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Abstract—This paper considers sharing wireless spectrum via
licensed secondary access in which a single firm has an exclusive
license for secondary use of a spectrum band. Building on
previous work modeling competition among wireless service
providers, we study competition between primary and secondary
firms with this type of sharing, and characterize its impact on
social welfare, consumer welfare and firm profits.

I. INTRODUCTION

The rising demand for wireless data and the limited supply
of wireless spectrum has fueled interest in novel approaches
for spectrum sharing. Indeed, sharing has been adopted in
the TV white spaces [1] and is being considered for federal
spectrum such as 3.5 GHz band [2]. Many different approaches
to spectrum sharing have been studied, e.g., [3]–[5], much of
this under the “primary-secondary” model. Here, the primary
user has priority usage of the frequency band, while the
secondary users are allowed to access the spectrum provided
that they do not degrade the primary’s service. We consider a
similar primary-secondary sharing model as in [5], where both
primary and secondary users are wireless service providers
(SPs) who compete for a common pool of customers.

Our approach is an extension of work in [6]–[8] modeling
competition among SPs. This was in turn used models for
price competition with congestible resources developed in
the operations and economics literature (e.g. [9], [10]). In
these models, SPs set prices to compete for the same pool of
customers, and customers choose SPs based on the delivered
price given by the sum of a SP’s price and a congestion cost.
In [6], we considered such a model for sharing the band
of a single primary SP with multiple secondary SPs. The
assumption was that secondary use was unlicensed, i.e., any
secondary firm could use the band provided it did not increase
the congestion cost experience by the primary SP’s customers.
However, the customers of each secondary SP experienced
congestion due to both the traffic from all the secondary SPs
and the traffic of the primary SP.

The results in [6] show that due to competition among
multiple secondary SPs, the equilibrium price charged by each
secondary SP is zero. Allowing for such secondary SPs does
result in more customers being served and, moreover, both
social welfare and consumer welfare increase compared to
no sharing, provided there is sufficient bandwidth available,
while the primary firm’s profit decreases. This makes sharing
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undesirable for the primary. Also, since the secondary SPs
make no profit, they would have little incentive to invest
in offering service. Instead of unlicensed sharing, here we
consider a scenario where a single secondary SP is licensed
to operate in the same band, again provided that it will not
cause any interference for the primary users. With this sharing
scheme, we show that social welfare and consumer welfare
still increase compared to without sharing. More interestingly,
total firm profits are greater than with unlicensed sharing and
in some regimes, greater than with no sharing.

The rest of the paper is organized as follows. Our model
for price competition is described in Section II. We analyze
the welfare under different sharing regimes and assumptions
on customer demand and the congestion costs in Sections III
and IV. Finally, we conclude in Section V.

II. COMPETITION MODEL

As in [6]-[8], we consider a model where SPs set prices for
their service to compete for a common pool of customers. As
in [6], we focus on a model in which there is one incumbent SP
with licensed spectrum. Without sharing, this incumbent acts
as a monopolist with exclusive use of the frequency band. In
the sharing model in [6], this incumbent is the primary user
while a set of N > 1 secondary SPs operate in the same
band subject to not degrading the performance seen by the
primary users. Here, we instead consider a model for licensed
secondary sharing, where only one secondary SP is allowed
to access the spectrum.

Each SP’s service is characterized by a congestion cost,
g(x), which models various effects such as increased inter-
ference or queueing delays that arise as a SP serves more
customers in a given area. With sharing, the congestion cost
seen by the primary users is given by g(x1), where x1

denotes the mass of customers the primary SP is serving. The
congestion cost of the secondary SP’s customers is given by
g(X), where

X = x1 + xS .

Here, X is the total mass of customers being served in the
band, and xS is the mass of customers served by the secondary
SP. This models the fact that the primary SP does not “see”
any degradation from the secondary, while the secondary users
do experience degradation due to the primary. In general, we
assume that g(x) is an increasing, convex function as shown in
Figure 1, though for simplicity we first focus on the case where



this is a linear function, i.e., g(x) = x
C , where C represents

the bandwidth or capacity of the spectrum band.
Customers select SPs based on the SP’s delivered price,

which is the sum of the SP’s announced price and the
congestion cost of their service. Specifically, the delivered
price of the primary SP is p1+g(x1), while the delivered price
of the secondary SP is p2 + g(X). Each customer selects the
service provider who has the lowest delivered price.

We also assume a single mass of infinitesimal customers.
Customer demand is modeled by an inverse demand function
P (q), which will be a non-increasing function, that indicates
the delivered price at which q customers are willing to pay for
service. As in Fig. 1, this will in general be a concave function.
However, for simplicity, we first assume that customers are
homogeneous in their demand, i.e., all customers are willing
to pay up to the same delivered price, in which case P (q) has
a “box” shape.

We view the competition among the primary firm, the sec-
ondary as well as the customers as a pricing game where firms
simultaneously set prices, (p1, p2). Customers then choose one
of the firms offering the lowest delivered price. Thus given a
set of prices, (p1, p2), the customers selecting service, must
satisfy the following Wardrop equilibrium conditions [11]:

p1 + g(x1) ≤ P (X), (with equality if x1 > 0).
p2 + g(X) ≥ P (X), (with equality if x2 > 0).

These conditions specify that the delivered price of all SPs
serving customers are equal and no greater than P (X).

We define a (pure strategy) Nash equilibrium of the overall
pricing game to be a set of prices (p1, p2) and demands
(x1, x2) which satisfy these Wardrop equilibrium conditions
and also have the property that no SP can increase its profit
(given by pixi) by unilaterally changing its price.

Given such an equilibrium, the firm profit, fc, is defined by
the sum of the profits made by both SPs. The welfare of the
xth customer served is the difference between that customer’s
value for the service given by P (x) and the delivered price
it pays for service; customers that are not served receive zero
welfare. The total consumer welfare, Sc, is the integral of
this over all customers. The social welfare, S, of the entire
economy is the sum of the firm profit and the consumer
welfare, i.e., S = Sc + fc.

Next we briefly discuss the optimization faced by the
primary firm with no sharing and unlicensed sharing and then
contrast this with the case of licensed sharing.

A. Without Sharing

Without spectrum sharing, the primary firm is a monopolist
in the market. As there is no competition with other firms, it
sets the price to maximize its own profit, i.e., it solves:

max px

subject to p+ g(x) = P (x),

0 ≤ x ≤ 1.

Under our assumptions, this will be a convex problem with a
unique solution.
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Fig. 1. Illustration of pricing game between primary and secondary firms
with licensed shared spectrum.

B. With Unlicensed Sharing

With unlicensed sharing, it is shown in [6] that all the sec-
ondary firms have equilibrium price p = 0. Thus, the delivered
price is determined by P (x∗), which satisfies g(x∗) = P (x∗).
Consequently, the primary firm needs to maximize its profits
according to the fixed delivered price, thus it solves:

max px

subject to p+ g(x) = P (x∗),

0 ≤ x ≤ x∗.

Note the only difference between unlicensed sharing and no
sharing is that the price cap of the former is fixed by (??)
while the latter is given by P (x∗).

C. With Licensed Sharing

With unlicensed sharing, the strategic interaction between
the primary and secondary SPs is only via the fixed price
cap P (x∗). However, with licensed sharing, the secondary SP
can sustain a non-zero price, and thus there is greater strategic
interaction. In particular, though both firms must have the same
delivered price in equilibrium, the value of this price is no
longer fixed a priori but requires finding an equilibrium of the
pricing game between the two providers. Such an equilibrium
is characterized as a fixed point of the provider’s best response
correspondences, Bri(p−i), which, for i = 1, 2, specify SP i’s
optimal price p∗i given that the other SP’s price is fixed at p−i.
For the primary SP (i = 1), this is given by solving:

max p1x1

subject to p1 + g(x1) = P (X),

p2 + g(X) = P (X),

x1 + x2 = X,

0 ≤ x1, x2 ≤ 1,

(1)

where p2 is fixed and the optimization is over p1, x1, x2 and
X . The secondary SP solves the same problem, except the
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Fig. 2. Illustration of pricing game with linear congestion and homogeneous
inverse-demand. Left: C ≤ 4/3. Right: C > 4/3.

objective is replaced by p2x2 and p2 is fixed instead of p1.

III. LINEAR CONGESTION AND HOMOGENEOUS DEMAND

In this section, we assume a linear congestion cost given by
g(x) = x/C and a homogeneous customer demand given by

P (x) =

{
1, 0 ≤ x ≤ 1,

0, otherwise.

Later we will relax the width and height of this“box”. The
main result is summarized in the following theorem.

Theorem 3.1: When 0 < C ≤ 1.2, with licensed sharing,
social welfare is greater than that without sharing and with un-
licensed sharing. When C > 1.2, it asymptotically approaches
to but is less than that with unlicensed sharing.

When 0 < C ≤ 1.49, with licensed sharing, firm profit
is greater than without sharing and with unlicensed sharing.
When C > 1.49, it drops below that without sharing and
asymptotically approaches to but is greater than with unli-
censed sharing.

With licensed sharing, consumer welfare is always no
greater than that with unlicensed sharing and no less than
without sharing.

The proof of this follows from comparing the equilibrium
welfares under licensed sharing given in the following lemma
to those for unlicensed sharing and no sharing, given in [6].

Lemma 3.2: With licensed spectrum sharing, under the
assumed homogeneous demand and linear congestion cost
there is always a unique Nash equilibrium with the following
properties:
• When 0 < C < 4/3, the primary SP serves x1 = C/2

customers with p1 = 1/2 and the secondary SP serves
x2 = C/4 customers with p2 = 1/4 resulting in S =
5C/16, fc = 5C/16, and Sc = 0.

• When C ≥ 4/3, the primary SP serves x1 = 2/3
customers with p1 = 2/(3C) and the secondary SP serves
x2 = 1/3 customers with p2 = 1/(3C) resulting in
S = 1− 7/9C, fc = 5/9C, and Sc = 1− 4/3C.

This lemma shows that the possible outcomes are divided
into two distinct cases illustrated in Fig. 2. The left-hand side
of this figure illustrates the first class of equilibria in which

spectrum is sufficiently limited so that even with sharing, all
customers are not served (C < 4/3). In this case the delivered
price is equal to the maximum value acceptable by consumers
(i.e., P (x) = 1). In the second case, shown on the right-
hand side of Fig. 2, there is enough spectrum available so that
the entire market is served in equilibrium. In this case, price
competition between the service providers lowers the delivered
price below P (x) = 1.

Proof: To begin, we consider the secondary SP and
determine its best response to an arbitrary price p1 < 1.1 This
is given by solving

max p2x2

subject to p2 +X/C ≤ 1,

p1 + x1/C = p2 +X/C,

x1 + x2 = X,

0 ≤ X ≤ 1,

x1 ≥ 0, x2 ≥ 0.

Where the second constraint follows from the Wardrop equi-
librium conditions and the fact that for the secondary to
serve any customers and make a positive profit, this condition
must be met with equality. From this constraint, we obtain
p1+x1/C = p2+(x1+x2)/C, which yields x2 = C(p1−p2).
Substituting this into the objective, it can be seen that the
resulting convex problem has the unique solution

p2 = p1/2,

i.e., the secondary firm’s best response is always to announce
half of the price of the primary firm. This is true regardless
of the amount of spectrum C.

Next we turn to the primary SP, its best response is given
by solving

max p1x1

subject to p1 + x1/C ≤ 1

p1 + x1/C ≤ p2 +X/C

x1 + x2 = X,

0 ≤ X ≤ 1,

x1 ≥ 0, x2 ≥ 0.

Note that at least one of the first two constraints must be
tight at any optimal solution, since otherwise p1 can be
increased keeping all other parameters fixed yielding higher
profit. Further, if the second constraint is tight and the first
one is not, then it must be that X = 1, or else x1 could be
increased, again leading to higher profit. In other words, the
primary SP’s best response will always result in either the
delivered price being equal to the maximum acceptable value
(P (x) = 1) or the entire market being served (X = 1).

Consider the case where the first constraint is binding, but
not the second. In this case the primary’s profit maximizing

1If p1 ≥ 1, the primary will not serve any customers, since the delivered
price would then be greater than 1.



price must be the same as in a market without sharing, in
which case it solves

max p1x1

subject to p1 + x1/C = 1,

0 ≤ x1 ≤ 0,

(2)

As shown in [6], for C ≤ 2, the solution to this problem is
to set p1 = 1/2 and serve x1 = C/2 customers. For C in
this range, with licensed sharing, we must also ensure that the
second constraint is satisfied, i.e., that

p1 + x1/C ≤ p2 +X/C. (3)

Provided that p2 +X/C ≥ 1 this constraint will be satisfied.
Further, as discussed previously, if this constraint is binding
and the first constraint is not, it must be that X = 1; hence
a necessary and sufficient condition for this constraint to be
satisfied at a solution to (2) is if p2 ≥ 1 − 1

C . Hence, we
have shown that for C ≤ 2, the primary SP’s best response
to any p2 ≥ 1− 1

C is the same as in the no-sharing case, i.e.,
p1 = 1

2 . Combining this with our earlier observation that the
secondary SP’s best response is always p2 = p1/2, it follows
that p1 = 1/2 and p2 = 1/4 is a Nash equilibrium if and only
if 1/4 ≥ 1− 1

C or equivalently C ≤ 4/3.
At any other Nash equilibria, it must be that (3) is the tight

and the delivered price is less than 1, which from the above
means that either C > 4/3 or p2 < 1 − 1

C . Recall, that (3)
being tight is equivalent to

x2 = (p1 − p2)C,

in which case, the primary’s best response is equivalent to
solving

max p1x1

subject to x1 + (p1 − p2)C ≤ 1

x1 ≥ 0 ≥ 0.

The unique solution to this problem is p1 = (1− p2C)/(2C)
for p2 < 1/C and p1 = p2, otherwise. Combining this with
the secondary’s best response of p2 = p1/2, yields the unique
solution: p1 = 2/(3C) and p2 = 1/(3C). Furthermore, it can
be seen that for C < 4/3, this value of p2 can not be smaller
that 1− 1/C, showing that this equilibrium arises if and only
if C ≥ 4/3 (when C = 4/3 it corresponds to the previous
equilibrium).

The number of customers served and the welfares for each
equilibrium then follow by direct calculation.

From Lemma 3.2 it can be seen that when C < 4/3, firm
profits increase with the available bandwidth, since it allows
them to serve more customers, while holding their price fixed.
When C > 4/3, firm profits are decreasing in C. In this case
they continue serving the same mass of customers but at lower
prices. As shown in Fig. 3-4 the loss of firm profit is more
than offset by an increase in consumer welfare, resulting in
an overall increase in social welfare.

In Fig. 3-4, we also show the welfares obtained under
unlicensed sharing and without sharing, both of which are
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Fig. 3. Comparison of social welfare between unlicensed sharing, no sharing
and licensed sharing with linear congestion and homogeneous inverse-demand.

Fig. 4. Comparison of firm profit (left) and consumer welfare (right) between
unlicensed sharing, no sharing and licensed sharing with linear congestion and
homogeneous inverse-demand.

studied in [6]. With no sharing, the primary SP acts as a mo-
nopolist and extracts all of the welfare (i.e., consumer welfare
is zero). With unlicensed sharing, the primary SP can no longer
do this, when there is sufficient spectrum available, leading
to increased consumer welfare and increased social welfare,
although firm profits may decrease. The behavior is somewhat
similar with licensed sharing, namely, with sufficient spectrum,
consumer welfare increases and firm profits decreases relative
to no sharing. The gain in consumer welfare is smaller than
with unlicensed sharing. However, unlike unlicensed, with C is
small, licensed sharing results in an increase in overall welfare
relative to no sharing (and unlicensed sharing). This is due to
the additional firm profit gained by the secondary SP. However,
when C becomes large enough, i.e., C > 1.2, the social
welfare of licensed sharing still increases with bandwidth
but drops below unlicensed sharing. This is because the
competition between the two SPs does not increase consumer
welfare as much as with unlicensed sharing.

So far we have investigated the welfares under the linear
congestion cost and unit “box” demand function. Next we
consider the general case of homogeneous demand, where both
the width and the height of the “box” can be arbitrary constants
a and b, respectively. That is,

P (x) =

{
b, 0 ≤ x ≤ a

0, otherwise.



Following a similar analysis, we obtain a generalization of
Lemma 3.2, which is given next.

Lemma 3.3: With licensed spectrum sharing, under general
homogeneous demand and linear congestion cost there is al-
ways a unique Nash equilibrium with the following properties:
• When 0 < C ≤ 4a/3b, the primary SP serves x1 =

bC/2 customers with p1 = b/2 and the secondary SP
serves x2 = bC/4 customers with p2 = b/4 resulting in
S = 5b2

16 , fc = 5b2C
16 , and Sc = 0.

• When C > 4a/3b, the primary SP serves x1 = 2a/3
customers with p1 = 2a/3C and the secondary SP serves
x2 = a/3 customers with p2 = a/3C resulting in S =

ab− 7a2

9C , fc = 5a2

9C , and Sc = ab− 4a2

3C .
A detailed comparison of the results in this lemma to the

cases of unlicensed secondary sharing and no sharing are
given in the top part of Table I. For all choices of a and
b, licensed sharing still generates the largest social welfare
when C is small. When C grows larger, the social welfare of
licensed sharing drops below that with unlicensed sharing with
a difference of a2/36C, which vanishes as C becomes large.
Also the crossing point between the two curves occurs when
C = 1.2a/b. For the firm profit, licensed sharing performs
best with limited bandwidth. However, the firm profit under
licensed sharing decreases fast when the two SPs are able to
serve the entire market. This is dramatically different from
the case without sharing, where firm profit always increases
monotonically with C. The crossing point of firm profit
with licensed sharing and without sharing is occurs when
C = 1.49C, and the difference between them can be as large
as b2C/16.

IV. HETEROGENEOUS DEMAND AND GENERAL
CONGESTION

In this section we turn to a case with heterogeneous demand
modeled by allowing the inverse demand to be any strictly
decreasing, concave function and also allow the congestion
cost is any strictly increasing convex function. The following
theorem shows that with the additional assumption that P (x)
and g(x) are twice differentiable, then a Nash equilibrium
always exists for this game.

Theorem 4.1: Let the congestion function g(x) be convex
and increasing in x, and inverse demand function P (x) be
concave and decreasing, with both twice differentiable and
P (0) > 0. Then a Nash equilibrium exists under licensed
sharing.

We omit the proof due to space considerations. Our next
results shows that some of the qualitative behavior of social
welfare and consumer welfare with homogeneous demands
and linear congestion carry over to this more general setting.

Theorem 4.2: Given increasing convex congestion cost and
decreasing concave inverse-demand, the equilibrium social
welfare as well as consumer welfare with licensed sharing
is always greater than that without sharing.

Proof: First note that due to the introduction of com-
petition, the delivered price for licensed sharing will always
be less than that without sharing. This follows since if this

was not true the primary could announce the same price
as without sharing and would be able to serve the same
number of users. Thus, referring to Fig. 1, the area bounded
by the delivered price of licensed sharing and P (X), which
equals the consumer welfare of licensed sharing, is larger
than the consumer welfare without sharing plus the partial
firm profit without sharing in that region and so is clearly
larger than consumer welfare without sharing. In addition, the
red shaded rectangle in Fig. 1 must have the largest area
of any rectangle within the region bound by the delivered
price and the congestion (since this area corresponds to the
profit obtained by the primary firm with licensed sharing). In
particular, this area must be no smaller than the other part of
firm profit from without sharing. Only adding up the consumer
welfare and the primary firm’s profit with licensed sharing
exceeds the social welfare of no sharing. Thus social welfares
with licensed sharing is also larger than that without sharing.

To further explore the heterogeneous demand scenario, we
consider a case with linear congestion cost g(x) = x/C and
linear inverse-demand P (x) = b− bx/a with 0 < x ≤ a and
P (x) = 0, otherwise. In this case the equilibrium welfares
can be calculated explicitly and are given in the lower part of
Table I, along with the corresponding quantities for unlicensed
sharing and no sharing. In this setting, the ratio of social
welfare in licensed sharing to unlicensed sharing is shown
to be about 5/4 when C is small. When C becomes large,
the ratio becomes less than but approaches to 1. The crossing
point always exists. In comparison, the ratio of firm profit
with licensed sharing to no sharing is approximately 5/4 as
well when C is small. And as C becomes large, the ratio
approaches to zero. To further illustrate this behavior, we also
plot these quantities as a function of C in Fig. 5, assuming
that a = b = 1.

The next theorem compares the primary firm’s profit with
unlicensed sharing and licensed sharing.

Theorem 4.3: Given strictly increasing and convex conges-
tion and strictly decreasing and concave inverse-demand, the
primary firm gains more profit and serves more customers with
licensed sharing than with unlicensed sharing.

Proof: Let P (X) be the delivered price with licensed
sharing; this will be strictly greater than the delivered price
with unlicensed sharing P (X∗), since if not the secondary
SP would not make any positive profit. From this it follows
directly that the primary firms’ profit must be greater with
licensed sharing. TO complete the proof we only need to show
that x∗1 < x′1, where x∗1 and x′1 are the number of customers
the primary firm serves in equilibrium with unlicensed and
licensed sharing, respectively.

The difference in the profit maximization problem facing
the primary SP in the two scenarios is only due to swapping
the following two constraints:

with unlicensed sharing: p1 + g(x∗1/C) = P (X∗),

with licensed sharing: p1 + g(x′1/C) = P (X).



TABLE I
COMPARISON OF IMPACT ON WELFARES IN INVERSE DEMAND FUNCTION PARAMETERS.

W/O Sharing unlicensed sharing licensed Sharing
Homogeneous When 0 < C ≤ 2a/b, When 0 < C ≤ a/b, When 0 < C ≤ 4a/3b,

Demand S = b2C
4

, S = b2C
4

, S = 5b2C
16

,

fc = b2C
4

, fc = b2C
4

, fc = 5b2C
16

,
Sc = 0. Sc = 0. Sc = 0.

When C > 2a
b

, When C > a
b

, When C > 4a
3b

,

S = ab− a2

c
, S = ab− 3a2

4c
, S = ab− 7a2

9C
,

fc = ab− a2

C
, fc = a2

4C
, fc = 5a2

9C
,

Sc = 0. Sc = ab− a2

c
. Sc = ab− 4a2

3C
.

Heterogeneous S = 3ab3C2+2a2b2C
8(a+bC)2

, S = 2ab2C2+a2b2C
4(a+bC)2

, S = 9ab2C2+10a2b2C
2(4a+3bC)2

,

Demand fc = ab2C
4(a+bc)

, fc = a2b2C
4(a+bc)2

, fc = 5a2b2C
4a+3bC

,

Sc = ab3C2

8(a+bC)2
. Sc = ab2C2

2(a+bc)2
. Sc = 9ab2C2

2(4a+3bC)2
.
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Fig. 5. Comparison of social welfare, firm profit and consumer welfare
between unlicensed sharing, no sharing and licensed sharing with linear
congestion and linear heterogeneous inverse-demand.

By solving for p1 in terms of x1 in each of these cases,
substituting this into the objective function, p1x1, and then
setting the derivative equal to zero yields:

with unlicensed sharing, g(
x∗1
C

) +
x∗1
C

g′(
x∗1
C

) = P (X∗),

with licensed sharing, g(
x′1
C

) +
x′1
C

g′(
x′1
C

) = P (X).

The left-hand side of these two inequalities is the same
function of x, which is an increasing function of x, since g(x)
is increasing, convex. Hence, since P (X∗) ≤ P (X), it must
be that x∗1 ≤ x′1.

V. CONCLUSIONS

We considered a model for price competition with licensed
spectrum sharing and showed that it can lead to increased

social welfare and consumer welfare compared to no sharing.
With limited bandwidth, social welfare and firm profits with
licensed sharing are also greater than that obtained under
unlicensed sharing, however for larger bandwidths, unlicensed
sharing yields greater welfare and firm profits for both ap-
proaches vanish. In terms of future work, possible directions
include considering sharing in markets with multiple primary
firms, each with their own band of spectrum as well as mod-
eling the investment decisions of both primary and secondary
providers.
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