI
(define (enable-button g name)
  (type-case GUI g
    [label (t) g]
    [button (t e?) (cond
      [(equal? t name) (button t true)]
      [else g])]
    [choice (i s) g]
    [vertical (t b) (vertical (enable-button t name)
      (enable-button b name))]
    [horizontal (l r) (horizontal (enable-button l name)
      (enable-button r name))])
  ...)
(test (enable-button guil "Ok")
  (vertical
    (horizontal (label "Pick a fruit:")
      (choice '("Apple" "Banana" "Coconut") 0))
    (horizontal (button "Ok" true)
      (button "Cancel" true))))
```
Show Depth

\[(\text{test } (\text{show-depth}

\quad 1 \text{ Hello}

\quad 2 \text{ Ok} \quad 2 \text{ Cancel})

\quad \text{Hello}

\quad \text{Ok} \quad \text{Cancel})\)
Show Depth

Template:

```
(define (show-depth g)
  (type-case GUI g
    [label (t) ...]
    [button (t e?) ...]
    [choice (i s) ...]
    [vertical (t b) ... (show-depth t)
     ... (show-depth b) ...]
    [horizontal (l r) ... (show-depth l)
     ... (show-depth r) ...]))
```
Show Depth

Template:

\[
\text{(define (show-depth g)}
\text{(type-case GUI g)}
\text{[label (t) ...]}
\text{[button (t e?) ...]}
\text{[choice (i s) ...]}
\text{[vertical (t b) ... (show-depth t)}
\text{... (show-depth b) ...]}
\text{[horizontal (l r) ... (show-depth l)}
\text{... (show-depth r) ...])})
\]

\[
\text{(show-depth Ok)} \rightarrow 0 \text{ Ok}
\]
Show Depth

Template:

```scheme
(define (show-depth g)
  (type-case GUI g
      [label (t) ...]
      [button (t e?) ...]
      [choice (i s) ...]
      [vertical (t b) ... (show-depth t)
       ... (show-depth b) ...]
      [horizontal (l r) ... (show-depth l)
       ... (show-depth r) ...]))
```

```scheme
(show-depth [Ok Cancel] → ... 0 Ok ... 0 Cancel ...)
```
Show Depth

Template:

```
(define (show-depth g)
  (type-case GUI g
      [label (t) ...]
      [button (t e?) ...]
      [choice (i s) ...]
      [vertical (t b) ... (show-depth t)
          ... (show-depth b) ...]
      [horizontal (l r) ... (show-depth l)
          ... (show-depth r) ...])))
```

recursion results don’t have the right labels...
Show Depth

The \texttt{n} argument is an \textit{accumulator}:

\begin{verbatim}
; show-depth-at : GUI num -> GUI
(define (show-depth-at g n)
 (type-case GUI g
 [label (t) (label (prefix n t))]
 [button (t e?) (button (prefix n t) e?)]
 [choice (i s) g]
 [vertical (t b) (vertical (show-depth-at t (+ n 1))
 (show-depth-at b (+ n 1)))]
 [horizontal (l r) (horizontal (show-depth-at l (+ n 1))
 (show-depth-at r (+ n 1)))]))

; show-depth : GUI -> GUI
(define (show-depth g)
 (show-depth-at g 0))
\end{verbatim}
Programming With Lists

Sometimes you can use map, ormap, for/list, etc.

; has-label? : list-of-string string -> bool
(define (has-label? l s)
 (ormap (lambda (e) (string=? e s)) l))

(test (has-label? empty "Banana") false)
(test (has-label? '("Apple" "Banana") "Banana") true)
Programming With Lists

Sometimes you can use map, ormap, for/list, etc.

; has-label? : list-of-string string -> bool
(define (has-label? l s)
 (ormap (lambda (e) (string=? e s)) l))

(test (has-label? empty "Banana") false)
(test (has-label? '("Apple" "Banana") "Banana")
 true)

Otherwise, the general design process works for programs on lists using the following data definition:

; A list-of-string is either
; - empty
; - (cons string list-of-string)
; A list-of-string is either
; - empty
; - (cons string list-of-string)

; has-label? : list-of-string string -> bool
(define (has-label? l s)
 (cond
 [(empty? l) ...]
 [(cons? l) ... (first l)
 ... (has-label? (rest l) s) ...]))
; A list-of-string is either
; - empty
; - (cons string list-of-string)

; has-label? : list-of-string string -> bool
(define (has-label? l s)
 (cond
 [(empty? l) false]
 [(cons? l) (or (string=?? (first l) s)
 (has-label? (rest l) s))])))