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Abstract—Unlicensed spectrum has been viewed as a way to
increase competition in wireless access and promote innovation
in new technologies and business models. However, several recent
papers have shown that the openness of such spectrum can also
lead to it becoming over congested when used by competing
wireless service providers (SPs). This in turn can result in the SPs
making no profit and may deter them from entering the market.
However, this prior work assumes that unlicensed access is a
separate service from any service offered using licensed spectrum.
Here, we instead consider the more common case were service
providers bundle both licensed and unlicensed spectrum as a
single service and offer this with a single price. We analyze a
model for such a market and show that in this case SPs are able
to gain higher profit than the case without bundling. It is also
possible to get higher social welfare with bundling. Moreover, we
explore the case where SPs are allowed to manage the customers’
average percentage of time they receive service on unlicensed
spectrum and characterize the social welfare gap between the
profit maximizing and social welfare maximizing setting.

I. INTRODUCTION

The dramatic increase in the population of smart phones
and tablets has resulted in a huge increase in the traffic load on
existing wireless networks. Adding new unlicensed spectrum
to the market has been viewed as a straightforward approach
to alleviate the heavy congestion on current licensed bands, as
well as provide a way of increasing competition in the market
for wireless services. Recent policies in this direction in the
U.S. include the unlicensed use of the television white spaces
[1] and the Generalized Authorized Access (GAA) tier in the
3.5 GHz band [2].

A key difference of unlicensed spectrum from licensed
spectrum is that there is no expensive license cost for the
unlicensed band so that more Service Providers (SPs) are able
to enter the market as long as they follow certain technical
rules. The increasing competition may benefit the customers
and overall social welfare. However, the open access to unli-
censed spectrum may lead the band to be over crowded if too
many SPs enter the market. Such issues have been studied
in [3]–[5] by applying a model for price competition with
congestible resources [6]. Similar price competition models
have also been applied in dynamic spectrum sharing when
the service providers sell their idle spectrum on the secondary
market [7] and to study tiered spectrum sharing [8].

In this paper, we consider a scenario similar to that in [4],
[5], where incumbent and entrant SPs compete for customers
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by announcing prices for their service. The customers select
SPs based on the sum of the price they pay for service and
a congestion cost that is incurred for using the given band
of spectrum. In [4], [5], the SPs compete by announcing one
price for service in an unlicensed band and a different price
for service in any licensed band which the SP may own. A
main result is that the price of the unlicensed band is always
competed down to 0, meaning that no profit is made for
unlicensed service. It is further shown that this may result
in a loss of social welfare compared to the case where the
unlicensed spectrum is not available. Additionally, the threat
of overcrowding and no-profits may deter SP’s from investing
and offering service in the first place as studied in [9].

Instead of competing on licensed and unlicensed spectrum
separately as in [4], [5], we consider a different model where
the incumbent SPs bundle their licensed and unlicensed service
and only announce a single price for this combined service.
Customers that accept the price are served on both licensed and
unlicensed bands, where the specific band used may vary over
time depending on the customer locations and network control
decisions. For such a bundled service, we model customers
as being sensitive to the average congestion they experience
across the two spectrum bands.

Bundling different goods has been widely used in many
areas in order to benefit both the profit of sellers and the
welfare of customers. For example, sporting and cultural
organizations usually offer season tickets, and Microsoft and
Sony sell their consoles bundled with different games. In recent
years, the bundling strategy has also been adopted by some of
the wireless SPs. One example is the data plans from AT&T
which include unlimited usage on the entire national Wi-Fi
hot spot network [10]. Also, T-Mobile is launching LTE-U
in spring 2017 [11] to serve subscribed customers with both
licensed and unlicensed spectrum. The use of bundling in
markets has been studied in the economic literature including
[12], [13]. Our model is different from these in that the SPs
are bundling congestible resources instead of commodities that
might be unpopular in the market. The SPs have to consider
the congestion caused by increasing the number of customers.

We use an α to denote the average percentage of time that
customers are using the unlicensed spectrum when choosing a
bundled service. Two scenarios are considered in this paper. In
the first part, we consider α to be exogenously determined by
user behavior. For example, this may depend on user mobility
patterns. In this scenario, we first consider the case where
an incumbent (with licensed spectrum) is competing against
a single entrant (without licensed spectrum). We show that



if α is small enough, bundling will increase the incumbent’s
profit and, more surprisingly, also the profit of the entrant.
In particular, compared to the case in [4], [5], bundling can
provide both SPs the incentive to enter the unlicensed market.
Moreover, we show that for certain values of α, bundling can
also lead to an improvement in social welfare compared to
both the unbundled case and the case where the unlicensed
spectrum is instead licensed to the entrant. Variations of this
setting with multiple entrants and multiple incumbents are also
considered.

The second scenario we consider is one in which an SP
offering bundled service is able to choose their own α by
changing the band in which customers are served over time.
This can model, for example, the case where LTE-U is used
for the unlicesned band and LTE for the licensed band and the
common network infrastructure assigns users dynamically to
one band or the other. In this case, we show that there may be
a difference in the choice of α which maximizes the SP’s profit
and that which maximizes social welfare. We characterize this
gap in the limit of a large number of symmetric incumbents.

The rest of the paper is organized as follows. Our model
is described in Section II. We first treat α as a fixed parameter
depending on customer behavior in Section III and compare
it with the model in [4], [5]. In Section IV, we view α as
a controllable variable that the SPs can choose to maximize
either its own profit or the social welfare. Numerical results
are shown in Section V. Finally, we conclude in Section VI.
Several proofs are omitted due to space considerations and can
be found in the online version [14].

II. SYSTEM MODEL

We consider a market with M incumbent SPs and N
entrant SPs. The sets of incumbent and entrant SPs are denoted
by I and E, respectively. Each incumbent i ∈ I is assumed to
possess its own licensed band of spectrum with bandwidth Bi,
while entrants have no licensed spectrum. There is also a single
unlicensed band with bandwidth W that can be used by both
the incumbent and entrant SPs.

The SPs are assumed to compete for a common pool of
infinitesimal customers by setting prices for their services. The
price announced by SP i is denoted by pi. The SPs then serve
all customers that accept their price. The profit of SP i is
then xipi where xi is the customer mass that accept price
pi. In the case of bundling, the customers that are choosing
the incumbent SP are allowed to use both the licensed and
unlicensed spectrum by paying the accepted price.

Each SP’s service is characterized by a congestion cost.
The congestion that the customers experience in a band is
denoted by g(X,Y ), which is assumed to be increasing in
the total customer mass X on the band and decreasing in
the bandwidth Y . Here, we assume a specific form g(XY ),
where g(·) is a convex increasing function with g(0) = 0.
We assume customers who choose the bundle service use
the unlicensed band with an average percentage of time
α ∈ [0, 1]. Since the incumbent SPs are bundling their service,
the congestion that the customers experience when choosing
the incumbent SP i ∈ I is then the expected congestion on

both bands, i.e., (1−α)g( (1−α)xi
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)+αg
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)
. Note as in [4] [5], the congestion

experienced in the unlicensed band depends on the total traffic
assign to that band by any SP, modeling the shared nature of
this band.

The customers select a single SP from whom to receive
service. Given the announced prices by all the SPs, the
customers will choose the SP with the lowest delivered price,
which is the sum of the announced price and the congestion
associated with the SP. Hence, for an incumbent SP i ∈ I, the
delivered price di(pi,x) is denoted by pi+(1−α)g( (1−α)xi

Bi
)+

αg
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)
, where x denotes the vector of xi’s

across the SPs. For an entrant SP i ∈ E, its delivered price is

given by di(pi,x) = pi + g
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∑
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W

)
.

We assume that customers are characterized by an inverse
demand function P (q), which means up to a mass of q cus-
tomers are willing to pay the delivered price P (q). We assume
the inverse demand function P (q) is concave decreasing. Each
customer is infinitesimal so that a single customer has a
negligible effect on the congestion in any band. Therefore,
given the announced price by the SPs, the demand of service
for each SP i is assumed to satisfy the Wardrop equilibrium
conditions [15]. In our model, the conditions for the SPs are

di(pi,x) = P

 ∑
j∈I∪E

xj

 , for xi > 0,

di(pi,x) ≥ P

 ∑
j∈I∪E

xj

 , for ∀i. (1)

The conditions in (1) imply that at the Wardrop equilib-
rium, all the SPs serving a positive amount of customers will
end up with the same delivered price, which is given by the
inverse demand function. A (Nash) equilibrium of the game is
one in which the customers are in a Wardrop equilibrium and
no SP can improve their profit by changing their announced
price.

At an equilibrium, the customer surplus is defined as the
difference between the delivered price each customer pays
and the amount it is willing to pay, integrated over all the
customers, i.e.,

CS =

∫ Q

0

P (q)− P (Q)dq, (2)

where Q =
∑
j

xj . The social welfare of the market is the sum

of consumer welfare and the SPs’ profits:

SW = CS +
∑
j

pjxj . (3)

Next we briefly introduce the models that we want to
compare with the bundling case.



A. Price competition with unbundled unlicensed access

The first model we want to contrast with is price competi-
tion with unlicensed access modeled in [4], [5]. In this model,
the incumbent SPs will announce two prices for service on the
license band and unlicensed band separately. Customers will
still choose the service which offers the lowest delivered price.

Precisely, for an incumbent SP i ∈ I, the problem is to
maximize its own profit plix

l
i + pui x

u
i , where the superscripts

l and u denote the licensed and unlicensed band, respectively.
For an entrant SP i ∈ E, the problem is to maximize pui x

u
i .

Again the announced price and the resulting customer mass on
each band should meet the Wardrop equilibrium conditions.
For the licensed band of each SP i these are

pli + g
(
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i
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)
= P
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j +

∑
j∈I∪E

xu
j

)
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)
, for i ∈ I. (4)

For the unlicensed band, the Wardrop equilibrium conditions
are

pui + g

( ∑
j∈I∪E

xu
j

W

)
= P

(∑
j∈I

xl
j +

∑
j∈I∪E

xu
j

)
,

for i ∈ I ∪ E, xu
i > 0,
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)
, for i ∈ I ∪ E. (5)

We summarize the Nash equilibrium for the unlicensed
access model in [4] in the following lemma.

Lemma 1: In the unbundled unlicensed access case, if
there are at least two SPs in the market, all the SPs serving a
positive mass of customers will have pui = 0 on the unlicensed
band.

The lemma shows that under this competition model, the
entrant SP always gets no profit.

B. Exclusive use

An alternative to making the spectrum with bandwidth W
unlicensed and still increase competition would be to licensed
this band to a new entrant. 1 In this case, the entrant SP is
able to use the spectrum exclusively and incumbent SPs are
only allowed to use their own proprietary band. The objective
of each SP is still to maximize profit while the Wardrop
equilibrium conditions are satisfied. To be precise, the Wardrop
equilibrium conditions on the licensed band are the same as
that in (4). The conditions for the entrant SP i on the new
band become

pi + g
(
xi

W

)
= P

( ∑
j∈I∪E

xj

)
, if xi > 0

pi + g
(
xi

W

)
≥ P

( ∑
j∈I∪E

xj

)
, otherwise. (6)

Note that here we ignore the superscript because the spectrum
can only be used by the entrant SP.

1Of course this band could also be licensed to an incumbent, but this would
not increase competition in the market and so we focus on the case where it
is licensed to an entrant.

III. DIFFERENT CASES WITH FIXED α

A. Monopoly case

We first consider the case with only one incumbent SP
and no entrant SPs. The game then reduces to the following
optimization problem for the incumbent SP:

max
p1

p1x1 (7)

s.t. d1(p1, x1) = P (x1),

p1 ≥ 0,

where d1(p1, x1) is the delivered price.

We want to compare the bundling case with the unbundled
and exclusive use cases described in previous section. When
there is only one incumbent in the market, the unbundled and
exclusive use cases coincide with each other and result in the
following optimization problem:

max
pl1,p

u
1

pl1x
l
1 + pu1x

u
1 (8)

s.t. pl1 + g

(
xl1
B

)
= P (xl1 + xu1 ),

pu1 + g

(
xu1
W

)
= P (xl1 + xu1 ),

pl1 ≥ 0, pu1 ≥ 0.

Theorem 1: The monopoly SP cannot gain more profit by
bundling the licensed and unlicensed service than by offering
service on the two bands separately.

Intuitively, in a monopoly market, there are no competitors
for the incumbent SP on the unlicensed band, so the incumbent
SP can get as much as profit as possible on both bands. As a
result there are no incentives for the SP to bundle the services.
The proof of this theorem shows that when there is only one
incumbent SP in the market, there exists an optimal α∗ such
that when α = α∗, the SP is indifferent between bundling
and unlicensed access. When α 6= α∗, the incumbent SP will
generally get a lower profit by bundling as is shown in Fig.
1, where the solid curve reflects the profit in the bundling
case and the dashed line indicates the unbundled case. In any
settings, the profit of the SP in the bundling case cannot exceed
the profit in the unlicensed access case. With different licensed
and unlicensed bandwidth ratios (B/W ), α∗ varies. In fact, it
can be proved that α∗ = W

B+W .

B. One incumbent SP & one entrant SP

Next we turn to the case of one incumbent and one entrant
SP. Different from the monopoly case, when there is an entrant
SP without any proprietary spectrum, the incumbent SP is able
to make higher profit by bundling the licensed and unlicensed
service. Without loss of generality, we assume that SP 1 is the
incumbent and SP 2 is the entrant.

1) Comparison with unbundled case: First, we compare
bundling to the case without bundling. Based on Lemma 1,
the announced price on the unlicensed band is zero in the
unbundled case and as a result the incumbent SP is solving
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Fig. 1: The profit of the monopoly SP with different α (dashed
lines show the unbundled case, solid lines the bundled case).

the following optimization problem:

max
p1

p1x
l (9)

s.t. p1 + g
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(
xl + xu

)
,

g
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,

p1 ≥ 0.

The following result will aid in comparing this with the
bundled case.

Theorem 2: There always exists an α0 ∈ (0, 1), such that
when α = α0, bundling is equivalent to the unbundled case in
the sense of profit and welfare.

Theorem 2 shows that bundling is a kind of generalization
of the unbundled case. It can achieve exactly the same profit
for the SPs and welfare for the market with some value of α. In
that case, the incumbent SP actually lowers its announced price
(compared to the case where W is not present) and customers
can use both the licensed and unlicensed band. No customer
would like to choose the entrant even if it offers a price of 0,
because the customers who are choosing the bundled service
have already generated significant congestion on the unlicensed
band. However when α is different from the critical value it
is possible for entrant SP to gain positive profit and for the
incumbent to increase its profit.

Theorem 3: Let α0 be the value at which bundling
achieves the same profit and welfare as the unbundled case.
When α < α0, the profit of incumbent SP in the bundling
case is higher than that in the unbundled case and the entrant
SP can gain positive profit. When α > α0, the profit of the
incumbent SP in the bundling case is no greater than that in
the unlicensed case and the entrant SP gets zero profit.

This shows that when α is small, both the incumbent and
entrant SPs are serving customers with a positive announced
price. The unlicensed band can offload some congestion on
the licensed band so that the incumbent SP can attract more
customers and make more profit. In this case, the unlicensed
band is not over-crowded so that the entrant SP can still
announce a positive price to gain positive profit. However
when α is large, the entrant SP is forced to announce a zero

price, because the customers of the incumbent SP have already
caused significant congestion on the unlicensed band. That
means the incumbent cannot gain profit on unlicensed band,
but it still has to serve a certain amount of customers on it.
That may have a negative effect on his profit.

2) Comparison with exclusive use case: From Lemma 1
it is clear that price competition for unbundled unlicensed
access will benefit the customers instead of the SPs, since the
competition on the unlicensed band will drive the price to 0.
Another way to use the additional spectrum is the exclusive
use case. As described in previous section, exclusive use means
that the entrant SP can use the unlicensed spectrum exclusively.
It is natural to ask if bundling can gain more profit for the
incumbent SP than the exclusive use case. First we give a
lemma to compare the profit of incumbent in the exclusive
case and unlicensed case.

Lemma 2: In the case with one incumbent and one entrant
SP, the incumbent SP is able to gain more profit with exclusive
access than with unbundled unlicensed access.

Proof: Note that the exclusive use case is equivalent to the
bundling case with α = 0. Hence by Theorem 3, the incumbent
can always gain more profit in the exclusive use case than the
unbundled case.

Surprisingly, this lemma show that without bundling, rather
than making the spectrum unlicensed, the incumbent would
prefer that it is exclusively licensed to the entrant. However,
things may become different if bundling is adopted by the
incumbent. To give more insights, we next consider a setting
where both the inverse demand and the congestion function
have the linear forms P (x) = 1− x and g(x) = x.

Theorem 4: For linear case, if B < 4(1+W )
3W , there must

exists some α ∈ (0, 1) such that the profit of the incumbent
SP is higher than that in the exclusive use case.

This theorem shows that the incumbent SP can only gain
more profit in the bundling case if the licensed resources it
possesses are limited. Another interpretation of Theorem 4 is
that when the licensed band is small enough, i.e., B < 4

3 ,
for all possible value of W , there exists some α such that
bundling can gain more profit for incumbent than the exclusive
use case. However if B > 4

3 , then we require a small amount
of unlicensed bandwidth, i.e., W < 4

3B−4 to guarantee the
existence of an α such that bundling is better for the incumbent
SP.

Lemma 2 shows that incumbent SP can gain more profit
with exclusive access than that in the unbundled case, so
there is no incentive for the incumbent to share the unlicensed
spectrum with the entrant. However, Theorem 4 shows that
if the incumbent SP uses the bundling strategy, it is able to
get even more profit than the exclusive use case if α is in
some appropriate range. Fig. 2(a) shows how the profit of the
incumbent changes with α in linear case with B = 1 and
W = 1. It can be seen that for some α bundling gives a better
profit for the incumbent. However when B is large, as is shown
in Fig. 2(b) with B = 3 and W = 1, the profit of the exclusive
use case is always higher. In this case, the incumbent SP has
sufficient licensed spectrum so to not be incentivized to use
the unlicensed band.
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Fig. 2: Profit comparison with unbundled and exclusive use
cases.

Next we show that the social welfare may also be improved
over the exclusive use case if bundling is adopted.

Theorem 5: For any value of B and W , there exists some
α > 0 such that both of the customer welfare and social
welfare of bundling is better than that of the exclusive use
case.

Different from the profit of incumbent, it is always possible
for customer surplus and social welfare to be improved if the
incumbent chooses to bundle licensed and unlicensed service
for any B and W . Two examples are shown in Fig. 3. In
both cases we can find some α such that social welfare
increases. That is because when α is in some specific range,
the customers who choose the incumbent SP are able to use
the unlicensed service, which introduces competition on the
unlicensed band and as a result improves the social welfare.
However when α is too large, the licensed band becomes
underutilized, and customer and social welfare may suffer.
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Fig. 3: Social welfare comparison with unbundled and exclu-
sive use cases when W is small.

Note that in Fig. 3, we show the social welfare with a
relatively small bandwidth of unlicensed spectrum. In this case,
assigning the entrant SP exclusive access to the unlicensed
spectrum yield more social welfare than unbundled access.
However, when W is large, it is possible for the unbundled
case to yield more social welfare than the exclusive use case.
Such cases are shown in Fig 4. We can see that when B = 1
and W = 10, social welfare in the unbundled case is higher
than that in the exclusive use case and bundling is able to
achieve higher social welfare in some range of α. Even if
α → ∞, where the unbundled case achieves the maximum
possible social welfare, there exists an α such that bundling
can achieve the same social welfare. That is because there

always exists some α such that the bundling case is equivalent
to the unbundled access case as is shown in Theorem 2.
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Fig. 4: Social welfare comparison with unbundled and exclu-
sive use cases when W is large.

C. One incumbent SP & multiple entrant SPs

In this case, the competition among entrants on the unli-
censed spectrum will drive the price to 0, which results in an
equilibrium similar to the unbundled case. We summarize the
result in the following theorem.

Theorem 6: Where there is one incumbent SP and multiple
entrant SPs, for any α ∈ (0, 1), bundling is equivalent to the
unbundled case in the sense of profit and welfare.

Proof: Because there are multiple entrant SPs in the
market, based on Lemma 1, the announced price of the entrant
SPs should be 0. That reduces the game to the following
optimization problem:

max
p1

p1x1 (10)

s.t. d1(p1,x) = P (x1 +
∑
j∈E

xj),

di(0,x) = P (x1 +
∑
j∈E

xj), i ∈ E

p1 ≥ 0,

where d1(p1,x) is the delivered price of the incumbent SP and
di(0,x) is the delivered price of the entrant SPs.

Let xl = (1−α)x1 and xu = αx1+
∑
j∈E

xj , the optimization

problem can be transformed to the following form:

max
p1

p1
1− α

xl (11)

s.t. p1 + g

(
xl

B

)
= P (xl + xu),

g

(
xu

W

)
= P (xl + xu),

p1 ≥ 0.

The problem in (11) is exactly the same as the problem of
unbundled access in (9). This implies identical profit for the
incumbent and identical welfare for the market.

Since with multiple entrants, the price for unlicensed
service goes to zero, this results suggests that if the investment
decisions of the entrants are also accounted for as in [9] then



more than one entrant would never enter the market, i.e., cases
with either one or zero entrants are more relevant. This result
can be simply extended to the cases with multiple incumbent
SPs and multiple entrant SPs. When there are multiple entrant
SPs, the competition on the unlicensed band will again drive
the price to 0.

D. Multiple incumbents & no entrants

Next we turn to the case with multiple incumbents and no
entrants.2 In this case, the incumbent SPs will compete on their
price for bundled service. The problem can be formulated as
the following for each incumbent SP i,

max
pi

pixi

s.t. di(pi,x) = P

∑
j

xj

 , (12)

pi ≥ 0, i = 1, 2, ...,M,

where di(pi,x) is the delivered price of SP i. First, we
characterize the Nash equilibrium of this game.

Theorem 7: There exists a Nash equilibrium for the game
with multiple incumbents and no entrants and bundled service.
If Bi > Bj , the equilibrium profit of SP i is higher than that
of SP j.

We use Debreu’s theorem [16] to prove the existence of Nash
equilibrium. In the proof, we need to show that the strategy
space is compact and convex, the profit of one SP should be
continuous in all other SPs’s announced prices and concave in
its own price. Compactness of strategy space and concavity of
the pay-offs are easy to show. We then use the results in [17]
to show the continuity part. Details are omitted here due to
space constrains.

Corollary 1: If each SP has the same amount of licensed
spectrum, there exists a symmetric Nash equilibrium.

The Corollary follows directly from Theorem 7 based on
Theorem 3 in [18].

By making stronger assumptions on the inverse demand
and congestion function we get stronger results on the equi-
librium.

Theorem 8: Assume the inverse demand function P (x)
and congestion cost g(x) are both linear, the game with
multiple incumbent SPs and no entrant SP is supermodular.

Supermodularity guarantees the existence of a Nash equi-
librium, which is consistent with the result in Theorem 7. Also,
supermodularity can give us more insights on the equilibrium.

Theorem 9: In the case with multiple incumbent SPs and
no entrant SP, assume the inverse demand function P (x) and
congestion cost g(x) are both linear. There exists some α0 ∈
(0, 1), such that when α < α0, the profit of each incumbent
SP is higher than in the unbundled case.

The proof of the theorem uses the supermodularity from
Theorem 8. We first consider an auxiliary case with M SPs

2As discussed in the previous section, given that incumbents can always
make a higher profits, it is reasonable that with a high enough entry cost that
no entrants will enter the market.

and one entrant SP and show that there exists some α such that
the profit of incumbent SPs in the bundling case is the same as
that in the unbundled case. Then we show that when the single
entrant SP is removed from the market, the incumbent SPs will
have incentive to increase their announced prices to increase
profit. The supermodular property then guarantees that each
SP’s announced price and profit will change towards the same
direction.

Theorem 9 shows that, when α is relatively small, applying
the bundling scheme may benefit each of the incumbent SPs.
This means when the percentage of customers using unlicensed
service is low, the SPs are more willing to bundle the service
to gain more profit.

Next we consider the limit of a large amount of unlicensed
spectrum and a more general class of congestions functions.

Theorem 10: In the case with multiple incumbent SPs and
no entrant SP, when W →∞, with congestion function g(x) =
kxp, k > 0, p ≥ 1, using bundling is equivalent to expanding
the licensed band of each SP i from Bi to Bi

(1−α)p+1 and having
no unlicensed spectrum W .

Theorem 10 shows that when the bundling scheme is
applied, adding a large amount of unlicensed spectrum to
the market actually benefits the incumbent by expanding the
licensed band with a factor 1

(1−α)p+1 . On the contrary, if the
SPs are competing without bundling, adding a large amount
of unlicensed spectrum drives the delivered price to 0, which
implies 0 profits for the incumbents. In addition, we can see
that when α is large, the factor 1

(1−α)p+1 will be large as well.
However, when α is small, even if the regulator adds an infinite
amount of unlicensed spectrum to the market, the impact on
the market is relatively small.

Theorem 11: Consider the linear symmetric case with M
incumbent SPs. The SP’s profit, customer surplus and social
welfare all increases with the bandwidth of unlicensed spec-
trum W if all SPs use bundling.

Note that when the SPs are competing without bundling,
although the customer welfare and social welfare may increase
with the bandwidth of unlicensed spectrum3, the profit of
the SPs is always decreasing in W . However, according to
Theorem 11, the profit of the SPs is also able to increase with
W as well as the customer surplus and social welfare with
bundling.

IV. CONTROLLABLE α

In the previous section, we assumed that α is fixed. In this
section, we consider α as a parameter that can be determined
by the incumbent SPs to maximize either the profit or the social
welfare. This can be achieved for example by the SP’s network
dynamically controlling which form of access a customer
is served by. We consider two possible scenarios, selfish
incumbents and altruistic incumbents. If the incumbent SPs
are selfish, they care more about their profits when choosing
α. On the contrary, the altruistic SPs may try to optimize the
social welfare by choosing appropriate α. In this section, we
focus on the analytical results when W →∞ to simplify the
calculation. In Section V, we provide numerical results with

3In fact the social welfare may decrease with W when W is small [5].



finite W , which show that the results we get in the asymptotic
cases can be translated to cases with finite W .

A. One incumbent SP and one entrant SP

In this subsection, we focus on the case with one incumbent
SP and one entrant SP. We formulate it as a two-stage game.
In the first stage, the incumbent SP decides its own α and in
the second stage, the SPs compete with each other on price for
the customers as in the previous sections. First we consider the
case that the incumbent SP chooses α to optimize its profit.

Theorem 12: Consider a linear model with one incumbent
and one entrant SP with W →∞. When B ≤ 4

3 , the optimal
α∗ = 1 −

√
3B
2 and the resulting profit is 1

48 . When B > 4
3 ,

the optimal α∗ = 0 and the optimal profit of incumbent is
B

(4+3B)2 .

The result shows that when there are unlimited unlicensed
resources and the bandwidth B of licensed spectrum is rela-
tively small, the incumbent is willing to bundle the licensed
and unlicensed service to gain more profit. However, when
B is large, even if there is plenty of unlicensed spectrum,
the incumbent may not want to bundle the service. Intuitively,
when the incumbent bundles its service, it has to announce a
lower price, which may result in a drop in its profit.

B. Multiple incumbent SPs and no entrant SPs

Here we consider the case with M incumbent SPs and no
entrants.

To simplify the model, we consider linear case with M
symmetric SPs. Suppose the total amount of licensed spectrum
is Bt, then we have Bi = Bt

M , for ∀i. In this case, each SP
is equivalent. Hence by Corollary 1, a symmetric equilibrium
exists, which we focus on in the following. Further, to simplify
our analysis in this part we assume e a common choice of α
is agreed upon by the SPs to either maximize their welfare or
to maximize social welfare.

We first fix M and let W →∞.

Theorem 13: In the linear symmetric case, if W → ∞,
there exists some Bth, such that when Bt ≤ Bth, the α that
maximizes the profit of incumbents is 1 −

√
Bt

Bth
and social

welfare decreases with M . When Bt > Bth, the optimal α is
0 and social welfare increases with M .

Similar to the case with only one incumbent and one
entrant SP, Theorem 13 shows that when there are multiple
incumbent SPs, they may only want to bundle the licensed
and unlicensed service when they have a limited amount of
licensed spectrum. Additionally, when Bt ≤ Bth the optimal
announced price is not related to the total licensed bandwidth
Bt, because the optimal choice of α counteracts the effect of
Bt when W →∞. When the bandwidth of licensed spectrum
is above the threshold, even if the unlicensed resources are
unlimited, the incumbent SPs may not be willing to use it.
In this case, the announced price is decreasing in the total
licensed bandwidth Bt. In fact the threshold Bth is decreasing
in the total number of incumbent SPs in the market. Intuitively,
when more incumbent SPs are in the market, competition on
the unlicensed band would be more intense. The incumbent

SPs are more willing to provide service on licensed spectrum
only.

For the social welfare part of Theorem 13, when the
licensed spectrum is quite limited, adding more incumbent
SPs into the market harms the social welfare, because more
competitors will cause α to decrease. That means less unli-
censed resources are utilized and as a result the social welfare
decreases. However, when there is plenty of licensed spectrum,
all the SPs have already chosen not to use the unlicensed
spectrum. Adding more competitors then benefits the social
welfare.

Next we consider the case where the incumbent SPs are
altruistic, which means they would like to achieve a Nash
equilibrium that maximizes the social welfare.4 We then have
the following result.

Lemma 3: If W →∞, α = 1 is socially optimal.

When α = 1, all the prices go to 0 and all customers
get served, which is socially optimal. Essentially, the SPs are
pushing all the customers to the unlicensed band. This yields
zero profits but achieves the optimal welfare.

C. Social welfare gap

Next, we consider the gap in social welfare between the
profit maximizing choice of α and the social optimal α.

We consider a similar scenario as in the previous subsec-
tion.

Theorem 14: In the case of infinite unlicensed spectrum,
if we also assume an infinite number of incumbent SPs, i.e.,
M → ∞, the social welfare gap between the profit optimal
and welfare optimal settings is given by

Gap =
1

2 +max{2, Bt}
. (13)

Theorem 14 shows that when the total licensed bandwidth
Bt is small and M →∞, the social welfare gap is independent
of Bt. That is because the SPs are able to choose appropriate α
to bundle the licensed and unlicensed service, which actually
compensates the effect of the amount of licensed bandwidth.
However, when the licensed band Bt is large, the incumbent
SPs only use the licensed band and as a result the social welfare
gap decreases with Bt. Also notice that when the number of
incumbent SPs goes to infinity, the social welfare gap between
the optimizing profit and optimizing social welfare is upper
bounded by 1

4 , which means the price of anarchy is lower
bounded by 1

2 .

V. NUMERICAL RESULTS

In this section we give some numerical examples illus-
trating our results. We first consider a linear model where
P (x) = 1 − x, g(x) = x with one incumbent SP and one
entrant SP.

First, we examine how the optimal α varies with the addi-
tional unlicensed spectrum when the bandwidth B of licensed

4Alternatively, the choice of α could be chosen by a regulator who seeks
to maximize welfare.



spectrum is fixed. The results are shown in Fig. 5. We consider
two different cases with B = 1 and B = 3, respectively.
When bandwidth of licensed spectrum is relatively small, i.e.
B = 1, we can see that the α that optimizes the profit of
incumbent will first increase and then decrease with W . That
is because when B and W are both small, the incumbent
SP is willing to offload some of the traffic to the unlicensed
band without harming its profit on the licensed band. However,
when W becomes larger, the incumbent will have to face more
competition with the entrant SP, which may lower the delivered
price in the market and consequently harm its profit on the
licensed band. As a result the optimal α will be deceasing in
W . Note that the optimal α never drops to 0 when B = 1
but does reach 0 when B = 3. That illustrates the results in
Theorem 12. As we know when α = 0, the bundling case
reduces to the exclusive use case. This means that when B
is small, we are able to find some α ∈ (0, 1) such that the
profit of incumbent in the bundling case is higher than that in
the exclusive use case. But when B is large and W is in some
range, the exclusive use case may provide the best profit for the
incumbent. This property coincides with the results in Theorem
4. In the case that the incumbent SP aims to optimize the
social welfare, the optimal α is increasing with the unlicensed
bandwidth W . It is not surprising because sending more traffic
on the wider band may help lower the congestion cost in
the market and lead to better social welfare. Note that when
B = 1, there is an intersection of the solid and dashed curves
around W = 1, which indicates both the incumbent’s profit
and social welfare are maximized at the same α. Furthermore,
when B increases to 3, the intersection point appears when
W is smaller, because when the incumbent SP has enough
licensed spectrum, it may not be willing to enter the unlicensed
market which will lead to a loss of social welfare.
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Fig. 5: The optimal α chosen by the incumbent SP.

Next, we focus on the case with B = 1 to see how profit
and social welfare compares with the unbundled and exclusive
use cases when α is chosen to optimize either profit or social
welfare. We first look at the profit optimal case. The results are
shown in Fig. 6. We can see that when the incumbent’s profit
is optimized, bundling can obviously achieve the best profit.
At the same time, for a wide range of unlicensed bandwidth,
the social welfare of bundling is better than both the unbundled
and exclusive access cases.

Next we consider the welfare optimal case. The results are
shown in Fig. 7. When social welfare is maximized, there is
still some range of W such that the incumbent’s profit with
bundling is the highest among the three cases. But when W
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Fig. 6: Impact of choosing α to maximize the incumbent’s
profit when B = 1.
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Fig. 7: Impact of choosing α to maximize the social welfare
when B = 1.

increases, the profit with bundling is converging to that without
bundling. As discussed previously, the bundling case is a kind
of generalization of the unbundled and exclusive use cases.
Further, it can be seen from the figures that it is possible to use
the bundling strategy to improve both the profit of incumbent
and the social welfare at the same time.

Next we consider the case with M symmetric incumbent
SPs and no entrant SP again assuming linear congestion and
demand. We first fix the total bandwidth of licensed spectrum
Bt to see how the social welfare gap between the social
welfare optimizing and the profit maximizing cases changes
with the unlicensed bandwidth W . The results are shown
in Fig. 8. In general, the social welfare gap increases with
W . When W increases, the social welfare maximizing case
tends to serve more customers to improve welfare while the
profit maximizing case tends to keep the price at a certain
level so that the incumbent’s profits are not affected. As a
result, the gap is getting larger. This implies the social welfare
gap we obtain in Theorem 14 is actually an upper bound.
In Fig. 8(a) where Bt = 1, the social welfare gap increases
with the number of incumbent SPs, because when the number
of incumbents increases, there is more competition in the
market which is good for the social welfare. But for the profit
maximization case, the SPs limit the customer mass served on
the unlicensed band to make their profits higher. This makes
the social welfare worse. However, when the total licensed
bandwidth increases to Bt = 3, Fig. 8(b) shows that increasing
M actually makes the social welfare gap smaller. That is
because when there is plenty of licensed spectrum, the SPs
are not using the unlicensed spectrum in the profit maximizing
case. As a result, adding more unlicensed spectrum to the
market benefits the social welfare.
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Fig. 8: Social welfare gap when Bt is fixed.

Next we fix the bandwidth of unlicensed spectrum to see
how the social welfare gap changes with the total licensed
bandwidth Bt. Results are shown in Fig. 9. In each of these
two figures when either W = 1 or W → ∞, there is a
turning point in each curve, which corresponds to the threshold
Bth in Theorem 13. When we fix W = 1, the social welfare
gap first increases then decreases with licensed bandwidth Bt
and number of SPs M . When the unlicensed bandwidth is
increased to infinity, we can see that the social welfare gap
remains constant when B is small and decreases afterwards.
The constant region appears because the profit maximizing α
is chosen to compensate for the change of Bt and the social
welfare remains constant in the social welfare maximizing
case. This is consistent with the results in Theorem 13 and
Theorem 14.
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Fig. 9: Social welfare gap when W is fixed.

VI. CONCLUSION

In this paper, we considered the use of bundling in the
competition among incumbent and entrant SPs on licensed
and unlicensed spectrum. We first analyzed the case where
the users’ average percentage of time on the unlicensed band
α is fixed. We compared the bundling case with the unlicensed
access case used in [4], [5] and the exclusive use case with one
incumbent and one entrant. We showed that compared to these
models, bundling can improve the profits of the incumbent SP
as well as those of the entrant. We also analyzed the case
with multiple incumbents and no entrant. We showed that for
a linear class of congestion costs and demands, the game is
supermodular and thus the profit of all incumbent SPs can be
improved over the unbundled case. We then viewed α as a
parameter controlled by the SPs. We characterized the social
welfare gap between the profit maximizing and the social
welfare optimizing cases.

In our work, only homogeneous customers were consid-
ered. We only use one parameter α to characterize the behavior
of all users. Exploring the case with heterogeneous customers
is one possible extension. Furthermore, when finding the social
welfare gap, we only considered the symmetric case, where
each SP possesses the same amount of licensed spectrum, so
that the choice of α reduces to an optimization problem. It
would be also interesting to investigate the asymmetric case
where each SP can play an extensive form game on both α
and the price.
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