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Abstract—Sharing spectrum is a promising approach for
expanding wireless access and increasing competition among
wireless service providers. Indeed, this is a key motivation behind
the recent regulations such as those for the 3.5 GHz band in
the U.S. However, meeting this promise requires that service
providers (SPs) have the incentives to invest in technology to
be deployed in shared bands. This is not a forgone conclusion.
Indeed by lowering entry barriers, sharing can promote more
competition, but this also lowers revenue, making investment
less attractive. In this paper, we study such scenarios for band of
spectrum that is shared under a primary-secondary paradigm,
by adopting a model developed by Liu and Berry in 2014. In their
model, a primary SP and multiple secondary SPs compete for a
common pool of customers using a shared band. In that work,
any investments of the SPs was considered sunk, and it was shown
that sharing improved both social welfare and consumer welfare
over the case where the band was exclusively licensed to one SP.
Here, we add an investment stage to this model, in which all of the
SPs first decide on an investment level; given their investments,
they again compete for customers. We characterize the sub-game
perfect equilibrium of the resulting game and characterize the
resulting consumer and social welfare. We show that a secondary
SP needs a lower investment cost than a primary in order to enter
the market. Moreover, at most one secondary SP will enter, even
if multiple have low costs. Finally, we show that for large enough
bandwidth, assigning the SP with the lower investment cost as the
primary can provide more social welfare and consumer welfare
than making it a secondary.

I. INTRODUCTION

Sharing spectrum is a promising approach for meeting the
rapidly growing demands for wireless access. In particular, the
“primary-secondary” approach to sharing has received much
interest. Under this approach, secondary spectrum users can
share a band with a primary user, provided that the secondary
users do not interfere with the primary’s service. Such sharing
techniques have been considered in several scenarios, e.g. [1],
[2] and can be facilitated by either spectrum sensing [3], [4]
or through the use of geolocation databases [5]. Indeed, such
an approach underlies the policies adopted in the U.S. for the
TV white spaces [6] and the 3.5GHz band [7]. A common
feature of these policies is that secondary access is license
exempt, e.g., this is true for the case of TV white-space devices
and for the Generalized Authorized Access (GAA) tier in
3.5GHz. (For 3.5 GHz, there are three instead of two tiers of
access, so we are abusing terminology somewhat by referring
to these as secondary users.) One motive for this is that by
not requiring an expensive license, it lowers the entry barriers
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and so may increase competition. However, this benefit is not
a forgone conclusion, as the lower entry barrier also increases
the risk that the spectrum becomes congested. The risk of
such congestion can make service providers (SPs) reluctant to
invest and offer service (e.g., see [8]). The focus of this paper
is to gain insights into how these two effects can impact the
economic benefits of primary-secondary sharing.

We consider a model where there are both primary and
secondary SPs that are competing to offer service to a common
pool of customers. For example, this could model a scenario
in the 3.5 GHz band, where the primary SP has a Priority
Access License (PAL), while the secondary SPs are all GAA
users. Note here we assume that Tier 1 federal incumbents are
not present in the given area, while primary and secondary
SPs are Tier 2 and Tier 3 users, respectively. We adapt the
model for competition among such SPs established in [9],
[10], which in turn uses models for price competitions among
firms with congestible resources that have been studied in a
number of different communities (see e.g., [11]–[13]); similar
models have also been used to study competition among
wireless SPs in other settings (e.g. [14]–[16]). In these models,
SPs compete for customers by announcing a price for their
services. Customers in turn select service providers based on
a combination of their announced price and a congestion cost,
which is increasing in the traffic seen by a provider. In the
primary-secondary sharing model of [9], [10], the congestion
cost of a primary SP depends only on its own traffic, while
that of a secondary SP depends on the total traffic in the
shared band. This captures the priority given to a primary user
and also the “open” nature of secondary usage. In [9], [10],
the focus was on modeling the resulting price competition
among SPs. It was shown that, compared to the case where
the spectrum was exclusively licensed, competition with this
form of sharing always benefits consumers and also improved
the overall economic welfare, which includes the profits of the
SPs.

In [9], [10], the investment decision of the SPs was not
modeled, i.e., any investment was considered sunk. Our main
goal in this paper is to study the impact of investment in
such settings. This is significant in part because in [9], it
was shown the sharing does decrease the profit of the primary
SP as well as cause the profits of the secondary SPs to be
competed down to zero. Hence, it is not a forgone conclusion
that SPs would invest in the shared band in the first place. To
model investment, we consider a two-stage model in which
first the SPs decide on a level of investment in the shared



band and then, given the investment of each SP, they compete
on prices for customers. The level of investment impacts the
congestion that their customers experience for a given load
but also reduces their profits. Similar models have been used
previously in the literature such as in [17] to study technology
choices of SPs and in [18], [19] to study investment and
competition in unlicensed spectrum. As key difference of
this paper from [?], [17], [18] is that in those papers tiered
spectrum sharing was not considered. Related models have
also been considered outside of the context of the wireless
services market (e.g. [20] studied a similar model for firms
in a generic congestible industry and [21] considered a model
for cloud-based services).

Our main results are as follows. First we show that if a pure
strategy Nash equilibrium exists, it will be one where at most
a single secondary SP decides to invest, along with possibly,
a single primary SP. Essentially, the threat of congestion
keeps all secondary SPs but one from investing and so the
benefits of increased competition due to secondary access
being license exempt are limited. However, when both a
primary and secondary SP invest, sharing does provide some
level of increased competition. When all SPs face the same
marginal costs of investment, this competition again leads to
improvements in welfare over the case where a single SP has
an exclusive license; however, the required cost level for a
secondary SP to invest is much lower than that for a primary
SP. We also compare this numerically to the case where the
band is partitioned between two providers, with each having
an exclusive license for its partition. Here, the comparison
is more subtle, when the amount of bandwidth is small
(or the investment cost is large) sharing generates the most
consumer and social welfare; in this case it seems that sharing
encourages the incumbent to invest more, which benefits both
consumers and the overall welfare. However as the bandwidth
increases (or the cost decreases), partitioning becomes better
for consumer welfare, and then eventually for social welfare.
In this case, as bandwidth increases, partitioning creates a
more equal competition among the SPs, which in turn drives
down prices and benefits consumers.

We also study a model where the primary and secondary
SPs have different marginal costs of investment. In this case,
we again characterize the investment choices of the SPs and
show that it is even possible for only a secondary SP to decide
to invest (if it has a very good costs), while the primary SP
decides not to invest. Given two SPs with different costs, we
also show that best welfare is obtained when the SP with the
lower marginal cost is the primary (even though in this case
the other SP may not invest). Interestingly, if the low cost
SP is the secondary, it is even possible, that adding enough
bandwidth so that the other SP will invest may lead to a loss
in welfare.

The rest of this paper is organized as follows. We formally
describe our model in Section II and present some preliminary
results in Section III. We then analyze the model and compare
the welfare obtained with spectrum partitioning and monopoly
scenarios in Secion IV. Finally, we conclude in Section V.

II. INVESTMENT AND COMPETITION MODEL

A. A Two-stage Game

We consider a market in which a single primary SP (e.g.,
a PAL holder) is sharing a band of spectrum with a set of N
secondary SPs (e.g., GAA users). Secondary access is “open”
meaning that all secondaries have equal access to the spectrum,
provided they do not interfere with the primary. We adopt a
two-stage game model. In the first stage, the primary and all
the secondary SPs simultaneously make investment decisions.
The firms who do not invest will not serve any customers and
so receive zero profits. The firms who invest more will provide
better service. Given the investment choices of all SPs, in the
second stage, the SPs then compete by announcing prices for
their services. In the following we provide a more detailed
description of this market.

1) Supply: The supply in this market is the service offered
by the SPs. For each SP, this service is characterized by a
congestion cost g(y), where y represent the effective load that
SP’s customers experience. For simplicity, here we assume
that g(y) = y

B , i.e., the congestion is proportional to the
effective load (though in general this could be any increasing,
convex function) and we view the parameter B as reflecting the
bandwidth of the given band (so that more bandwidth means
less congestion). We adopt the model from [9] to model the
load experienced by the primary and secondary SPs. The load
of the primary SP is given by y1 = x1/I1, where x1 is the
mass of customers it serves and I1 is its investment level.
Hence, the primary’s congestion cost will be increasing in the
amount of customers it serves and decreasing in its investment.
Note that the primary’s congestion does not depend on the
traffic of the secondaries, which capture the fact that the
primary has strict priority in accessing this band. The load
of the ith secondary is given by

yi =
x1
I1

+

∑N
i=1 x

S
i

ISi

, where ISi is the investment of the ith secondary and xSi
denotes the customer mass served by secondary SP i. Hence,
each secondary SP not only suffers congestion from the pri-
mary but also from the other SPs’ traffic. The primary traffic is
included to model the secondaries’ lower priority in accessing
the channel. Note that if the primary invests more, this reduces
the congestion seen by not only the primary but also by
all secondaries. This models a case where increased primary
investment enables it to serve its traffic faster and so make
the channel available more often for secondary usage. Each
secondary’s investment only impacts its own load, but this
load depends on the total traffic served by all secondaries. The
reason for using the total traffic is to capture the “openness”
of secondary access. This type of investment could model,
e.g., investing in more cell sites, which would make the load
(including the traffic of other SPs) per cell lower for that SP,
but would not have a first order effect on the load seen by
other SPs. Since all the secondaries’ effective loads are the
same, their service can only differ in their investment. In the



competition stage, each SP announces its price; we denote by
p1 and pSi the prices for primary and secondaries, respectively.

2) Demand: Demand in the market comes from the cus-
tomers requesting service. Here, we assume a single mass of
infinitesimal customers and we normalize the total mass to be
one. Each customer selects whether to get service and from
which SP based on the delivered price defined as the sum
of the congestion cost of the serving SP and its announced
price. This models the fact that customers are sensitive to not
just service price but also quality of service. The delivered
price for the primary and secondaries are p1 + g(x1/I1)
and pSi + g(X/ISi ), respectively, where X denotes the total
traffic served by all the secondary SPs. Given a profile of
announced prices in the competition stage, customers willing
to accept service will select the SP which has the least
delivered price (with ties broken randomly). The customers’
demand is characterized by an inverse demand P (x), which
gives the delivered price at which x customers are willing to
pay for service. Again to simplify our discussion, we assume
a linear model where P (x) = 1− x.

B. Equilibrium

To characterize an overall market equilibrium, we must
specify the equilibrium assignment of customers to SPs and
then the equilibrium price and investment decisions of the SPs.

1) Customer Equilibrium: Given the SPs’ investments and
prices, customers select the SP that offers the least delivered
price. If that delivered price is higher than its willingness to
pay, that customer will opt out of service. It follows that all
SPs serving customers must have the same delivered price and
this price must be no greater than P (x), where x is the total
customer mass served in the market. In other words, customers
must be in a Wardrop Equilibrium [22]. Formally, a Wardrop
Equilibrium can be specified by finding a constant K so that

p+
x1
BI1

≥ K, (w.e. if x1 > 0), (1)

pSi +
x1
BI1

+
X

BISi
≥ K, for i ∈ N (w.e. if xSi > 0), (2)

1− (x1 +X) ≤ K, (w.e. if x1 +X > 0). (3)

(Here we use “w.e.” to indicate “with equality”.) Here, the
solution K will be the delivered price in the market. The first
two conditions guarantee that any provider serving customers
will have the same delivered price; the last condition ensures
that this delivered price is equal to P (x1+X). An example of
this for a market with 1 primary and 1 secondary SP is shown
in Fig. 1. Using standard approaches it can be shown that such
an equilibrium always exists and is unique (see e.g. [15]).

2) Provider Equilibrium: In the two-stage investment and
competition game, SPs will first decide on an investment level
and then compete to serve customers by announcing prices.
Their profit is the difference between their revenue, given by
the product of the announced price and mass of customers
served, and the cost of their investment, given by product of

the investment level, I , and the marginal cost of investment c.
More specifically, the primary SP’s profit f1 is given by

f1 = p1x1 − c1I1,

where c1 is the marginal investment cost for the primary. The
secondary SP i’s profit is given by

fSi = pSi x
S
i − cSi ISi .

The marginal cost ci captures the fact that SPs utilize their
investment in different efficiencies. Note that in these expres-
sions, the customers served are determined by the Wardrop
equilibrium conditions in (1)-(3). In equilibrium, we assume
that no SPs can increase its profit by changing its investment
level or price. More precisely we study sub-game perfect Nash
equilibria, in which given the investments of all SPs, all SPs
choose prices so that no SP can improve its profit by unilat-
erally changing its price, while accounting for how customers
will change to a new Wardrop equilibrium. Likewise, in the
investment stage, no SP can unilaterally change its investment
to improve its profit, while accounting for how this change will
affect the pricing decisions of the other SPs. Hence, an overall
market equilibrium is given by a sub-game perfect equilibrium
of the SPs and the corresponding Wardrop equilibrium of the
customers.

C. Welfare measures

Given such an equilibrium, the total firm profit, f is defined
by the sum of the profits made by all SPs, i.e., f = f1+

∑
fSi .

The welfare of the xth customer served is the difference be-
tween the consumers’ value for service, P (x) and the delivered
price they incur; customers that are not served receive zero
welfare. The total consumer welfare, CW , is the integral of
this over all customers; in Fig. 1, this is the area of the triangle
formed by P (x), the delivered price and the y-axis. The social
welfare, SW , of the entire economy is the sum of the firm
profit and the consumer welfare, i.e.,

SW = CW + f.

III. PRELIMINARY ANALYSIS

In this section, we give some preliminary results for our
model. We start by characterizing the equilibrium for case
where sharing is not allowed so that there is a single monop-
olist in the market. This will later be used as a benchmark.
Then move on to sharing and give a basic property of the
equilibrium with multiple secondaries in the market, which
greatly simplifies our subsequent discussion. Finally, we also
present a model for partitioning the spectrum between two
providers, which is another benchmark we will use in numer-
ical comparisons.

A. No Sharing

Without spectrum sharing, the primary SP serves as a
monopolist and thus can use all the available bandwidth. It
chooses its investment level and price to maximize its own
profit. If it chooses not to invest its profit will be zero.
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Fig. 1. Illustration of supply and demand for a model with a single primary
SP and single secondary SP having a linear congestion cost and facing a linear
inverse demand.

Otherwise, if it invests, it must serve a positive mass of
customers to recover the investment cost. Assuming this case,
since there is no competition, the SP’s optimal investment and
price are given by solving the following optimization problem:

max
p1,I1

p1x1 − c1I1

subject to p1 +
x1
BI1

= 1− x1.
(4)

The constraint in this problem captures the customers being in
a Wardrop equilibrium (since in this case only conditions (1)
and (3) are present and we are assuming that x1 > 0 so these
conditions are met with equality). Solving this optimization
gives p∗1 = 1/2 and I∗1 = 1

2

√
1
c1B
− 1

B , which results in a
positive profit when c1 ≤ 1/4B. In other words, provided that
the primary SP is not facing too high of an investment cost,
it will invest I∗1 and charge p∗1 for its service, resulting in a
consumer welfare of

CW =
1

2

(
1

2
−
√

c

B

)2

,

and a social welfare of

SW =
1

2

(
1

2
−
√

c

B

)
+ CW.

Also note that if the primary invests, its optimal price does
not depend on c or B; however, its investment is decreasing in
both parameters. Also, the social and consumer welfare depend
on c and B only through their ratio, i.e., a larger investment
cost can be compensated for by a corresponding increase in
bandwidth.

B. Sharing

Next we turn to the case where the spectrum is shared
with one primary and N ≥ 1 secondary SPs. In this case the
primary and secondary SPs’ investment and pricing decisions
are coupled and so we must study the resulting sub-game

equilibrium. Recall in this game, investment decisions are
made first, followed by pricing decisions. We analyze this
using backward induction, and so first characterize the pricing
decisions of the SPs given the investment choices and then
optimize the investments. Again all SPs have the option of
choosing not to invest and achieving a pay-off of zero, in
which case their pricing decision is irrelevant.

If the primary SP invests I1 > 0, then its pricing decision
is given by solving

max
p1≥0

p1x1 − c1I1

subject to (1), (2), (3),
(5)

where here we somewhat abuse notation and use (1), (2),
(3) to refer to the fact that x1 arises as a result of these
Wardrop equilibrium conditions (which depend on the prices
and investments of the other SPs). Note that in this stage the
investment of the SP is sunk, and so the term c1I1 does not
impact the optimal choice of p1. Also, note that the primary
can always choose a price p small enough so that it draws a
positive customer mass in the Wardrop equilibrium. It follows
that in the pricing stage p1 will be chosen so that (1) and (3)
hold with equality.

Assuming the ith secondary SP invests ISi > 0, it seeks to
solve

max
pS
i
≥0

pSi x
S
i − cSi ISi

subject to (1), (2), (3).
(6)

Again, in this stage its investment is sunk. However, a sec-
ondary that invests ISi > 0 may not be able to serve any
customers even if its price is zero. This arises due to the
second Wardrop equilibrium conditions in (2) and the fact that
the only difference in congestion costs among secondaries is
in the investment cost Isi . For example suppose that another
secondary SP j invests more than i and announces a price of
pSj resulting in an equilibrium number of secondary customers
X . Then if

pSj +
X

BISi
<

X

BISj

it follows that no matter what price SP i announces, its
delivered price will be larger than j’s. In this case, the only
solution to (6) is for xSi to be zero, yielding a loss of −ciIsi .

We use the following result from [9] which greatly simpli-
fies our analysis.

Lemma 3.1: In an equilibrium for the pricing sub-game,
the announced price of at most one secondary that is serving
traffic is positive.

To see why this is true, suppose at least 2 secondaries
announce prices greater than 0 and are serving traffic. This
means that the second Wardrop equilibrium condition (2) holds
with equality for each of them. However, if either SP lowers
its price slightly, then it will have a lower delivered price than
the other secondary and thus draw all of the traffic from the
other SP, which will increase its profit. It follows that these
SPs would engage in a “price war” until at least one of their
prices reach zero. If both SPs had invested the same amount,



the outcome of this price war is that both of their prices are
zero; otherwise, the SP with the smaller investment will end
up with price of zero.

Using this result, we then have that at most one secondary
SP will invest in the market

Lemma 3.2: In any sub-game perfect equilibrium, at most
one secondary SP will invest.

This follows directly from the previous lemma, since if
more than one secondary SP invested, the outcome of the
pricing sub-game would be for one of the SPs that invested
to announce a price of zero and so not make any profit to
recover its investment. That SP would be better off changing
its strategy to not investing.

Since it is only possible that one secondary SP serves the
market, from now on, we only consider a single secondary SP
and use a subscript 2 to indicate its parameters. For instance,
the secondary’s investment, price, customers served are I2,
p2, and x2, respectively. We focus in the next section on the
interaction of this one secondary and the primary SP.

C. Partitioning
In order to compare the efficiencies of spectrum policies, we

will also compare spectrum sharing with spectrum partitioning.
Specifically, instead of sharing a band of spectrum with
bandwidth B, we consider that the spectrum is partitioned into
two parts with bandwidth αB and βB where α+β = 1. Each
partition of the band is exclusively licensed to one of the SPs
(no sharing). . Again, the SPs compete by first deciding on an
investment level, but in this case it only affects the congestion
in their partition. After deciding on investment levels, they
compete by announcing prices, after which the users select
SPs according to a Wardrop equilibrium.

Here since each SP is operating on its own band, they do not
interfere with each other and thus their traffic does not affect
the other SP’s congestion. For instance, for the second SP, its
effective price is p2 + x2

βBI2
whereas in the sharing scenario,

the secondary SP’s effective price is p2+ x1

BI1
+

∑
x2

BI2
. Hence,

in this case, the Wardrop equilibrium is specified by requiring
a constraint of the form of (1) for each SP and no constrains
like (2). Further, since they compete for the same pool of
customers, they still encounter the same demand, i.e., if either
is serving traffic it must be that the delivered price is equal to
P (x1 + x2) = 1− (x1 + x2).

To solve this game, we again use backward induction. We
first find out the best responses of p1 and p2 for the two
SPs as functions of I1 and I2 given the fact that they have
observed each other’s investment level. Then we come back
to the investment stage and optimize the profit again in terms
of I1 and I2 and find the optimal investment level. Note again,
each SP has the option of not investing and earning zero profit.

Assuming both SPs invest, and serve traffic, then from the
Wardrop equilibrium conditions we have

p1 +
x1
αI1

= 1− (x1 + x2)

p2 +
x2
βI2

= 1− (x1 + x2).

To find the equilibrium in the price competition stage, we
first use these equations to express x1 and x2 in terms of p1
and p2, giving

x1(p1, p2) =
(− 1

αI2
− 1)p1 +

1
αI2

+ p2
1

αβI1I2
+ 1

αI1
+ 1

αI2

and

x2(p1, p2) =
(− 1

αI1
− 1)p2 +

1
αI1

+ p1
1

αβI1I2
+ 1

αI1
+ 1

αI2

.

Fixing p2, SP 1’s best response in the price competition is
then given by solving

max
p1≥0

p1x1(p1, p2)− c1I1

s.t. p1 +
x1(p1, p2)

αBI1
= 1− (x1(p1, p2) + x2(p1, p2)).

(7)
The other SP solves an analogous problem.

Using our expression for x1(p1, p2) in the objective function
for the first SP, we have

f1 =
(− 1

αI1
− 1)p21 + ( 1

αI2
+ p2)p1

1
αβI1I2

+ 1
αI1

+ 1
αI2

which is concave in p1 given p2, I1 and I2 with p1 in a
compact set. Thus we obtain the optimal p1 as

p1 =
1
αI2

+ p2

2( 1
αI2

+ 1)
.

We can do the same for the second SP and have the optimal
p2 as

p2 =
1
αI1

+ p1

2( 1
αI1

+ 1)
.

Given the best responses of the two firms, the equilibrium
prices are given by

p1 =
2αI1 + βI2 + 2

3αβI1I2 + 4αI1 + 4βI2 + 4
,

and
p2 =

2βI2 + αI1 + 2

3αβI1I2 + 4βI1 + 4αI2 + 4
.

To find the optimal investment, we put p1 and p2 back to
the respective objective functions and find their best responses
given the other firm’s investment. Given the complexities of
the problem, we use Matlab to find the numeric solutions for
this stage of the game. Specifically, we iterate best response
investments of the two firms until the investments converge.

It can be shown that when the available bandwidth is large
enough, equally partitioning the spectrum, i.e., α = β = 0.5
will generate the most social welfare and consumer welfare.
However, as bandwidth decreases, uneven partitioning can
offer more social welfare and consumer welfare with both
their maximum achieved at the extreme uneven partitioning
- monopoly scenario. This will be illustrated in some of the
numerical results in subsequent sections.



IV. WELFARE ANALYSIS

In this section, we study the equilibrium welfare obtained
under spectrum sharing and compare that with the monopoly
and spectrum partitioning scenarios. We divide our discussion
into two cases when the primary and secondary SP have
homogeneous and heterogeneous investment costs.

A. Homogeneous Investment Cost

We first state our main result in the following theorem and
then provide a sketch of the proof and a discussion about the
resulting equilibria.

Theorem 4.1: In a two-stage investment and competition
game when the investment cost c for the primary and sec-
ondary are the same, there are three possible sub-game perfect
equilibria, which depend on c and the available bandwidths B:

• When c < B
16 , the primary will invest with I∗1 , where

I∗1 = 2
4+3BI2

√
1+BI2
cB − 1

B and the secondary will invest
with I∗2 where I∗2 solves 4B − 3B2I2 = c(4 + 3BI2).

• When B
16 ≤ c <

B
4 , only the primary will invest with IM1

where IM1 = 1
2

√
1
Bc −

1
B .

• When c ≥ B
4 , then no one invests.

The full proof is given in Appendix V-A. Here we only
sketch the main ideas. First we determine the equilibrium of
the pricing sub-game by assuming that both SPs invest and
serve customers. In this case, the best response for the primary
SP is given by solving

max
p1

p1x1 − cI1

subject to p1 +
x1
BI1

= 1− (x1 + x2).
(8)

Here, as in our analysis of the partitioning case, x1 and x2
are functions of p1 and p2, which can be determined via the
Wardrop equilibrium constraints. Likewise, the secondary’s
best response is given by

max
p2

p2x2 − cI2

subject to p2 +
x1
BI1

+
x2
BI2

= 1− (x1 + x2).
(9)

By solving these optimizations and finding the intersection
of the best responses, we find the pricing equilibrium. Then
we proceed to analyze the investment stage, where in the case
only the primary invests, the corresponding pricing decision is
the same as in the no-sharing scenerio in the previous section.

This result shows that there are equilibria in which both the
primary and secondary invest; however, for the secondary SP
to invest the cost must be much lower than for the primary
to invest, namely the threshold cost value for the secondary is
1/4 of that of the primary. Note also that as B increases these
thresholds increase in proportion to B, i.e., if more bandwidth
is available, this can compensate for higher marginal costs.

Next we consider the asymptotic behavior as B →∞. For
large enough B, eventually the seocndary will invest at a level
I2 that solves 4B−3B2I2 = c(4+3BI2). From this, it can be
seen that as B →∞, I2 approaches 0. However, the product of
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Fig. 3. Enlargement of Figure 2 when bandwidth is small.

B and I2 approaches 4
3 . This is due to the fact that the original

equation can be re-written as 4 − 3BI2 = c(4 + 3BI2)/B,
where the right-hand side goes to zero when B goes to infinity.
In this case,

I1 =
2

4 + 3BI2

√
1 +BI2
cB

− 1

B
,

which also goes to zero as B → ∞. Multiplying both sides
of this equation by B, it can be shown that BI1 approaches
infinity. By putting all these into the social welfare, the limiting
social welfare is given by 0.4477. For the monopoly scenario,
when the bandwidth goes to infinity, it is easy to see the
investment is zero while the monopolist charges a price equal
to 1/2. Thus, the social welfare with a monopoly approaches
0.375. We summarize these in the following corollary.
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Fig. 4. Illustration of Social Welfare and Consumer Welfare when both
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Lemma 4.2: As B → ∞, the product of bandwidth and
investment for the primary and secondary approaches ∞ and
4/3, respectively, i.e., BI1 →∞ and BI2 → 4

3 .
Figures 2 and 3 show the equilibrium social welfare and

consumer welfare as the bandwidth B varies. Here, three
scenarios are considered including spectrum sharing, spectrum
partitioning (α=0.5) and no sharing (α=1). This shows that
as the bandwidth increases, the social welfare and consumer
welfare increase in all three cases while the increasing rates
are different. Figure 3 enlarges Figure 2. It shows that the
primary starts investing at B = 0.2. When the bandwidth is
between 0.2 and 0.8, the social welfare and consumer welfare
for sharing and no sharing coincide since only one primary SP
invests and acts as a monopolist in that regime. When B = 0.8
which is 16 times of the investment cost c = 0.05, the sharing
and no sharing welfares start to differ since with sharing the
secondary starts to invest which improves the social welfare
and consumer welfare.

In Figure 2, sharing can provide most social welfare when
the bandwidth is limited while evenly partitioning the spectrum
exceeds that with large enough bandwidth though the differ-
ence is small. This is due to the fact that sharing makes the
two SP invest more than partitioning while charging similar
average prices as shown in Figure 4. However, the social
welfare with partitioning is the lowest when only a small band
of spectrum is available compared with both sharing and no-
sharing. This is due to the fact that with limited resources,
a monopoly can utilize most of the spectrum and having
only one firm invest lowers investment costs compared to
partitioning. When the bandwidth is large enough, partitioning
allows the firms to not invest too much but benefit from the re-
source. Furthermore, the social benefits generated by spectrum
sharing is always more than the no-sharing scenario. As we
have shown earlier, as available bandwidth goes to infinity,
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Fig. 5. Illustration of primary and secondary SP’s investment profile based
on their investment costs and total bandwidth.

the difference in social welfare with sharing and no-sharing
approaches to 0.07. Sharing also achieves the largest consumer
welfare with limited spectrum while partitioning bypasses
sharing when the bandwidth becomes large. Again, sharing
always creates more consumer welfare than no-sharing.

In [9] where investment is not modeled, sharing can always
produce more social welfare and consumer welfare. With
investment, we see the same trend, but the gains are lower,
due to the fact that only one secondary SP invests.

More generally, it can be shown with a general convex
increasing congestion cost and decreasing concave inverse
demand, there are always three possible equilibria when the
investment costs for both SPs are the same, that is

• No one invests,
• The primary invests and the secondary does not,
• Both the primary and secondary invest.

We leave a more detailed analysis of such a case to future
work.

B. Heterogeneous Investment Cost

This section discusses the equilibrium when the marginal
investment costs for the primary and the secondary are differ-
ent, i.e., c1 6= c2. As we will see later, there are still three
possible cases as before. However, now when there is only
one SP investing, it may not be the primary. We first state our
main result below.

Theorem 4.3: For our two-stage investment and competition
game, there are four possible sub-game perfect equilibria with
linear congestion costs and inverse demand depending on the
investment costs c1, c2 and bandwidth B.

• When c1 > B/4 and c2 ≤ B/16, then only the primary
invests with IM1 = 1

2

√
1
Bc1
− 1

B .
• When c1 ≤ B/4 and c2 > B/16, then only the secondary

invests with IM2 = 1
2

√
1
Bc2
− 1

B .
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Fig. 6. Welfare comparisons among spectrum sharing, partitioning and
monopoly scenarios when c1 = 0.1 and c2 = 0.2.

• When c1 ≤ B/4 and c2 ≤ B/16, then both SPs invests
with I∗1 = 2

4+3BI2

√
1+BI2
c1B

− 1
B and the secondary will

invest with I∗2 where I∗2 solves 4B − 3B2I2 = c2(4 +
3BI2).

• When c1 ≤ B/4 and c2 ≤ B/16, then no SP invests .

The proof is similar to the case when the investment costs
are the same so we omit it here. We show this investment
profile in Figure 5 with a given bandwidth. This shows that
it has a lower barrier for the primary SP to invest than the
secondary since the primary simply needs to have a investment
cost lower then 1/4 of the bandwidth while it needs to be 1/16
for the secondary to invest.

An example of the resulting equilibrium investment and
price levels as well as welfares are shown in Fig. 6 and Fig. 7.
These shows that when B = 0.4, the primary starts to invest
and when B = 3.2 the secondary starts to invest. As the band-
width grows larger, both of them have to decrease their prices
in order to gain more customers. Again the social welfare
and consumer welfare for sharing are the same as in the no-
sharing case, when B < 3.2 but larger otherwise. We can see
that partitioning does not provide as much social welfare and
consumer welfare as sharing with limited bandwidth. But as
bandwidth grows, this difference starts to shrink.

There exists another case when the marginal investment
costs for the secondary is very small, then it is possible for
only the secondary SP to invest, in which case it will act
as a monopolist. This case can cause a dramatic change in
social welfare compared to the other cases as shown in Fig. 8.
This is because when the bandwidth is large enough for the
secondary to invest, i.e., B > 16c2, but small enough to
prevent the primary from investing, i.e., B < 4c1, then only
the secondary will invest and act as a monopolist in the market.
This corresponds to the area when 0.32 < B < 0.8 in Fig. 8.
At this region, the social welfare and consumer welfare are the
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Fig. 7. Investment levels, announced prices and serving customers for the
primary and secondary SPs when c1 = 0.1 and c2 = 0.2.

Bandwidth
0 2 4 6 8 10 12 14 16 18 20

W
el

fa
re

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

SW ,=0.5
CW ,=0.5
SW ,=0(SP2 Monopoly)
CW ,=0(SP2 Monopoly)
SW Sharing
CW Sharing

Fig. 8. Welfare comparisons among spectrum sharing, partitioning and
monopoly scenarios when c1 = 0.2 and c2 = 0.02.

same as if the secondary was a monopolist. However, when
the bandwidth grows larger, the primary will invest. Since it
has a larger investment cost and less incentive to invest, it will
invest less which makes the secondary’s customers suffer from
the additional congestion coming from the primary. Hence, at
B = 4c1 = 0.8, the social welfare has a significant drop due
to the entry of the primary and then slowly increases as the
bandwidth grows. Compared with the case when the primary
has less investment cost as in Fig. 7, this big drop in social
welfare indicates the fact that having a primary SP with a high
investment cost may create counter-intuitive outcomes, i.e., the
social welfare may drop with increasing bandwidth.

Indeed, Fig. 9 shows the contrast in social welfare when the
two distinct SPs switch their roles as primary and secondary
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SPs. It shows that when the primary has a lower investment
cost and the secondary has a higher investment cost, i.e.,
c1 = 0.02 and c2 = 0.2, the primary will invest and act as
a monopolist when the bandwidth is small and then when
B = 16c2 = 3.2, the secondary decides to enter and compete
with the primary. This has a influence on the social welfare
and consumer welfare but does not affect its trend in growing.
However, when exchanging the investment cost of the primary
and secondary, the primary will enter at B = 4c1 = 0.8,
where again a drop in welfares happens. And as shown in
the figure, this setting has much lower social welfare and
consumer welfares. This also indicates that the assignment
of which SP is primary or secondary can be important. As
a policy planner, if the spectrum is to be shared, it would be
better in terms of social welfare to make the SP with the lower
investment costs, the primary.

V. CONCLUSION

This paper studied a two-stage game for investment and
competition when spectrum is shared between a primary and
secondary SPs. We have shown that for the given model, only
one secondary SP will invest and compete with the primary.
Further, the entry barriers for the primary and secondary SPs
are different. With a linear model, only when the bandwidth
is larger than 4 times its investment cost, i.e., B > 4c1, will
the primary invest. In contrast, the available bandwidth need
to be 16 times a secondary’s investment cost for it to enter.
The welfare analysis also indicates that putting the SP with
the lower investment costs as the primary can offer larger
social welfare and consumer welfare with larger bandwidth.
This may provide some insights into how spectrum rights can
be allocated.

The model we studied was stylized and could be made more
realistic in a number of ways such as by using other models
for the congestion costs. For example, in [23] a more refined

model for sharing was studied based on models of priority
queues. Here we assumed that all users weighed congestion
and price in the same way; richer models that allow for
different classes of users could be considered. We assumed
that Tier 1 users were not present; introducing them into the
model is another potential future direction. Also, more detailed
models for investment could be developed that account for
different ways that SPs might invest, e.g. deploying smaller
cells or different technologies.

APPENDIX

A. Proof of Theorem 4.1

Proof: To solve the optimization problem, we use back-
ward induction: first we find the optimal price for the primary
and the secondary given the other’s price and fixed investment
levels. Then we find the optimal investment levels.

First, consider at the competition stage when the investment
levels for both SPs are sunk. Specifically we treat I1 and I2
as given at this point and solve the price competition game
between the primary and secondary. From the first constraint
from both SPs, we can obtain

x2 = BI2(p1 − p2). (10)

Putting this back to the objective function of the secondary,
its profit turns out to be f2 = −BI2p22 + BI2p1p2 − cI2.
Given the announced price from the primary, this objective is
a concave function with its variable in a compact set. Thus a
unique solution is obtained by taking the first derivative. The
optimal price for the secondary is

p2 =
1

2
p1. (11)

Now we turn to the primary. From (10) and the first constraint
in (8), x1 can be represented by

x1 =
−(1 +BI2)p1 + 1 +BI2p2

1 + 1/(BI2)
.

By plugging in x1 to the objective of the primary, it is reduced
to f1 =

−(1+BI2)p
2
1+(1BI2p2)p1

1+1/(BI2)
−cI1. Again this can be solved

by convex optimization giving the unique solution

p1 =
2

4 + 3BI2
. (12)

From the best responses of the primary and secondary
given each other’s price, (11) and (12), we have the following
equilibrium at the price competition stage:

p1 =
2

4 + 3BI2
,

p2 =
1

4 + 3BI2
.

(13)

Second, the optimal investments for both SPs can be ob-
tained by putting the optimal prices back to each SP’s objective
function with the other’s investment profile given. For the
secondary, its profit reduces to

f2(I2) =
BI2

4 + 3BI2
− cI2.



Here the profit of the secondary does not depend on the
primary’s investment. So to optimize its profit, the secondary
only needs to find its own optimal investment. The first
derivative and the second derivative of the secondary’s profit
are given by f

′

2(I2) = B
(4+3BI2)2

− 6B2I2
(4+3BI2)3

− c and

f
′′

2 (I2) =
6B2(3BI2−8)
(4+3BI2)4

. The second derivative of the objective
function is not always negative. When I2 = 0, this yields
f

′′

2 (I2) < 0. And as I2 increases, f
′′

2 (I2) increases. In addition,
it can be shown that as I2 goes to infinity, f

′′

2 (I2) is negative.
This means the first derivation of the secondary’s profit first
decreases and then increases but when I2 goes to infinity, f

′

2

is negative. Further, since f2(0) = 0, if the first derivative at
0 is negative, then the secondary can not gain positive profit
thus will opt not to invest. In other words, only when f

′

2(0)
is positive, the secondary SP can make an investment and
obtain a positive profit. Thus to make I2 > 0, it must be
that f

′

2(0) > 0, i.e., c < B
16 . And when it invests, it finds

the optimal profit by setting the first derivative to zero which
yields that I2 solves

4B − 3B2I2 = c(4 + 3BI2)
3.

Now we turn to the optimization problem for the primary
SP. By plugging in the optimized prices, the objective for the
primary becomes to maximize

f1(I1) =
4(BI2 + 1)

(4 + 3BI2)2
− 4(BI2 + 1)

(43BI2)2
1

(BI1 + 1)
− cI1.

With the investment level of the secondary given, the max-
imization problem above can be transformed to minimize
L = 4(BI2+1)

(43BI2)2
1

BI1+1 + cI1 which can be further reduced to
minimize

L =
4(BI2 + 1)

(43BI2)2
1

(BI1 + 1)
+ cI1

=
4(BI2 + 1)

B(43BI2)2
1

(I1 + 1/B)
+ c(I1 + 1/B)− c/B

≥ 2

√
4c(cI2 + 1)

B(4 + 3BI2)2
− c/B.

(14)

The last inequality comes from the fact that a/x + bx ≤
2
√
ab with equality at x =

√
a/b. Thus the minimum of L is

achieved at

I1 =
2

4 + 3BI2

√
BI2 + 1

Bc
− 1

B
,

with the constraint that I1 ≥ 0. When the secondary does not
invest, I1 = 1

2

√
1
Bc −

1
B . So in order for the primary to invest

in the first stage, i.e., I1 > 0, it must be that c < B/4. This
completes the proof.
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