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ABSTRACT 
In designing microstructural materials systems, one of the 

key research questions is how to represent the microstructural 

design space quantitatively using a descriptor set that is 

sufficient yet small enough to be tractable. Existing approaches 

describe complex microstructures either using a small set of 

descriptors that lack sufficient level of details, or using generic 

high order microstructure functions of infinite dimensionality 

without explicit physical meanings. We propose a new machine 

learning-based method for identifying the key microstructure 

descriptors from vast candidates as potential microstructural 

design variables. With a large number of candidate 

microstructure descriptors collected from literature covering a 

wide range of microstructural material systems, a 4-step 

machine learning-based method is developed to eliminate 

redundant microstructure descriptors via image analyses, to 

identify key microstructure descriptors based on structure-

property data, and to determine the microstructure design 

variables. The training criteria of the supervised learning 

process include both microstructure correlation functions and 

material properties. The proposed methodology effectively 

reduces the infinite dimension of the microstructure design 

space to a small set of descriptors without a significant 

information loss. The benefits are demonstrated by an example 

of polymer nanocomposites optimization. We compare designs 

using key microstructure descriptors versus using empirically-

chosen microstructure descriptors to validate the proposed 

method. 

Keywords: material design, machine learning, microstructure 

descriptors, informatics. 

1. INTRODUCTION 
Trial-and-error procedures are the traditional way of 

material design, which has been mostly guided by experiences 

and heuristic rules in materials classification, selection, and 

property predictions. Applying heuristic rules to existing 

materials databases for searching combinations of processing 

procedure or material constituents [1, 2] is time-consuming and 

resource intensive, however, microstructure information is 

often not considered in this process. Constituent-based design 

approach has relied on heuristic search to choose proper 

material compositions from materials databases [3, 4], but this 

approach no longer suffices in designing complex 

microstructural materials systems. To fully explore the potential 

of computational material design and accelerate the 

development of advanced materials, “microstructural-mediated 

design of materials” [5, 6] has gained more attention. With this 

new paradigm, materials are viewed as a complex structural 

system that has design degrees of freedom in choices of 

composition, phases, and microstructure morphologies, which 

can be optimized for achieving superior material properties. In 

particular, the morphology of microstructure (i.e., the spatial 

arrangements of local microstructural features) has a strong 

impact on the overall properties of a materials system. Taking 

polymer nanocomposites as an example, microstructure 

percolation determines the electrical conductivity, and the 

quantity of fillers’ surface area determines the damping 

properties [7]. Furthermore, heterogeneity in microstructure is 

the root cause of material randomness at multiple length scales.  

There are two major categories of methods: correlation 

functions and physical descriptors, for quantifying the 

morphology and heterogeneity of microstructures (also known 

as “statistical characterization”). The microstructure 
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information of heterogeneous materials can be accurately 

captured via N-point correlation functions [8-11]. As a balance 

between computational cost and accuracy, the 2-point 

correlation function (autocorrelation) [12] is widely adopted in 

practice. However, correlation functions lack clear physical 

meanings. It is inconvenient to design an optimal correlation 

functions as they are infinite dimensional [13, 14]. 

Furthermore, correlation function-based microstructure 

reconstructions are either computationally expensive (when 

using the pixel moving optimization algorithm [15]), or lacking 

of stochasticity (when using the phase recovery algorithm [16]). 

With the physical descriptor-based approach, microstructures 

are represented by physically meaningful structural parameters 

(descriptors), such as volume fraction, particle number, and 

particle size. In our recent research [13], we classified 

microstructure descriptors into three categories: composition, 

dispersion, and geometry. The major strengths of physical 

descriptors are the clear physical meanings they offer and 

meaningful mappings to processing parameters [17]. We have 

developed a descriptor-based methodology for characterization 

and reconstruction of polymer nanocomposites [14, 18]. 

However, the descriptors were chosen based on experiences. A 

systematic approach of identifying key microstructure 

descriptors as material design variables is needed.   

Material informatics [19, 20] is a growing area that 

leverages information technology and data science to represent, 

parse, store, manage, and analyze the material data. The goal is 

to share and mine the data for uncovering the essence of 

materials, and accelerate the new material discovery and design 

[21]. Data mining and machine learning techniques have been 

applied to exploit material databases and discover trends and 

mathematical relations for material design. To manage the 

information complexity of using large-dimensional 

representations of microstructures, recent work has attempted 

unsupervised microstructure dimensionality reduction via 

manifold learning [9] and kernel principal components [22]. 

However, dimension reduction of microstructure parameters 

considering the microstructure only does not reflect its impact 

on material properties of interest so that the reduced parameter 

set does not address the direct need of material design. 

Supervised learning [23], a concept in machine learning where 

labeled training data are used to infer a relationship, has been 

employed in establishing the Process-Composition-Property 

relation for metals [1, 2] and predicting polymer composites’ 

properties based on the composition-property database [24-26]. 

However, limited efforts have been made on modeling the 

microstructure-property relation using statistical learning and 

further reducing the high dimensionality of microstructure 

representations obtained from analyzing microscopic images.  

High dimensionality is handled in machine learning by 

feature selection and extraction, to reduce the number of 

variables in a system by either selecting a subset of relevant 

features, or transforming the original high-dimensional feature 

space into a space of fewer dimensions. Both selection and 

extraction can be either supervised or unsupervised. The 

transformation incurred by extraction methods usually refers to 

a linear or nonlinear combination of the original variables, in 

order to construct new features for improved description of 

data. In this regard, extraction methods are not suitable for our 

needs. We rather want to retain the clear physical meanings of 

features (descriptors) so as to use them as design variables. 

Feature selection, on the other hand, chooses a subset of more 

informative features from the original set and well fits our 

scenario. Only looking at the microstructure descriptors forms 

an unsupervised learning process. If the corresponding 

responses (behavior) of microstructures, in our case the 

morphology and properties are also available, supervised 

learning provides more insights in the selection process.  

Existing supervised feature selection methods typically 

involve developing heuristics or measures to evaluate the worth 

of features. Examples of heuristics developed in literature 

include information gain [27], Gini index [28], Chi-square and 

other distance measures. The limitation is that they can only 

handle discrete variables as the supervisory signal, as when the 

desired output is within a set of a small number of known 

labels. However, if the supervisory signal is presented as 

continuous, many feature selection methods fail to work 

properly. In our case, both microstructure correlation functions 

and properties are provided as continuous values, and therefore 

pose challenges for the feature selection procedure. What’s 

more, distance measure based heuristics do not take into 

account the feature interactions and dependencies, for example, 

the surface area of filler phase and that of matrix phase in our 

descriptor group have a high dependency, which cannot 

be appropriately addressed by common distance measures. The 

family of Relief algorithms, beginning with the basic form of 

Relief [29] and being later adapted into RelifF [30] and 

RReliefF, are efficient and effective heuristic measures that 

correctly estimate the quality of features considering their 

capability of differentiating opposite-class training examples. 

The first two in the family are developed for discrete problems. 

RReliefF [31], the algorithm employed in this research, 

accounts particularly for continuous problems. For simplicity 

we refer it as Relief. 

In this paper, we propose a 4-step machine learning 

methodology for identifying the key microstructure descriptors 

as potential material design variables. In Step 1, image analysis 

is applied to gather an initial set of potential microstructure 

descriptors (Section 2), to understand the dependencies among 

the descriptors and the topological constraints of the 

microstructure morphology (Section 3.1). In Step 2, an image 

analysis-based supervised learning further reduces the 

descriptor set by analyzing each descriptor’s influence on the 

microstructure morphologies represented by the correlation 

functions (Section 3.2). In Step 3, material property-based 

supervised learning is employed using data obtained from 

physics-based simulations or from literature for further 

dimension reduction to identify the key set of descriptors 

(design variables) that have the largest impact on properties of 

interest (Section 3.3). In Step 4, microstructure design variables 

are selected from key descriptors (Section 3.4) by maximizing 

the impact score and minimizing the dependency. We 
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demonstrate the strength of the proposed method with the 

design of polymer nanocomposites (Section 4). 

2. TECHNICAL BACKGROUND OF STATISTICAL 
MICROSTRUCTURE REPRESENTATIONS 

In this section, we provide the technical background of 

microstructure characterization with the example of bi-phase 

nanoparticle-reinforced polymer composite. Statistical 

microstructure characterization enables a quantitative 

understanding of the microstructure–property relationship 

through physics-based simulations and the sensitivity of the 

heterogeneity of microstructure morphology with respect to 

their impacts on the prediction of bulk properties. The 

heterogeneity is represented by statistical characteristics, which 

can be further utilized as variables for material design to shape 

the microstructure morphology for achieving target material 

properties. The microstructure reconstruction techniques are 

needed in the prediction of 3D microstructure morphology 

based on 2D information, when three dimensional (3D) 

imaging techniques like the X-ray or micro-tomography are not 

affordable or unavailable [18, 32]. This section introduces the 

technical background of two types of microstructure 

characterization techniques: correlation function-based method 

(Section 2.1) and descriptor-based method (Section 2.2). We 

also summarize a list of commonly used descriptors covering 

composition, dispersion status, and geometry information of the 

inclusions. 

2.1 Correlation function-based microstructure 

characterization 

A wide range of microscopic imaging techniques such as 

scanning electron microscopy (SEM) [7, 33] and transmission 

electron microscopy (TEM) [34] are applicable to obtain the 

digital microstructure images for statistical characterization. In 

the step of image preprocessing, the bi-phase microstructure 

images are denoised and binarized with the volume fraction of 

each phase maintained. In the binary image, pixels in the matrix 

phase are marked by “0” and pixels in the filler phase are 

marked by “1”. Figure 1 illustrates the transformation of the 

grey scale SEM image (left) to a binary image (right), where 

black pixels represent nanoparticle filler and white pixels 

represent polymer matrix. The binary pixelated images are used 

in both correlation function-based and descriptor-based 

characterization. 

 

Figure 1: SEM and binary images of polymer nanocomposites 

In this work, we collect four types of correlation functions 

[35, 36]: 2-point correlation function, (2-point) surface 

correlation function, lineal path function and radial distribution 

function (Figure 2). These four types of correlation functions 

are widely used for an accurate representation of microstructure 

with affordable computational costs.  

The meaning of the 2-point correlation function is the 

probability of finding two points with a given distance 𝑟 in the 

same phase of the random media. Therefore, two-point 

correlation is a function of distance 𝑟. 𝑟 can be any value 

from 0 to infinity. Similarly, we can define other types of 

correlation functions (Figure 2). The surface correlation is 

defined as the probability that finding two points with a 

distance 𝑟 located on the boundary of the filler phase. Surface 

correlations capture the morphology of interphase. The lineal 

path correlation is the probability that an entire line of length 𝑟 

lies in the filler phase. Lineal path correlations describe the 

connectedness of fillers. Radial distribution function is the 

probability of finding fillers on a circle of radius 𝑟 around 

filler cluster centers. These four correlation functions are 

complementary to each other. Different correlation function 

emphasizes on different aspects of microstructure features. We 

assume that high-dimensional microstructure images are fully 

represented by these four correlation functions [37]. 

 
Figure 2: Definitions of different types of correlation functions 

2.2 Descriptor-based microstructure characterization 

A descriptor-based approach is proposed in our prior work 

to represent microstructure morphologies using three levels of 

microstructure features [14]: composition, dispersion, and 

geometry (Figure 3). Composition descriptors distinguish 

different phases and describe their volume/weight percentage in 

the material, such as volume fraction of filler in polymer 

composites. Dispersion status descriptors depict the inclusions’ 

spatial relation and their neighbor status, such as the nearest 

neighbor distance, number of filler clusters [11, 33, 38, 39], etc. 

Geometry descriptors are on the lowest length scale, which 

describe the inclusions’ shapes. Geometry descriptors include 

the inclusions’ size distribution, surface area, surface-to-volume 

fraction, roundness, eccentricity, elongation, rectangularity, 

tortuosity, aspect ratio, etc. [8-10, 33, 39-43]. The descriptor-

based methodology is featured by three strengths: the well-

defined physical meaning of microstructure characteristics, the 

low computational cost in characterization/reconstruction, and 

the low dimensionality of parameterized microstructure 

characteristics that enables parameter-based optimal 

microstructure design. On the largest length scale, composition 

is the lowest order of microstructure information as it only 

captures the homogenized response of an entire material 
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system. One scale down, dispersion is capable to capture 

material properties induced by local features. For example, the 

nearest distance between inclusions and voids in alloy 

determines the fracture behaviors, and the orientation of the 

fibers determines the strength of the fiber composites. On the 

lowest length scale, filler clusters’ geometry features also play 

an important role. For example, the shape of voids in porous 

materials determines the yield point or the critical load in 

microvoid-induced microbuckling. Descriptors are statistical, 

quantified by mean and higher order moments such as variance, 

skewness, kurtosis, etc. With a sufficient descriptor set, high 

orders of microstructure information can be captured [14].  

 
Figure 3: Illustration of three levels of microstructure descriptors: 

composition, dispersion and geometry 

Table 1: Collected microstructure descriptors. Statistical information 

includes 1 to 4th orders of moments: mean, variance, skewness and 

kurtosis 

Descriptor Definition Type 

Composition 

𝑉𝐹 Volume Fraction Deterministic 

Dispersion 

𝑟    Cluster’s nearest surface distance Statistical 

𝑟    Cluster’s nearest center distance Statistical 

𝜃 Principle axis orientation angle [44] Statistical 

𝐼       Surface area of filler phase Deterministic 

𝐼       Surface area of matrix phase Deterministic 

𝑁 Cluster number Deterministic 

𝑉   Local VF of Voronoi cells [40] Statistical 

Geometry 

𝑟  Pore sizes (inscribed circle’s radius) [45]  Statistical 

𝐴 Statistical Statistical 
𝑟  Equivalent radius, 𝑟 = √𝐴/𝜋 Statistical 

𝛿    Compactness [46] Statistical 

𝛿    Roundness [47] Statistical 

𝛿    Eccentricity [47] Statistical 

𝛿    Aspect ratio [34, 42] Statistical 

𝛿    Rectangularity [47] Statistical 

𝛿    Tortuosity [47] Statistical 

In this paper, we collect a large set of descriptors from 

literature as candidates of microstructure design variables. This 

section covers descriptors used in polymer nanocomposites, 

alloy, fiber composites and ceramic composites, etc. In previous 

works, different descriptors are chosen for different materials 

based on expertise. Often times, the descriptors used in a single 

work only capture the microstructure features that are highly 

related to the interested properties, while all the other 

microstructure features are neglected. Therefore, to avoid bias 

in the key descriptor learning, it is necessary to include a wide 

range of descriptors from different types of materials. The full 

candidate descriptor set is referred to as the “full descriptor set” 

in this paper. The collection of descriptor titles and their 

definitions are provided in Table 1. There are 17 descriptors in 

the list, in which each statistical descriptor is represented by 4 

parameters (1 to 4
th

 order moments). In total, the 17 

microstructure descriptors are represented using 56 descriptor 

parameters. 

 

3. MACHINE LEARNING-BASED IDENTIFICATION OF 
KEY DESCRIPTORS 

In the presence of a large number of microstructure 

descriptors, the key research questions is how to represent the 

microstructural design space quantitatively using a descriptor 

set that is sufficient yet small enough to be tractable. A 4-step 

machine learning-based method is proposed to exploit the 

microstructure-property database (Figure 4). The four steps 

include: (1) Elimination of redundant descriptors using 

descriptor-descriptor correlation analysis; (2) Microstructure 

correlation function-based supervised learning for further 

dimension reduction; (3) Property-based supervised learning to 

identify key descriptors; (4) Determination of microstructure 

design variables based on the optimization criteria of 

maximizing the impact score and minimizing the within-group 

correlations of the selected descriptor set. Steps 1 and 2 are 

image analysis-based procedures, which don't require expensive 

Finite Element Analysis (FEA) simulations. These two steps 

will provide a fast reduction of the size of a candidate 

descriptor set. Both steps 1 and 2 involve supervised learning. 

Step 3 needs structure-property data from either high-fidelity 

simulations or from literature. Step 4 is an optimization-based 

descriptor subset selection process. 

 

Figure 4: Framework of machine learning-based microstructure 

descriptor identification  

To build a rich set of data, multiple microstructure images 

are collected for the type of materials of interest. For each 

material sample, one Representative Volume Element (RVE) 

size image or multiple Statistical Volume Element (SVE) size 

images should be collected [48]. For each image, a full set of 

microstructure representations (correlation functions and 
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descriptors) are evaluated using the characterization techniques 

introduced in Section 2.  

3.1 Descriptor-descriptor correlation analysis for 

identifying redundant descriptors 

In Step 1 of the proposed framework, redundant 

descriptors are identified by the pair-wise descriptor-descriptor 

correlation analysis. Some descriptors may be strongly 

correlated due to the pre-existing relations. For example, 

geometry descriptor cluster area A and major radius r of the 

fillers in Microstructure I (Figure 5) follow a strict 

mathematical relation of 𝐴 = 𝜋𝑟2, so these two descriptors A 

and r are interchangeable to each other, therefore one of them 

becomes redundant. However, in Microstructure II (Figure 5) 

there is no clear mathematical relation between 𝐴 and 𝑟, so 

both descriptors are to be kept for designing Microstructure II.  

Since the mathematical relation may not necessarily be 

linear (such as the example given in Figure 6), rank correlation 

is preferred as the measure of descriptor-descriptor correlation 

to the widely-used correlation coefficient, which only measures 

the linear dependence between variables. In statistics, rank 

correlation (Kendall’s τ) measures the degree of similarity 

between two rankings, and is used to assess the significance of 

the two variables’ relation. The formula computing Kendall’s τ 

is shown below. 

     𝜏 =
 −𝑏

 

 
 ( −1)

                      (1) 

where 𝑎  is the number of concordant pairs, and 𝑏  is the 

number of discordant pairs. Any pair of observations (𝑥 , 𝑦 ) 
and (𝑥𝑗 , 𝑦𝑗 ) are said to be concordant if the ranks for both 

elements agree: that is, if both 𝑥  > 𝑥𝑗  and 𝑦  > 𝑦𝑗  or if 

both 𝑥  < 𝑥𝑗 and 𝑦  < 𝑦𝑗. The pair of observations (𝑥 , 𝑦 ) and 

(𝑥𝑗, 𝑦𝑗) are said to be discordant if  𝑥  > 𝑥𝑗 and 𝑦  < 𝑦𝑗 or if 

𝑥  < 𝑥𝑗 and 𝑦  > 𝑦𝑗. They are neither concordant or discordant 

if  𝑥  = 𝑥𝑗 and 𝑦  = 𝑦𝑗. 

 

Figure 5: Illustration of redundant microstructure descriptors. In 

Microstructure I, area A and major radius r can replace each other; In 

Microstructure II, both are needed for a full microstructure 

representation 

The advantage of using rank correlation is demonstrated in 

Figure 6. 𝑥1 and 𝑦1 are defined with a linear relation. Both 

the correlation coefficient and the rank correlation between 𝑥1 

and 𝑦1  are 1, which indicates that there exists a perfectly 

interchangeable relation between the two variables. One of 

them can be eliminated as redundant design variables without 

any information loss. In the case of 𝑥2  and 𝑦2 , they are 

defined by a non-linear relation. Still only one of them is 

needed to be used as the design variable. The value of rank 

correlation is 1, which indicates redundancy in design 

variables; On the other hand, the value of correlation coefficient 

is smaller than 1, because correlation coefficient fails to capture 

non-linear mathematical relations. 

 
Figure 6: Comparison of correlation coefficient and rank correlation. 

In both cases there exists a perfect mathematical relation (monotone 

increasing) between x and y. Rank correlation Kendall’s tau identifies 

both cases, while correlation coefficient only identifies the linear case. 

3.2 Correlation function-based supervised learning  

Step 1 of the proposed framework eliminates a few 

redundant microstructure descriptors based on the descriptor-

descriptor correlations, but it doesn't provide any information 

on the significance of each descriptor to the properties of 

interest. Supervised learning is needed to search the key 

descriptors. However, it is not realistic to directly conduct 

property-based supervised learning on the large set of 

microstructure descriptors. The high dimensionality of 

descriptor set requires a great amount of microstructure 

samples (e.g. 10 times of the number of dimension) in 

structure-property simulations for supervised learning. This 

process may not be affordable due to the high computational 

costs of simulations. For example, a high fidelity damping 

property simulation that explicitly models the microstructures 

of an 80×80×80 voxel size 3D microstructure takes over 80 

hours [49, 50]. Therefore, a simulation-free, image analysis-

based supervised learning step (Step 2) is proposed to further 

reduce the number of candidate descriptors before property-

based supervised learning in Step 3. 

In Step 2, each descriptor’s influence on microstructure 

morphology is evaluated based on their influences on the four 

correlation functions introduced in Section 2.1. For each 

descriptor, four impact scores (on four correlation functions) 

are evaluated using supervised learning algorithm. Their 

average is taken as the descriptor’s final score. Relief [31] is 

employed as the supervised learning algorithm, which takes 

descriptors as input features and the sum of correlation function 

values as the supervisory signal. We take the sum of first 50 

points of correlation functions, which represents the 

homogenized high-strength correlation within a distance of 50 

pixels, 295 nm. 

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Statistical_significance
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Relief uses a statistical method and avoids heuristic search. 

Only statistically relevant features are selected. The key idea of 

the Relief algorithm is to estimate the quality of attributes 

according to how well their values distinguish between 

instances that are near to each other within a local context. 

Figure 7 gives the pseudo code of the basic Relief that handles 

the discrete class case. Given a randomly selected case R (line 

3), two nearest neighbors are searched. They can either be from 

the same class, called hit H, or from the different classes, called 

miss M (line 4). A quality estimation vector W is updated for all 

attributes A (line 5 and 6). The process is repeated for m times, 

where m is a user-defined parameter. 

For categorical attributes, the outcome of the function 

diff(Attribute, Instance1, Instance2) is a binary value, 0 being 

the values of Attribute agree between Instance1 and Instance2 

and 1 otherwise. For continuous attributes, the function 

diff(Attribute, Instance1, Instance2) is defined as: 

diff(A, I1, I2) =
|value(A,I )−value(A,I )|

max(A)−min(A)
           (4) 

The above function calculates the difference between the 

values of Attribute for two instances, where Instance1 is a 

random instance, and Instance2 can be either hit H or miss M. 

 

Figure 7: Pseudo code of the basic Relief algorithm for discrete classes 

To handle regressional cases, instead of the above 

difference functions, a kind of probability is introduced to 

address how much the predicted values of two instances are 

different. This probability can be modelled with the relative 

distance between the predicted (class) values of two instances. 

The output of this algorithm, after going through all instances, 

is the quality estimation vector (impact factors) W that 

represents the estimations of the qualities of each feature.  

Finally, according to the obtained quality estimation vector 

W, features are ranked, and how many are to be selected from 

the ranked list is a decision subject to the user. Relief requires 

linear time in the number of given features and the number of 

instances regardless of the target concept to be learned. 

3.3 Property-based supervised learning 

The end goal of the machine learning framework is to 

identify key microstructure descriptors as design variables to 

optimize for achieving target material properties. In the third 

step of the framework, supervised learning is employed to 

study descriptors’ influences on properties of interest. The 

reduced descriptor set from the first two steps is used as inputs, 

and material properties are taken as the supervisory signal. The 

properties of microstructure samples are either obtained from 

advanced FEA or collected from literature. The Relief 

algorithm is employed again to calculate the score of each 

descriptor on each property of interest. The learning result is 

normalized such that the scores of all microstructure descriptors 

are in the range of [0, 1] and add up to 1. If multiple properties 

are considered in material design, the supervised learning is 

applied on each property for all descriptors, and then the scores 

are added together to determine the final ranking of the 

microstructure descriptors.  

3.4 Determination of microstructure design variables 

A small set of microstructure descriptors are chosen from 

the key descriptors as microstructure design variables. It is not 

realistic to include all key descriptors as design variables 

because the strong descriptor-descriptor correlations may lead 

to unrealistic (infeasible) designs. The microstructure design 

variables should have high contribution to material properties 

(high ranking from machine learning) and high dependency 

(low descriptor-descriptor correlation). A combinatorial search 

is conducted to determine the most proper subset of descriptors 

by formulating the problem as a two-objective heuristic search: 

Given the number of design variables 𝑛, find descriptors 𝑑1, 

𝑑2, …, 𝑑 , s.t.: 

Min: ∑𝐶 𝑗, where 𝑖 = 1, 2, … 𝑛, 𝑗 = 1, 2, … , 𝑛, 𝑖 ≠ 𝑗; 

Max: ∑ 𝑆𝑘
 
𝑘=1  

𝐶 𝑗 is the correlation between any two descriptors. 𝑆𝑘 is 

the k-th descriptor’s contribution to the properties (impact 

score). 

 

4. DESIGN OF POLYMER COMPOSITES USING 
REDUCED DESCRIPTOR SET 

The addition of reinforcing particles to polymer 

nanocomposites’ matrix can lead to significant improvements in 

homogenized mechanical properties even at a very low filler 

concentration [51]. High impact of the quantity and 

morphologies of nanoparticle fillers on damping property 

makes it an interesting design problem for microstructure 

optimization. This section demonstrates how to use the 

proposed method to determine the key microstructure 

descriptors as design variables for carbon black nanoparticle 

filled polymer elastomers. All material samples collected have 

the same type of fillers, but are produced under different 

processing conditions, which directly impact the morphology of 

nanoparticle clusters in the polymer matrix. 56 microstructure 

images are collected on materials produced under 11 different 

processing conditions. The pixel size of the SEM images is 
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1000×1000. The physical size is 5.9×5.9 μm, which can be 

considered as RVE. Sample images are shown in Figure 1 and 

Figure 4, representatively. The microstructure information 

includes 4 types of correlation functions and 17 types of 

microstructure descriptors discussed in previous section (also 

see Appendix). The interested material properties are the 

damping property, which is defined as: 

tan δ(ω) =
G′′(ω)

G′(ω)
  ,               (5) 

where G′′ is the shear loss modulus (GPa), G′ is the shear 

storage modulus (GPa). tan δ, G′, and G′′ are all functions of 

ω, the frequency of excitation (Hz).  

To achieve a long wear life, low rolling resistance, and 

high wet traction of tire materials, it is desired that the 

nanocomposites have a tan  curve with low value in the low 

frequency domain (smaller than 1 × 10−1 Hz), high value in 

the normal (from 1 × 10−1  to 1 × 103  Hz) and high 

frequency domains (larger than 1 × 103 Hz) [14]. Shown in 

Figure 8, we choose three property characteristics as the design 

criteria: value of the first point on tan δ  (L, representing 

damping property in low frequency domain), value of the peak 

on tan δ (P, representing normal frequency domain), and value 

of the last point on tan δ (H, representing high frequency 

domain). L, P and H represent three different desired properties 

of tire material respectively: low L leads to low rolling 

resistance; high P leads to high wet traction; high H leads to 

low wear. The goal is to achieve good performances on all three 

properties simultaneously. Thus, the design problem is 

formulated as a multiobjective optimization problem: 

Find a set of microstructure descriptors, s.t.: Min L; Max P 

(Min -P); Max H (Min -H); 

 

Figure 8: Three design criteria defined by three points on tan  

4.1 Results of correlation-based feature selection 

In Step 1 of the proposed framework (descriptor-descriptor 

correlation analysis), the rank correlation (Kendall’s tau) is 

calculated for each pair of descriptor parameters and written 

into a 56×56 symmetric matrix. The correlation matrix is 

reordered using Cuthill-Mckee algorithm [52], which permutes 

the symmetric correlation matrix to obtain a band matrix form 

with a small bandwidth. The permuted correlation matrix is 

shown in Figure 9. The correlation values are represented by 

colors. Darker color means a higher correlation, and lighter 

color means a lower correlation. Numbers on the X and Y axis 

represent different microstructure descriptor parameters (refer 

to Appendix). Figure 9 indicates several highly intra-correlated 

descriptor groups. Group 1 includes the composition descriptor 

(𝑉𝐹) and five dispersion descriptors (𝑟    and 𝑟   ). Group 2 

incorporates five dispersion descriptors related to the quantity 

of surface area (𝐼      , 𝑁 and 𝑉  ). Group 1 and 2 are inter-

correlated. Group 3 incorporates three geometry descriptors 

(𝛿    and 𝛿   ). Group 3 is independent from the other two 

groups. The intra-correlations exist between descriptor groups 

for two reasons. (1) Microstructure features are correlated 

inherently. For example, given the sample volume of fillers, 

increasing the number of filler cluster 𝑁 will lead to larger 

surface area of the filler phase 𝐼      . Therefore, a high 

correlation (0.8360) can be observed between 𝑁 and 𝐼      . 

(2) Some descriptors describe the same microstructure feature 

in different ways. For example, three highly correlated 

descriptors, cluster number 𝑁, local volume fraction of each 

Voronoi cell 𝑉   , and Surface area 𝐼      , all describe the 

quantity of fillers’ surface area from different perspectives.  

 
Figure 9: The permuted rank correlation matrix. Larger correlations 

are marked by darker colors. White color means the correlation is 0 

(no correlation). The permuted matrix shows several descriptor groups 

of high intra-correlations. The sequential numbers on X, Y axis 

represent different descriptors. Refer to Appendix for the meanings of 

sequential numbers. 

To determine the redundant microstructure descriptors, a 

threshold is set on the correlation matrix to distinguish 

“strongly-correlated” descriptor pairs and “weakly-correlated” 

descriptor pairs. Two different threshold values (0.9 and 0.8) 

are tried to study the threshold’s influence on dimension 

reduction. In the binarized correlation matrix (Figure 10), light 

yellow represents correlation values passing the threshold, and 

dark green represents those failing the threshold. The highly 

correlated descriptors (Table 2) are considered as 

interchangeable, as the result, one of each pair can be 

eliminated to reduce the dimension. With a higher threshold 

(larger than 0.9 or smaller than -0.9), the dimension is reduced 

from 56 to 54. Redundancy exists in one pair of dispersion 

descriptors (Imatrix and Ifiller are the measurements of surface 

area) and one pair of geometry descriptors (A_1 and rc_1 

http://en.wikipedia.org/wiki/Band_matrix
http://en.wikipedia.org/wiki/Bandwidth_(matrix_theory)
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describe the size of each filler cluster). When using a lower 

threshold (larger than 0.8 or smaller than -0.8), the size of the 

candidate descriptor set can be reduced by 15 (redundancy 

exists in 6 pairs of dispersion descriptors and 9 pairs of 

geometry descriptors).  

In addition to dimension reduction, correlation analysis 

among microstructure descriptors leads to other important 

conclusions. Geometry descriptors tend to be independent with 

composition and dispersion descriptors. High correlations exist 

between descriptors of the same category. This observation 

validates our method of classifying all microstructure 

descriptors into three categories [14] according to the different 

levels of details (global versus local).  

     
Figure 10: The binarized correlation matrix. Light yellow means a 

correlation larger than or equal to the threshold; dark green means a 

correlation smaller than the threshold. Two thresholds are tested: 0.9 

and 0.8 

Table 2: The highly correlated descriptors identified with different 

thresholds 

Threshold = 0.9 

𝐼       ↔ 𝐼       Dispersion 

𝐴_1 ↔ 𝑟 _1 Geometry 

Threshold = 0.8 

𝑉𝐹 ↔ 𝑉  _1 Composition, Dispersion 

𝐼       ↔ 𝐼       ↔ 𝑁 Dispersion 

𝜃_2 ↔ 𝜃_4 Dispersion 

𝑟   _3 ↔ 𝑟   _4 Dispersion 

𝑉  _3 ↔ 𝑉  _4 Dispersion 

𝐴_1 ↔ 𝑟 _1 Geometry 

𝐴_4 ↔ 𝐴_3 ↔ 𝑟 _4 Geometry 

𝛿   _3 ↔ 𝛿   _4 Geometry 

𝛿   _1 ↔ 𝑟 _1 Geometry 

𝐴_2 ↔ 𝑟 _2 Geometry 

𝛿   _1 ↔ 𝛿   _1 Geometry 

𝛿   _3 ↔ 𝛿   _4 Geometry 

𝛿   _3 ↔ 𝛿   _4 Geometry 

4.2 Supervised learning of key descriptors 

The results of Step 2 correlation function-based learning 

and Step 3 property-based learning are listed in Table 3. In Step 

2, we calculate the scores of all 56 microstructure descriptors 

based on their influences on correlation functions. The scores 

add up to 1. The size of candidate descriptor set is reduced to 

20, when a threshold of 0.5 is set on the sum of scores of a 

reduced descriptor set. The top 20 descriptors are identified as 

significant descriptors. Next in Step 3, property-based learning, 

is conducted to further evaluate the significant descriptors’ 

impacts on material properties. The final ranking and scores of 

the 20 significant descriptors are listed in the right half of Table 

3. In addition, this study leads to another two important 

observations: 

(1) For the type of materials studied in this paper, the 

composition and dispersion descriptors have strong influences 

on both correlation function and properties. Composition and 

dispersion descriptors are on higher (global) levels than the 

geometry (local) descriptors. The material property of interest 

(damping property) is the averaged response of the bulk 

material, so it is reasonable that the property has higher 

correlations with the high level dispersion descriptors than the 

low level geometry descriptors. 

(2) For this particular type of materials, we observed a high 

similarity between the correlation function-based descriptor 

ranking and the property-based descriptor ranking. The two 

rankings have the same top 5 descriptors, share 9 descriptors 

out of top 10, and share 17 descriptors out of top 20.  

Table 3: Results of Step 2 correlation function-based supervised 

learning, and Step 3 property-based supervised learning. The meanings 

of the symbols are listed in Table 1. The number after each symbol 

indicates the statistical moment of the descriptor (1st: mean; 2nd: 

variance; 3rd: skewness; 4th: kurtosis). Different descriptors from the 

two lists are highlighted with dark background color. 

Rank 
Step 2: Correlation function-based Step 3: Property-based 
Descriptor Category Score Descriptor Category Score 

1 𝐼       Dispersion 0.0362 𝐼       Dispersion 0.0623 

2 𝐼       Dispersion 0.0358 𝐼       Dispersion 0.0623 

3 𝑉𝐹 Composition 0.0348 𝑁 Dispersion 0.0618 

4 𝑉  _1 Dispersion 0.0340 𝑉𝐹 Composition 0.0587 

5 𝑁 Dispersion 0.0335 𝑉  _1 Dispersion 0.0584 

6 𝑉  _2 Dispersion 0.0286 𝐴_1 Geometry 0.0491 

7 𝛿   _1 Geometry 0.0263 𝑉  _2 Dispersion 0.0491 

8 𝐴_1 Geometry 0.0246 𝛿   _1 Geometry 0.0485 

9 𝑟 _1 Geometry 0.0243 𝑟 _1 Geometry 0.0484 

10 𝑉  _3 Dispersion 0.0243 𝜃_2 Dispersion 0.0483 

11 𝑟 _1 Geometry 0.0242 𝑉  _3 Dispersion 0.0479 

12 𝑟   _1 Dispersion 0.0232 𝑟 _1 Geometry 0.0476 

13 𝑟 _2 Geometry 0.0223 𝑟 _2 Geometry 0.0474 

14 𝑟   _2 Dispersion 0.0222 𝑟   _1 Dispersion 0.0461 

15 𝑟   _1 Dispersion 0.0222 𝑟   _2 Dispersion 0.0457 

16 𝜃_2 Dispersion 0.0219 𝜃_4 Dispersion 0.0456 

17 𝛿   _1 Geometry 0.0215 𝑟   _1 Dispersion 0.0438 

18 𝑟 _2 Geometry 0.0213 𝑉  _4 Dispersion 0.0435 

19 𝑉  _4 Dispersion 0.0212 𝑟 _2 Geometry 0.0433 

20 𝜃_4 Dispersion 0.0206 𝛿   _1 Geometry 0.0422 

The benefits in computational efficiency are concluded 

from the perspective of problem dimensionality (number of 

design variables). The size of candidate descriptor set is 

reduced from 56 to 41 after Step 1 (when threshold is 0.8). 

According to our recommendation that the sample number 

should be at least 10 times of the number of design variables, it 

requires 410 microstructure samples (410 high fidelity 

simulations) when property-based machine learning is directly 

applied on the 41 descriptors. On contrary, the correlation 

function-based learning (Step 2) eliminate low-impact 

descriptors. The dimension is further reduced to 20. It means 
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that 210 less samples (210 high fidelity simulations) are 

required for Step 3 property-based supervised learning. 

4.3 Design validation: optimization of polymer 

nanocomposites’ microstructure 

A comparative study of microstructure design is conducted 

to validate the effectiveness of using the machine learning-

identified descriptors as microstructure design variables. In 

Step 4, three microstructure design variables are determined 

(N=3) by maximizing the descriptor set’s impact score and 

minimizing the within-group correlation. The design variable 

set includes one composition descriptor (volume fraction, VF), 

one key dispersion descriptor (number of particle clusters, N), 

and one key geometry descriptor (mean of roundness, δrnd_1). 

These three descriptors have a strong impact on the damping 

properties and are weakly correlated with each other. For the 

purpose of comparative study, we choose another design 

variable set empirically (referred as “empirical descriptor set”), 

with three descriptors (VF, rnsd_1, and δrec_1). These three 

descriptors have low correlations (to guarantee design 

feasibility), but they are not necessarily strongly correlated with 

the properties. The value ranges of the descriptors are listed in 

Table 4. 

Table 4: Two design variable sets. Set 1 is chosen based on the results 

of machine learning; Set 2 is chosen empirically 

Design variable set 1 

(statistical learning) 
Lower bound Upper bound 

VF 0.1 0.3 

N 100 300 

δrnd, mean 1 4 

Design variable set 2 
(empirical) 

Lower bound Upper bound 

VF 0.1 0.3 

rncd, mean 10 40 

δrec, mean π/4 1 

 
Figure 11: Microstructure reconstructions using statistically learned 

descriptor set and empirical descriptor set 

We validate that the statistically learned microstructure 

descriptors can capture microstructure information accurately. 

The descriptor-based microstructure reconstructions are 

compared with the original image (Figure 11). Both 

reconstructions using statistically-learned descriptor set and 

empirical descriptor sets respectively match well with the 

original image in visual comparison and correlation functions. 

The statistically-learned descriptor set is more accurate, as it 

has a smaller Sum of Squared Error in 2-point correlation 

function compared with the reconstruction from empirical 

descriptor set (1.83 × 104 vs. 6.26 × 104). 

Microstructure optimization is conducted using a 

DOE/metamodeling-based optimization strategy. For both 

Descriptor Sets 1 and 2, Design of Experiment (DOE) is 

applied to explore the design space formed by microstructure 

descriptors. Each DOE point represents one microstructure 

design, for which we reconstruct one or multiple statistically 

equivalent microstructures [14]. The properties of 

reconstructions are simulated using FEA. Metamodels, also 

known as surrogate models [53], are created to replace the 

computationally expensive FEA models in optimization. The 

optimal designs are verified by running simulations on the 

reconstructed microstructures. 

We make two sets of comparisons to demonstrate that the 

performances of microstructure designs are improved by using 

key descriptors as microstructure design variables. (1) Single-

objective optimizations. Microstructure descriptors are used as 

design variables in single-objective optimizations to minimize 

L, maximize P and maximize H respectively. We compare the 

single-objective optimal designs using the key descriptor set 

and the optimal designs using the empirical descriptor set in 

Figure 12. Significant improvements in properties are achieved 

by using statistically-learned descriptors as design variables. 

Figure 13 shows two examples of optimal microstructure 

designs, which are obtained using different design variable sets. 

The optimal microstructure design by the key descriptor set is 

more dispersed (have larger surface area) compared with the 

design by the empirical descriptor set. Larger surface area leads 

to a higher value of property H. 

 
Figure 12: Comparison of single-objective optimal designs using key 

descriptors and empirical descriptors 

 
Figure 13: Examples of optimal microstructures (Max H) obtained by 

key descriptor set and empirical descriptor set 
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(2) Multi-objective optimization. Microstructure 

descriptors are used as design variables in multi-objective 

optimizations which minimize L, maximize P and maximize H 

simultaneously. Equal weights are assigned to the three 

normalized objectives. Better designs can be obtained by using 

key descriptors in multi-objective optimization as well (Figure 

14). It is observed that the optimal design using the key 

descriptor set has lower L, roughly the same P and higher H 

compared with the optimal design using empirical descriptor 

set as design variables.  

 

Figure 14: Comparison of multi-objective (Min: L, Max: P, Max: H) 

optimal designs using key descriptors and empirical descriptors. Equal 

weights are assigned to three normalized objectives. 

5. CONCLUSION 
This paper presents a machine learning-based method for 

identifying key microstructure descriptors as microstructure 

design variables. It facilitates low dimensional descriptor-based 

microstructure representations. Starting from a complete set of 

microstructure descriptors collected from literature, we reduce 

the redundant descriptors via descriptor-descriptor correlation 

analysis and correlation function-based supervised learning. 

These two steps are computationally efficient as only image 

analyses are involved. Furthermore, a property-based 

supervised learning is conducted to identify the key descriptors. 

Microstructure design variables are chosen from the key 

descriptors based on their contributions to material properties 

as well as the need for minimizing descriptor dependency. This 

4-step method enables parametric optimization of 

heterogeneous microstructures using a small set of physically 

meaningful descriptors to achieve target properties. We verify 

this method using a case study of designing polymer 

nanocomposites’ microstructures. This proposed method leads 

to better designs compared with designs using descriptors 

chosen randomly or empirically.  

Our research contributes to the computational design of 

microstructural materials system in the following three aspects. 

First, this method provides a rigorous way for material 

scientists to choose microstructure descriptors in analyzing and 

designing new materials. It is demonstrated that optimization 

using key descriptors obtained by machine learning 

significantly improves the performance of microstructure 

designs. The proposed method identifies descriptors that are 

important to both microstructure morphology and properties. 

Second, this method effectively cuts down the computation 

costs by introducing image analysis-based prescreening. The 

prescreening steps reduce the dimension of the candidate 

descriptor set before applying the property-based supervised 

learning. Conducting property-based supervised learning on the 

reduced descriptor set requires less number of samples 

(simulations) than on the full descriptor set. Third, this method 

enables parametric optimization of the microstructure with a 

small set of design variables. State-of-art computational design 

methods (e.g. DOE, metamodeling) are applied to explore the 

microstructural design space to achieve optimal material 

properties. 

In future works, the process-microstructure relation will be 

included into the material design process to cover the whole 

spectrum of material design and to ensure that material 

engineers can fabricate the optimal microstructure. The same 

machine learning approach will be applied to the process-

microstructure database to establish mathematical relations 

between processing parameters and the resultant 

microstructures. 

APPENDIX: DESCRIPTOR PARAMETERS’ SEQUENCE 
NUMBERS IN FIGURE 9 

This table lists the number and name of the descriptors in 

Figure 9. The three intra-correlated descriptor groups are 

highlighted using grey background color. 

The number after each symbol represents the order of the 

moment (1
st
: mean; 2

nd
: variance; 3

rd
: skewness; 4

th
: kurtosis). 

Number 
Descriptor 

Name 
Number 

Descriptor 

Name 
Number 

Descriptor 

Name 

1 A _1 20 rc_1 39 δecc_3 

2 rncd_3 21 r _4 40 δecc_2 

3 rncd_1 22 r _2 41 δcm _4 

4 rnsd_4 23 r _1 42 δcm _2 

5 rnsd_2 24 θ_4 43 δcm _1 

6 rnsd_1 25 θ_3 44 A_4 

7 VF 26 θ_2 45 A_2 

8 δt r_4 27 θ_1 46 rncd_4 

9 δt r_2 28 N 47 rnsd_3 

10 δt r_1 29 V  _4 48 δt r_3 

11 δrnd_4 30 V  _3 49 δrnd_3 

12 δrnd_2 31 V  _2 50 δrec_4 

13 δrnd_1 32 V  _1 51 r _3 

14 δrec_3 33 Imatrix 52 Ifiller 

15 δrec_2 34 δas _4 53 δecc_1 

16 δrec_1 35 δas _3 54 δcm _3 

17 rc_4 36 δas _2 55 A_3 

18 rc_3 37 δas _1 56 rncd_2 

19 rc_2 38 δecc_4   
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