
The Filter Cache: An Energy Efficient Memory Structure

Johnson Kin, Munish Gupta and William H. Mangione-Smith
The Department of Electrical Engineering, UCLA Electrical Engineering

{johnsonk,mupgupta,billms}@icsl.ucla.edu

Abstract
Most modern microprocessors employ one or two

levels of on-chip caches in order to improve
performance. These caches are typically implemented
with static RAM cells and often occupy a large portion
of the chip area. Not surprisingly, these caches often
consume a significant amount of power. In many
applications, such as portable devices, low power is
more important than performance. We propose to trade
performance for power consumption by filtering cache
references through an unusually small L1 cache. An
L2 cache, which is similar in size and structure to a
typical L1 cache, is positioned behind the filter cache
and serves to reduce the performance loss.
Experimental results across a wide range of embedded
applications show that the filter cache results in
improved memory system energy efficiency. For
example, a direct mapped 256-byte filter cache
achieves a 58% power reduction while reducing
performance by 21%, corresponding to a 51%
reduction in the energy-delay product over a
conventional design.

1 Introduction
 In order to mask latency, and thus improve

performance, most microprocessors have one or two
levels of on-chip caches. For simple single-issue
microprocessors, the access time of the first level cache
often is on the critical path [1]. Even though these
caches consist of densely packed MOS transistors, the
area assigned to on-chip caches can be a significant
fraction of the entire IC area. Figure 1 shows a die
photo of the StrongARM processor from DEC, which
is dominated by cache memory. The power dissipated
by the on-chip caches is often a significant part of the
power dissipated by the entire microprocessor. Table 1
compares key characteristics for two modern embedded
RISC microprocessors, the StrongARM 110 [2] and a

PowerPC from IBM [3]. For these chips, the cache
power consumption is either the largest or second
largest power-consuming block. This trend will likely
continue as embedded processors become more
sophisticated and provide higher performance.

Figure 1: Die of DEC StrongARM

Caches clearly present one of the most attractive
targets for power reduction. Power reduction in caches
can be achieved through several means: semiconductor
process improvements, memory cell redesign, voltage
reduction, and optimized cache structures. Our focus
here is on cache structures, which is where architects
can have the largest impact.

The motivation for our research is the increased
application of embedded systems for multimedia and
communication applications. Many techniques have
been discovered which lead to increased performance
as well as reduced power consumption. For example,
improvements in cache organizations for high
performance commercial processors also serve to
reduce traffic on high capacitance buses. This
phenomenon clearly helps to save power although the
primary goal is improving performance. We believe
that low power researchers should be open to
sacrificing some performance for power savings. Our
experience is that, without this perspective, the best
power saving ideas often have been discovered in the
chase for high performance. Many approaches can be
used to reduce power by sacrificing arbitrary amounts
of performance, e.g. avoiding pipelining and fully
associative caches. Furthermore, by introducing an
arbitrary reduction in the clock rate, we can achieve an
arbitrary reduction in the power consumed by CMOS
circuits. Clearly, power alone is not a good design

metric, and must be evaluated along with some concern
for performance. We have decided to adopt the
Energy•Delay metric, which has been used evaluating
CAD tools and circuit designs.

2-4 Clocks
~90% Hit Rate

~5x10E-9 Joules/read

Main Memory

L2 cache
(optional)

Main Memory

L1 cache

CPU CPU

L2 cache
(optional)

L1 cache

Filter
cache

C onve ntional
configuration

Filte r ca che
 configuration

10-30 Clocks
100% Hit Rate

~1.85x10E-8 Joules/read

4-10 Clocks
~95% Hit Rate

~1.75x10E-8 Joules/read

1 Clock
~90% Hit Rate

~5x10E-9 Joules/read

1 Clock
~60-85% Hit Rate

~8x10E-10 Joules/read

Figure 2: Power and performance characteristics of
traditional caches and the filter cache

 We propose the use of a first level cache that is
very small relative to conventional designs. This cache
has reduced power dissipation relative to a traditional
cache architecture, albeit at the expense of a decreased
hit ratio. Our hypothesis is that the decrease in power
consumption will compensate for the loss in
performance, resulting in a reduced Energy•Delay
product. The small L1 cache is called a filter cache in
order to distinguish it from traditional caches that are
designed solely for performance. However, while the
design decisions differ from those of a traditional
cache, the basic structure is the same.

The basic filter cache organization is ill ustrated in
Figure 2, where it is compared to a traditional memory
organization. Power consumption estimates for the
caches are calculated using a power model presented
later in the paper. The power consumption of the main
memory only accounts for the bus capacitance, and
ignores the power consumed in the memory chips. The
L1 cache is li kely to have the same characteristics for
both systems. However, with the new design, the L1
cache is only accessed as a consequence of a miss in
the filter cache, otherwise it is not cycled and remains
in a standby mode. Thus, although the L1 cache has a
similar design in both cases, it will require an
additional clock cycle for access with the filter cache.
Because the filter cache is smaller than the L1 cache, it

will generall y have a faster access time. While this
phenomenon may present an opportunity to increase
the processor clock, it will necessaril y result in an
increase in the latency for access to the L1 cache. We
have not investigated the impact of this option, and
will only be comparing systems with equal clock
frequencies and two-cycle access for the L1 cache
backing the filter cache.

1.1 Overview

We use the following approach to evaluate the
energy dissipation in the cache of an embedded
processor. The cache power is mainly a function of the
capacitance of the memory array and the access
transitions. We determined the actual number of
transitions through a detailed cycle-level simulation.
The capacitance values were obtained from published
results for 0.8um technology. The analysis can be
repeated, with the same resulting trends, using values
from a more modern process if available. These
parameters were applied to an analytical model in
order to determine the power dissipation for the filter
caches and the backing L1 caches.

The remainder of the paper is organized as follows.
The next section presents the previous work that is
relevant to our problem and approach. Section 3
presents the experimental methods used. The workload
used for evaluation is discussed in Section 4. Section 5
presents the experimental results and discusses
effective filter cache design. The paper concludes with
a discussion and summary.

2 Previous Work
The related previous work can be divided into three

major areas: low power processor evaluation, cache
modeling, and low power cache structures.

Gonzalez and Horowitz investigated various
methods for evaluating low power processor designs
[4], and they presented some of the first arguments
concerning power and performance to the architecture
community. Much of this discussion follows the
structure of previous arguments in the CAD
community. Based on this work, we have adopted the
Energy•Delay metric for system evaluation.

Kamble and Ghose [5, 6] have developed an
analytic model for power consumption in various cache
structures. Their model combines memory traff ic,
process features such as capacitance, and architectural
factors including line size, associativity, and capacity.
The process models are based on measurements
reported by DEC for a 0.8um process technology [7].
We use these models and values for power estimation.

Su and Despain evaluated the effectiveness of a
number of low power cache structures. Block (i.e. line)
buffering involves latching the last cache line, while
sub-banking involves only powering portions of the L1
cache [8]. Ko and Balsara have investigated a similar
technique that they call Multiple-Divided Modules
(MDM) [9]. These approaches are conceptually
similar to the filter cache. Block buffering can be
viewed as a degenerate case of the filter cache and our
results indicated that a significant benefit could be
realized by larger structures. Compared to MDM, the
filter cache results in better Energy•Delay results
because of improved performance. Furthermore, the
filter cache can be turned off when higher performance
is needed, which is not possible with MDM.

3 Experimental Methods
The base machine model used here is an embedded

processor executing the HPPA instruction set. The
system is designed to be roughly comparable to the
DEC StrongARM 110 in terms of system resources
[10]: 16 KB instruction and data caches, single issue
processor core, no aggressive branch prediction, no L2
cache. Applications were compiled and executed using
the IMPACT toolset [11]. This approach allows us to
experiment with various cache structures and generate
accurate clock cycle counts for execution time. These
counts are used directly for Delay in the Energy•Delay
measures. The Energy, Delay, and Energy•Delay
measures were determined for the base processor
executing each application in the experimental
workload, and subsequently used to evaluate alternate
filter cache designs.

The cache power models are based on the work by
Kamble and Ghose [6] for a 0.8um cache implemented
in the CMOS technology. We have assumed a supply
voltage of 3.3 Volts. The cache energy is a function of
the number of transitions on cache components (bit-
lines, word-lines, memory cell s and decoders) along
with the capacitance of each component. The IMPACT
Lsim processor simulator produces application-
dependent cache performance statistics. This data is
used in the following models to determine transitions
within the various cache components.

The power consumption model is developed in
Equations 1-3. The terms Nhit and Nmiss represent the
raw number of hits and misses to the first level cache.
The term Naddr counts the average number of address
line transitions seen by the first level cache from the
CPU, assuming that half of the address lines switch
during each memory request. T represents the number
of tag bits, while C is the number of control bits stored

with each cache line. M is the degree of associativity,
and L is the line size measured in bytes. Using these
characteristics of the cache organization, it is easy to
count the number of precharged bit transitions that will
occur, which is designated Nbp. Using W for the
average number of bits that switch on each write
operation, the total number of bit reads (Nbr) and the
total number of bit writes (Nbw) can be calculated. A
value of 19 is used for W in the studies below. The last
three terms in Equation 1 account for the address and
data traff ic seen on the far side of the cache, as a result
of misses. The capacitance values were obtained by
substituting the technology and layout specific
parameters (Cdrain,Q1, Cbitwire, Cdrain,Qp, Cdrain,Qpa,
Cgate,Q1, Cwordwire, Cmemaddr, Ccpuaddr, Cmemdata, Ccpudata,
Cdecode, Cawire) [7] into Equation 2.

By combining the capacitance values with the raw
transition counts, we can determine the energy
consumed by each component of the cache (Equation
3). Using these equations, it is possible to calculate the
energy consumed in a single read to a 16-KB direct
mapped instruction cache with a 32-byte line. The
values of Cbp, Cba, and Cword are 7E-13F, 8.6E-13F,
and 2E-13F respectively. Consequently, Ebit is 2.56E-
9J, Eword is 2.45E-12J, Eoutput is 3.74E-10J and Eainput is
2.57E-15J, for a total energy of 2.93E-9J.

4 Benchmarks
There currently exists a significant void with

regards to effective benchmarks for embedded systems.
While a number of industrial and academic efforts
have been proposed, to date there has been littl e
progress towards a suite of representative programs
and workloads. One part of the problem is that the field
of embedded systems covers a wide range of computing
systems. It is diff icult to imagine a benchmark suite
that would be useful to the designers of fax machines
and cellular phones, because of the drasticall y different
uses for these products. This unfortunate state of affairs
is best reflected by the use of the Dhrystones
benchmark, and the derivative metric Dhrystones per
milli -Watt. For the purposes of this paper we have
adopted the MediaBench benchmark suite [12]. These
benchmarks encompass most of the media applications
in use today. Table 2 summarizes the codes, provides a
brief description of them, and indicates the number of
instructions simulated for each.

5 Experimental Results
For our base case, we have assumed a one level

cache hierarchy with split Instruction and Data caches,
each with a capacity of 16 KB. These are direct

mapped caches with a line size of 32 bytes each. The
filter cache machines have a two level cache hierarchy
consisting of instruction and data filter caches and a
unified direct mapped 32 KB L1 cache. The L1 used
in conjunction with the filter cache has the same size
as the combined L1 caches for the base machine. We
considered two small filter cache sizes: 128 and 256
bytes. The line size was varied between 8 and 32
bytes, and both direct mapped and full y associative
caches were considered. The instruction and data filter
caches were simulated with the same configuration in
order to reduce the number of design points to be
evaluated. The hardware cost of these structures is
small relative to the base case L1 cache.

0.0

0.5

1.0

1.5

2.0

Benchmarks

256/16_F 128/16_F 128/16_D 256/16_D

Figure 3 : Energy efficiency vs. size and
associativity

The results for each filter cache design are
presented relative to the base machine. Power
consumption for the MediaBench applications is shown
in Table 3 for the 128 byte filter caches and Table 4 for
the 256-byte configurations. Figure 3 summarizes the
most important aspects. Each line is identified by its
cache size, line size and degree of associativity; for
example a 128 byte full y associative filter cache with
16 byte lines is identified as 128/16_F. First,
associativity tends to have a strong impact on power
consumption. For example, the 128 byte full y
associative cache with 16byte lines consumes almost as
much power as the split 16K byte direct mapped caches
used for the base case. Associativity increases the
amount of data and control information read out of
cache arrays, thus consuming more power. The
variation between the 128 byte and 256 byte full y
associative caches is due to the fixed line sizes. The
256 byte full y associative cache has twice as many
lines as the 128 byte filter cache, thus consuming
approximately twice as much power. The improved hit
rate does not full y compensate for the increased energy
per reference.

Secondly, the power consumption for the 128 byte
and 256 byte direct mapped caches is reasonably
similar. These caches have similar hit rates; thus they
have approximately equal effectiveness at filtering out
memory references.

Finall y, for the direct mapped cases, increased line
size tends to increase power consumption. Again, for
these caches, we tend to see hit rates that are fairly
close. However, each reference to a 32-byte direct
mapped line reads out four times as much data as the
8-byte case, thus discharging four times as many bit-
lines.

The performance impact of the filter cache is
shown in Table 5 for the 128 byte caches and Table 6
for the 256-byte caches. Somewhat surprisingly,
increased associativity often reduces performance for
these applications by a small amount. This
phenomenon appears to be the result of the
combination of uncommonly small caches and the
corresponding small number of cached lines, as the
impact is generall y less for the larger cache size. For
the caches considered here the line sizes are still small
enough that the system sees a significant benefit from
the effect of instruction prefetch. Figure 4 ill ustrates
this point for the 256-byte direct mapped filter caches.
While the delay is always greater than the base case
(i.e. the performance is lower) the longer line sizes
have reduced performance loss and exhibit
significantly less variabilit y. Although the shortest
line size approaches the performance of the longer
lines for several applications, in general, it appears to
be a poor choice for performance.

The resultant Energy•Delay measures are shown in
Table 7 and Table 8 for the 128 byte and 256 byte
cases respectively. We will first consider the impact of
full associativity. Full associativity performs worse
than the base case for all but three instances. These
particular points correspond to the smallest cache size
and the largest line size; thus they have the smallest
amount of associativity. For these cases (epic,
pgpdecode, and pgpencode) the Energy•Delay
improvement is still very small relative to the base
case. Due to these results, we will no longer consider
the full y associative caches.

1.0

1.2

1.4

1.6

1.8

2.0

Benchmarks

256/8_D

256/16_D

256/32_D

Figure 4: Performance ratio vs. line size

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Benchmarks

128/16_D

256/16_D

Figure 5: Energy•Delay vs. fil ter cache size

Figure 5 summarizes the Energy•Delay for the
direct mapped caches with 16 byte lines. For many
cases, the benefits of the larger cache are relatively
small , and on average the 256-byte filter cache has
only a 16% benefit. However, the overall effect in
reduced Energy•Delay is much flatter for the larger
cache, suggesting that the additional size is li kely to be
worth the investment.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Benchmarks

256/8_D
256/16_D
256/32_D

Figure 6: Energy delay product ratio vs. line size

Having selected the 256-byte direct mapped filter
caches for closer examination, Figure 6 highlights the
impact of varying the line size. The conclusions are

less clear here, because the confli cting factors that
drive Energy•Delay result in no consistent design
advice. As the line size gets longer, the delay tends to
decrease while the power consumption tends to
increase. Based on the mean Energy•Delay, one would
conclude that the 16-byte line size is the best choice.
This seems natural, as it is a balance between the
competing pull s of energy and delay. Additionally,
this line size has the least variance across
Energy•Delay, and thus provides the most consistent
benefits.

6 Discussion
Several topics remain to discuss which do not

neatly fall i nto any section of this report. While this
work introduces the filter cache and establi shes its
effectiveness, there remains a significant amount of
further work required to better analyze and quantify the
design space. In particular, we are moving forward
with further simulation to explore the effectiveness of a
small degree of associativity. A sound analytic model
is also needed to capture the basic physical phenomena
and allow rapid exploration of the design space without
exhaustive simulation.

The filter cache design presented here uses a
backing cache that has an access time that is typical of
existing embedded L1 caches. Clearly two design
opportunities exist: the backing cache can stay with a
single cycle access, or it can require multiple cycle
access while the processor clock is increased to match
the shorter access time of the filter cache. It is
interesting to imagine a design that left the backing
cache with a single cycle access. The filter cache can
then be turned off, moving the backing cache back to
the L1 position with single cycle access time. By
controlli ng the filter cache with a processor mode bit,
the system can switch between high-speed operation
and low Energy•Delay operation as system demands
vary.

7 Conclusions
In spite of the increased commercial interest in

sophisticated embedded processors, very littl e work has
been conducted to improve the Energy•Delay
performance of embedded processor systems through
architecture. This paper develops and evaluates the
filter cache, a small memory that trades performance
for reduced power in order to optimize Energy•Delay.
The filter cache has been shown to provide an average
Energy•Delay reduction of 51% across a set of 19
multimedia and communications applications. In

particular, simple direct mapped caches with moderate
line sizes appear to be extremely good design points.

Acknowledgements: This work was supported by
DARPA under contract F04701-97-C-0010. The
authors also greatly appreciate the assistance of
Professor W. M. Hwu’s IMPACT team at UIUC.

References
[1] D. A. Patterson and J. L. Hennessy, “Large and

Fast: Exploiting Memory Hierarchy,” in Computer
Organization & Design The Hardware/Software
Interface: Morgan Kaufmann, 1994.

[2] J. Montanaro and e. al., “A 160MHz 32b 0.5W
CMOS RISC Microprocessor,” Proc. of
International Solid-State Circuits Conference,
1996.

[3] R. Bechade and e. al., “A 32b 66MHz 1.8W
microprocessor,” Proc. of International Solid-State
Circuits Conference, 1994.

[4] R. Gonzalez and M. Horowitz, “Energy
Dissipation in General Purpose Microprocessors,”
IEEE Journal of Solid State Circuits, vol. 31, pp.
1277-1284, 1996.

[5] M. B. Kamble and K. Ghose, “Energy-Eff iciency
of VLSI Caches: A Comparative Study,” Proc. of
International Conference on VLSI Design, 1997.

[6] M. B. Kamble and K. Ghose, “Analytical Energy
Dissipation Models for Low Power Caches,” Proc.
of International Symposium on Low-Power
Electronics and Design, 1997.

[7] S. E. Wilton and N. Jouppi, “An Enhanced Access
and Cycle Time Model for On-Chip Caches,” DEC
WRL, Research Report 93/5, 1994.

[8] C. Su and A. Despain, “Cache Design Tradeoffs
for Power and Performance Optimization: A Case
Study,” Proc. of International Symposium on Low
Power Design, 1995.

[9] U. Ko, P. T. Balsara, and A. K. Nanda, “Energy
Optimization of Multi -Level Processor Cache
Architectures,” Proc. of International Symposium
on Low Power Design, 1995.

[10] J. Turley, “ARM Grabs Embedded Speed Lead,”
in Microprocessor Report, vol. 10, 1996.

[11] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J.
Warter, and W.-m. W. Hwu, “ IMPACT: An
Architectural Framework for Multiple-Instruction-
Issue Processors,” Proc. of International
Symposium on Computer Architecture, 1991.

[12] C. Lee, M. Potkonjak, and W. H. Mangione-
Smith, “MediaBench: A Tool for Evaluating
Multimedia and Communications Systems,” Proc.
of Micro 30, 1997.

()
() ()
() ()

() ()
()

()
() ()

() ()cache L1 N + N *9.5 =

onwards cache L2 N + N* L*4 = N

W* N + N *0.5 = N

N + N+ N*16 = N

 W+ C* N + M*L*8 + C + M*T*N N

M*L*8 + C + M*T *N N N

 M*L*8 + C + M*T* N N = N

N N *16 = N

readhitreadmiss

readhitreadmiss2cpudata

writehitwritemissmemdata

writehitwritemissreadmissmemaddr

writehitreadmiss bw

misshit br

misshit bp

misshitAddr

=
+=

+
+

Equations 1

()
()

()wordwire Q1gate,columnsword

Qpadrain, Qpdrain,bitwireQ1drain,rowsba

bitwireQ1drain,rowsbp

C C *2 *N C

CCCC* 0.5* N C

CC *0.5 *N C

+=

+++=

+=

Equations 2

(()
()
()

()[]
 E + E E + E = E

C + C S 2 1+m*N*V*0.5 = E

E + E = E

C*NC*N*V*0.5 = E

C*NC*N*V*0.5 = E

C C* 2*M*C)+T+ L*8 *)N(N* V =E

C* N C*N

)C C (C*C) T L*(8*)N(N*M C* N
V 5.0E

ainput output wordbit cache

awiredecin,addr

2

ddainput

dataaddroutput

cpudata cpudatamemdata memdata

2

dddata

cpuaddrcpuaddr memaddrmemaddr

2

ddaddr

word Q1gate,misshit

2

dd word

babrba bw

Qpgate,Qpbgate,Qpagate,misshitbpbp 2
ddbit

+

+

+

++







+

+++++++
=

Equations 3

Processor Cache Cache Power CPU Power Other Process Clock Speed Die size
PowerPC 16KB unified

4-way
.4W .29W 1.08W 0.8um 66 MHz 9x7.7 mm

StrongARM 110 16 KB split
I/D, 32-way

0.215W 0.04W 0.245W 0.35um 162MHz 7.8x6.4mm

Table 1: Comparison of two modern embedded processor

APPLICATION DESCRIPTION Instruction Count
cjpeg Image compression using DCT algorithm. 13,603,279
Decode Voice decompression using the G.721 standard. 283,515,107
Djpeg Image decompression using DCT algorithm. 4,242,741
Encode Voice compression using the G.721 standard. 287,610,167
Epic Data compression using wavelet decomposition and Huffman coding. 40,476,502
Gs Interpreter for the Adobe PostScript language level 1 and 2. 102,608,385
Gsmdecode Audio and speech decoding for the GSM standard. 88,339,462
Gsmencode Audio and speech encoding for the GSM standard. 197,619,750
Mipmap Texture Mapping using MESA 3-D graphics library. 27,174,530
mpeg2dec Decoding in the standard MPEG digital compressed format. 130,126,836
mpeg2enc Encoding in the standard MPEG digital compressed format. 1,063,842,098
Osdemo Draws simple polygons with Z-Buffering. 7,345,397
Pgpdecode PGP decoding exercising RSA, IDEA and MD5. 532,291,763
Pgpencode Data encryption and signing using RSA, IDEA and MD5. 547,549,398
Rasta Speech recognition. 8,238,012
Rawcaudio Speech compression using the ADPCM algorithms. 7,213,464
Rawdaudio Speech decompression using the ADPCM algorithms. 7,084,321
Texgen Draws Texture Mapped Teapot using MESA 3-D graphics library. 70,462,746
Unepic Epic decoding wavelets and Huffman coding. 6,952,632

Table 2: MediaBench application descriptions

128bytes
Direct Mapped Fully AssociativeApplications

8B 16B 32B 8B 16B 32B
cjpeg 0.3847 0.3930 0.4622 1.1264 0.9643 0.8945
decode 0.2688 0.3098 0.3849 1.0294 0.8778 0.8156
djpeg 0.4154 0.4579 0.5429 1.1403 1.0556 0.9876
encode 0.2755 0.3021 0.3689 1.0324 0.8710 0.8164
epic 0.2946 0.3218 0.4049 1.0608 0.8885 0.8136
gs 0.3648 0.3991 0.4670 1.1246 0.9578 0.8858
gsmdecode 0.2314 0.2552 0.3184 1.0050 0.8412 0.7641
gsmencode 0.4415 0.4632 0.5393 1.2014 1.0398 0.9753
mipmap 0.4370 0.4752 0.5586 1.2203 1.0293 0.9517
mpeg2dec 0.4144 0.4564 0.5403 1.1840 1.0298 0.9685
mpeg2enc 0.2863 0.3237 0.4239 1.0357 0.8733 0.7945
osdemo 0.3085 0.3221 0.3850 1.0767 0.9026 0.8337
pgpdecode 0.2473 0.2813 0.3687 1.0203 0.8435 0.7590
pgpencode 0.2473 0.2859 0.3760 1.0223 0.8448 0.7643
rasta 0.4414 0.4383 0.5066 1.1850 0.9719 0.8864
rawcaudio 0.2464 0.2776 0.3601 1.0093 0.8424 0.7693
rawdaudio 0.2510 0.2848 0.3658 1.0139 0.8525 0.7821
texgen 0.4379 0.4497 0.5174 1.1964 1.0064 0.9436
unepic 0.4018 0.4115 0.4776 1.1261 0.9412 0.8723
Mean 0.3366 0.3636 0.4405 1.0953 0.9281 0.8567

Table 3 Energy for 128-byte filter caches relative to base machine

256bytes
Direct Mapped Fully AssociativeApplications

8B 16B 32B 8B 16B 32B
cjpeg 0.3631 0.3708 0.4355 2.1506 1.6865 1.5055
decode 0.2535 0.2845 0.3527 2.0346 1.6156 1.4212
djpeg 0.4064 0.4348 0.5075 2.1727 1.7194 1.5948
encode 0.2533 0.2830 0.3481 2.0517 1.6221 1.4208
epic 0.2863 0.3124 0.3839 2.0517 1.6416 1.4457
gs 0.3500 0.3839 0.4511 2.1403 1.6980 1.5050
gsmdecode 0.2198 0.2469 0.3102 2.0294 1.5907 1.3913
gsmencode 0.4345 0.4532 0.5263 2.2317 1.7803 1.6001
mipmap 0.3947 0.4447 0.5237 2.1387 1.7745 1.5968
mpeg2dec 0.4162 0.4511 0.5289 2.1809 1.7693 1.5986
mpeg2enc 0.2728 0.3041 0.3865 2.0592 1.6237 1.4267
osdemo 0.3063 0.3167 0.3770 2.1157 1.6564 1.4519
pgpdecode 0.2477 0.2794 0.3644 2.0196 1.5762 1.3911
pgpencode 0.2498 0.2799 0.3622 2.0269 1.5825 1.3956
rasta 0.4269 0.4101 0.4630 2.2095 1.7180 1.4932
rawcaudio 0.2316 0.2604 0.3368 2.0218 1.5878 1.3978
rawdaudio 0.2343 0.2669 0.3396 2.0285 1.5944 1.4054
texgen 0.4153 0.4154 0.4884 2.1908 1.7259 1.5347
unepic 0.4037 0.4049 0.4617 2.1658 1.6989 1.4864
Mean 0.3245 0.3475 0.4183 2.1063 1.6664 1.4770

Table 4 Energy for 256-byte filter caches relative to base machineassociativity

128bytes
Direct Mapped Fully AssociativeApplications

8B 16B 32B 8B 16B 32B
cjpeg 1.8892 1.5706 1.4305 1.8511 1.5313 1.3891
decode 1.9346 1.5533 1.3697 1.9195 1.5348 1.3630
djpeg 2.0294 1.6573 1.4901 1.9936 1.6951 1.4905
encode 1.9689 1.5487 1.3751 1.9535 1.5473 1.3875
epic 1.1771 1.1614 1.1811 1.1820 1.1397 1.1352
gs 2.0095 1.6131 1.3957 2.0955 1.6235 1.3789
gsmdecode 2.0956 1.5658 1.3124 2.2942 1.6643 1.3544
gsmencode 2.1673 1.7063 1.4819 2.2905 1.7511 1.4831
mipmap 1.7432 1.3939 1.2395 1.7443 1.3640 1.1923
mpeg2dec 1.3402 1.3039 1.3044 1.4614 1.3472 1.2993
mpeg2enc 2.0420 1.6740 1.5454 2.0177 1.6019 1.3745
osdemo 1.5195 1.3101 1.1868 1.6615 1.3618 1.2041
pgpdecode 1.2337 1.2224 1.2102 1.2469 1.3134 1.1852
pgpencode 1.2093 1.2405 1.2301 1.2318 1.1958 1.1842
rasta 1.5640 1.3530 1.2803 1.5608 1.3173 1.2136
rawcaudio 2.2365 1.7859 1.5609 2.5169 1.8460 1.5266
rawdaudio 2.2694 1.8282 1.6590 2.5300 1.8511 1.5051
texgen 1.8624 1.4872 1.2927 1.9230 1.4925 1.2873
unepic 1.2503 1.1864 1.1655 1.2807 1.1763 1.1495
Mean 1.7654 1.4822 1.3532 1.8292 1.4923 1.3212

Table 5 Performance for 128-byte filter caches relative to base machine

256bytes
Direct Mapped Fully AssociativeApplications

8B 16B 32B 8B 16B 32B
cjpeg 1.6303 1.3888 1.2845 1.6145 1.3524 1.2600
decode 1.6719 1.4029 1.2703 1.8569 1.4819 1.2874
djpeg 1.9136 1.5590 1.3940 1.8366 1.4463 1.3948
encode 1.7043 1.4142 1.2827 1.8881 1.4876 1.2969
epic 1.1393 1.1284 1.1360 1.0726 1.1079 1.1097
gs 1.7708 1.4683 1.2953 1.7123 1.3968 1.2453
gsmdecode 1.0742 1.0458 1.0327 1.2129 1.1168 1.0631
gsmencode 1.8082 1.4995 1.3488 1.7939 1.4952 1.3646
mipmap 1.6104 1.3261 1.2057 1.6273 1.3307 1.1884
mpeg2dec 1.2846 1.2533 1.2501 1.2086 1.2460 1.2271
mpeg2enc 1.7416 1.4820 1.3851 1.9324 1.5180 1.3082
osdemo 1.2742 1.1580 1.0985 1.3149 1.1687 1.1047
pgpdecode 1.1765 1.1280 1.1266 1.1472 1.0824 1.0653
pgpencode 1.1846 1.1335 1.1335 1.1400 1.0899 1.0760
rasta 1.4322 1.2527 1.1798 1.4200 1.2225 1.1242
rawcaudio 1.3163 1.1906 1.2211 1.1772 1.2672 1.3882
rawdaudio 1.1148 1.0987 1.1013 1.0066 1.0060 1.2066
texgen 1.7443 1.3888 1.2197 1.7089 1.3490 1.1950
unepic 1.1351 1.1002 1.0914 1.0982 1.0624 1.0438
Mean 1.4593 1.2852 1.2135 1.4615 1.2751 1.2079

Table 6 Performance for 256-byte filter caches relative to base machine

128bytes
Direct Mapped Fully AssociativeApplications

8B 16B 32B 8B 16B 32B
cjpeg 0.7269 0.6173 0.6611 2.0851 1.4766 1.2425
decode 0.5201 0.4812 0.5272 1.9759 1.3472 1.1117
djpeg 0.8430 0.7589 0.8089 2.2733 1.7894 1.4720
encode 0.5425 0.4679 0.5072 2.0168 1.3477 1.1328
epic 0.3468 0.3737 0.4783 1.2539 1.0127 0.9236
gs 0.7330 0.6438 0.6518 2.3566 1.5550 1.2214
gsmdecode 0.4848 0.3996 0.4179 2.3058 1.3999 1.0350
gsmencode 0.9569 0.7903 0.7992 2.7517 1.8207 1.4466
mipmap 0.7618 0.6624 0.6924 2.1286 1.4040 1.1346
mpeg2dec 0.5554 0.5952 0.7048 1.7302 1.3873 1.2583
mpeg2enc 0.5847 0.5418 0.6551 2.0897 1.3989 1.0921
osdemo 0.4688 0.4221 0.4570 1.7890 1.2292 1.0038
pgpdecode 0.3051 0.3439 0.4462 1.2723 1.1079 0.8996
pgpencode 0.2990 0.3547 0.4625 1.2592 1.0102 0.9051
rasta 0.6904 0.5930 0.6486 1.8495 1.2803 1.0758
rawcaudio 0.5510 0.4959 0.5621 2.5403 1.5551 1.1745
rawdaudio 0.5696 0.5207 0.6068 2.5651 1.5782 1.1772
texgen 0.8154 0.6688 0.6688 2.3007 1.5020 1.2146
unepic 0.5024 0.4882 0.5567 1.4421 1.1071 1.0027
Mean 0.5924 0.5378 0.5954 1.999 1.3847 1.1328

Table 7 Energy•Delay product ratio with 128-byte fil ter caches

256bytes
Direct Mapped Fully AssociativeApplications

8B 16B 32B 8B 16B 32B
cjpeg 0.5920 0.5149 0.5594 3.4720 2.2807 1.8969
decode 0.4239 0.3992 0.4480 3.7779 2.3941 1.8297
djpeg 0.7776 0.6779 0.7074 3.9903 2.4868 2.2245
encode 0.4318 0.4003 0.4465 3.8738 2.4131 1.8426
epic 0.3262 0.3525 0.4361 2.2007 1.8187 1.6043
gs 0.6197 0.5637 0.5843 3.6648 2.3717 1.8741
gsmdecode 0.2361 0.2582 0.3204 2.4615 1.7765 1.4790
gsmencode 0.7856 0.6796 0.7098 4.0036 2.6618 2.1836
mipmap 0.6356 0.5898 0.6314 3.4802 2.3613 1.8977
mpeg2dec 0.5347 0.5653 0.6612 2.6358 2.2047 1.9617
mpeg2enc 0.4752 0.4507 0.5353 3.9791 2.4647 1.8665
osdemo 0.3903 0.3668 0.4141 2.7820 1.9358 1.6039
pgpdecode 0.2914 0.3152 0.4105 2.3169 1.7061 1.4820
pgpencode 0.2959 0.3172 0.4106 2.3107 1.7248 1.5016
rasta 0.6114 0.5138 0.5462 3.1374 2.1002 1.6786
rawcaudio 0.3049 0.3100 0.4113 2.3800 2.0120 1.9404
rawdaudio 0.2612 0.2933 0.3740 2.0420 1.6039 1.6958
texgen 0.7244 0.5768 0.5957 3.7439 2.3282 1.8340
unepic 0.4582 0.4455 0.5039 2.3785 1.8050 1.5515
Mean 0.4829 0.4521 0.5108 3.0858 2.1289 1.7867

Table 8 Energy•Delay product ratio with 256-byte fil ter caches

