Are Imperfect Reviews Helpful in Social Learning?
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Abstract—Social learning encompasses situations in which
agents attempt to learn from observing the actions of other
agents. It is well known that in some cases this can lead to
information cascades in which agents blindly follow the actions
of others, even though this may not be optimal. Having agents
provide reviews in addition to their actions provides one possible
way to avoid “bad cascades.” In this paper, we study one
such model where agents sequentially decide whether or not to
purchase a product, whose true value is either good or bad. If
they purchase the item, agents also leave a review, which may be
imperfect. Conditioning on the underlying state of the item, we
study the impact of such reviews on the asymptotic properties of
cascades. For a good underlying state, using Markov analysis we
show that depending on the review quality, reviews may in fact
increase the probability of a wrong cascade. On the other hand,
for a bad underlying state, we use martingale analysis to bound
the tail-probability of the time until a correct cascade happens.

I. INTRODUCTION

People often seek to learn from observing others when faced
with new decisions. On-line platforms facilitate acquiring such
information at a much greater scale than was previously
possible. A basic question is then to understand how such
information facilitates learning. One common approach for
studying such questions is as a game among Bayesian agents.
These agents sequentially make a binary decisions given
their own private information as well as observations of the
decisions of previous agents. A key result, first shown in [2]
and [3], is that in such models herding or an information
cascade can occur in which from some point onward all agents
ignore their private information and follow the actions of the
previous agents. Though individually optimal, this may result
in the agents making a choice that is not socially optimal.

One reason for incorrect herding is that agents observe the
actions of other agents before the other agents receive their
pay-off, and so these actions reflect the agents’ estimates of
the true pay-off and not the true pay-off itself. Indeed, if agents
instead were able to see the true pay-off obtained by others,
then as shown in [9] there would never be an incorrect cascade
in which agents buy a bad product. The use of reviews and on-
line recommendation systems can be viewed as an attempt to
provide other agents with this information. However, due for
example to user errors, such reviews may only be an imperfect
representation of this information (instead of the true pay-
off as in [9]). Studying social learning in the presence of
such imperfect reviews is the objective of this paper. More
precisely, we consider a variation of the model in [2], [3],
where agents have the option to either buy or not buy a given
item, whose true value is one of two binary states (good or

bad). In addition to the actions of the previous agents, agents
also see a history of reviews before making their decisions.
However, these reviews are not a perfect indication of the true
state of the good due to two effects: first, as we have already
mentioned, these reviews are imperfect and second, agents can
only leave a review if they buy the good and so no additional
information is given for agents that choose not to buy.!

The second effect in the previous paragraph introduces
asymmetry in the resulting user behavior depending on the
underlying state of the product. As an example of this, assume
there is a new product in the market. If the product is “good,”
one would hope that by introducing reviews, agents will even-
tually learn the product’s true value. However, this is true only
if there are a sufficient number of reviews submitted by agents.
If not, there is still the possibility of an incorrect cascade,
where at some point all subsequent agents stop buying. This
could happen, for example, if the first few agents have noisy
private signals that tell them not to buy the product. As a
result, those agents do not buy the product, and so generate no
reviews. If sufficient agents do this, it can lead to a cascade in
which no agents buy the product. In such a cascade no reviews
are generated to stop this wrong cascade. On the other hand,
when the product is “bad” an incorrect cascade cannot persist:
if more and more agents buy the product, more reviews are
collected. By the law of large numbers, eventually a sufficient
number of negative reviews will stop the wrong cascade and
agents will learn the true value of the product.

We analyze these two cases separately. Conditioned on the
state of the product being good, we study the probability of
an incorrect cascade. We show that even for reviews of nearly
perfect strength, there exist scenarios where one would prefer
having no review at all since the probability of wrong cascade
is lower. Conditioned on the state being bad, we instead focus
on the time until a correct cascade occurs and give a tail bound
on this probability that illustrates the impact of review quality.

Adding reviews is a way of changing the information
structure in [2], [3]. There have been a variety of other
papers that considered other changes in this structure such as
changing the underlying network structure among the agents,
e.g. [8], or changing the signal structure, e.g. [6]. In prior
work ([10], [11]), we considered a variation of the information
structure, where agent’s observed noisy observations of the
actions of others. This led to the following counter-intuitive

IFor example, many on-line platform such as Amazon.com indicate verified
purchase reviews; in our model only such reviews are considered.



result: the probability of incorrect herding is non-monotonic
in the noise level. In other words, in some cases, more noise
is actually beneficial. In this paper, agents perfectly observe
the actions of previous agents and the only imperfection is in
the reviews. Additionally, since only agents who buy the good
can submit reviews, this leads to an asymmetry in the model
that was not present in [10], [11]).

Another strand of related work is the literature on “word-of-
mouth” learning (e.g. [4], [S], [7]) in which agents can com-
municate information about payoff of past actions. However,
these models consider different settings (e.g. naive rule-of-
thumb decision-based, random sampling of population); while
our paper assumes that fully-rational agents can observe all
past actions and reviews.

This remainder of the paper is organized as follows. In Sec-
tion II we specify our model. The main results are presented
in Sections III and IV for the case where the value of product
is “good” and “bad,” respectively. We conclude in Section V.

II. MODEL

We consider a model similar to [2] in which there is a
countable population of agents, indexed n = 1,2,... with the
index reflecting the time and order of actions of the agents.
Each agent n has an action choice A,, of saying either Yes
(Y) or No (N) to a new item. The true value (V') of the
item can be either good (G) or bad (B); both possibilities are
assumed to be equally likely and the same for all agents. To
reflect the agents’ prior knowledge about the true value of the
item, we assume that each agent n receives a private signal
Sn € {1 (high),0 (low)}. For each agent n who chooses
A, =Y, he submits a review R,, € {G (Good), B (Bad)}
representing his experience with the item after purchasing.
However, if A,, = N then he does not submit a review; which
we denote by R,, =*. Assume the probability that a private
signal (resp. a review) aligns with V is p € (0.5,1) (resp.
d € [0.5,1]). That is:

P[S, = 1|V = B] =P[5, = 0]V =G] =1 —p,

P[S, = 1|V =G| =P[S, = 0|V = B] = p, and if 4, =Y,
P[R, = G|V = G] =P[R, = B|V = B] =,

PR, =G|V = B] =P[R, = B[V =G] =1-3.

We consider a homogeneous population where conditioned
on V, the private signals and reviews are i.i.d. across all
agents. Since p € (0.5, 1), the signals are informative, but not
revealing; we call p the signal quality. In addition, let § denote
the review’s strength which is independent of the signal.?

We assume that each agent takes his one-time action in
exogenous order where the actions and reviews history is
public information to subsequent agents. The agents are Bayes-
rational and make decisions based on their own private signals
and the public information. Each agent n updates his posterior
belief about the true value V' using his private signal S,

2The motivation being, while signal quality reflects product’s marketing
efficiency, the review strength is a function of the individual agent’s behavior.

the actions Aq,...,A,_1, and the reviews R,, for m =

1,...,n—1.3

A. Public likelihood ratio as a Markov process

Let ¢ = 1 — p. Denote the public history after agent n
decides as H,, = {A1, Ry, ..., An, R, }. Agents’ decisions are
based on calculations of the posterior probability of V = B
versus V = G given the observed history #,. However, due
to the independence of signals from history, agent n + 1 can
instead compare the public likelihood ratio ¢,, of V' = B ver-
sus V = G, and his private belief which is a function of only
his private signal. The private belief is calculated as ¢/p (resp.
p/q) if Spy1 =1 (resp. Sp1+1 = 0). On the other hand, using
Bayes’ rule and V' being equally likely B or GG, we can rewrite
¢, in its alternate form ¢,, = P[H,|V = B|/P[H.|V = G].
Since V' is equally likely G or B, ¢y = 1. The higher ¢, is,
the more likely H,, is indicating V' = B. Moreover, since H,,
is public information, for both V' values ¢,, can be updated as:

o If agent n follows his own signal then:

%fnfh if A’ﬂ =N
o= 452, 0, if A, =Y, R, =G ()
%%_(sgn—la if A, =Y, R, =B.

o Otherwise, if agent n cascades then:

1, if A, =N
by, if Ay =Y,R, =B.

B. Agents’ decision rule, cascades’ condition and Markov
property

Define z = log_s_ £ € [0, oc] as the indicator of how strong
the reviews are with respect to signals. In other words, the
lower z is, the stronger the reviews are relative to the signals.
Also, let a,, and r, be two integer random variables denoting
the two differences in actions (#Y —#N) and reviews (#G —
#B), respectively. Note that while a,, excludes the actions
caused by both types of cascades (since then the cascading
actions provide no information), r,, is unchanged whenever a
review is not made due to an agent not buying.

By (1) and (2), we can rewrite £, = (¢/p)®~((1-0)/0)™ =
(q/p)"» where the exponent h,, = a, + 1r,,. Since agent n+1
makes his decision by comparing /,, to his private belief, agent
n + 1 cascades Y if h,, > 1, cascades N if h,, < —1, and
follows his signal if h,, € [-1,1].

By the above recursive relation, {¢,,} is a Markov process.
Moreover, this is also true if in addition we condition on
each value of V>. Equivalently, the dynamics of the process
{¢,,} can be studied by investigating the 2-D Markov chain
(an,Tn). Moreover, for special values of z, this investigation
can be further simplified to a 1-D Markov chain where the
state is denoted as h,,. We will study a few of such scenarios
in Section III.

3For simplicity, we assume indifferent agents follow their own signals.
SThis is an extension of results from [6].



C. Asymmetry under different types of cascades and product
quality

This model exhibits asymmetric behaviors with respect both
to the types of cascades (Y or N), and to the true value V' of
the item. In particular, the arrival of new information (reviews)
depends on the action chosen by each agent.

1) Y versus N cascades: 1If agent n faces h,—1 > 1, he
chooses A,, =Y regardless of his signal and thus initiates a Y’
cascade. A Y cascade does not last forever, unless the reviews
are of perfect quality (§ = 1). For example, if R, = B, then
hp = hp1— % could be below 1, which induces agent n + 1
to use his own signal. Furthermore, if x is sufficiently small
then h,, < —1, and agent n + 1 initiates a N cascade. The
dynamics of a Y cascade, once it gets started, are determined
solely by the reviews process (and it does not depend on the
signals). Regardless of the time a Y cascade was initiated, it
can be broken by a sufficiently long sequence of bad reviews.
Thus, the history process {#,} could include sample paths
where Y cascades start and stop infinitely often.

On the other hand, once h,, < —1, a IN cascade starts
and lasts forever. This is due to agents who choose N not
generating reviews; thus the likelihood ratio stays constant as
soon as any agent cascades to /N. Subsequent agents who have
the same signal strength are left in the same state as the one
who initiated the cascade; thus they make the same action
choice.

2) Good versus bad product: When V = G, a wrong
cascade happens with positive probability. For example, if
the first two agents have low signals, they both choose N;
therefore no review is collected. As a result, all subsequent
agents are drawn into a IV cascade, which is irreversible. This
possibility cannot be avoided by adjusting the reviews strength,
d, even to perfect quality. In case the reviews are perfect, we
would still need a non-cascading agent who has a high signal
for his review to take effect. In addition, for V = @G, it is
highly likely that there is an abundance of new information.
If an agent n chooses Y, one review R,, is added to the
common database. Since reviews are independent of signals,
when V' = G more agents choose Y and new information
begets further new information.

In other words, when V' = G the underlying Markov
process have a drift toward the correct cascade, but there is
no absorbing state on that side since h,, is unbounded above.
However, multiple absorbing states for wrong cascades might
exist. For V' = G, the quantity of interest is the probability of
wrong (V) cascade which is a function of both p and §. One
would expect the time until correct cascade to be infinite by
considering the drift of the underlying Markov process. We
will discuss this scenario in Section III.

On the other hand, when V' = B, this model exhibits a
different set of behaviors. Wrong cascades can never happen.
The reason is as more agents purchase the item, more and
more reviews are collected. Since reviews are informative,
subsequent agents can track the difference in the number of
reviews to learn the true value of V' eventually. In other words,
while there are only trapping states for correct cascade, the

drift also leans toward this side. Thus, correct cascade happens
with probability 1. In this scenario, we are interested in the
distribution of the time (i.e. the number of agents) until a
correct cascade happens. This will be studied in Section VI

III. PROBABILITY OF WRONG CASCADE FORV =G

In previous section, we discussed that wrong (/N) cascades
could happen if the product is good. In this section, we
determine the probability of this happening. For a fixed p, as
x varies the conditions on a,, and r, when cascades happen
also changes. As a result, the underlying 2-D Markov chains
(an, ) have different structures (both in terms of their states
space and transition probabilities). Despite the complexity of
these dynamics for a generic value of z, interesting and non-
intuitive insights can be drawn by looking at special values
of z. In Proposition 1, we consider two cases: x = 1 and
x = 1/2; in both cases we can simplify each state (ay,r,) to
a state h,, of the corresponding 1-D Markov chains, as shown
in Fig. 1 and 2, respectively.
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Figure 1: States transitions for V = G, and z = 1.

Figure 2: States transitions for V = G, and z = 1/2.

Proposition 1. /) Having reviews twice as strong as signals
(i.e. x = 1/2) gives the same probability of wrong cascade as
having reviews with the same strength as signals (i.e. x = 1),
and

2) Both cases give a higher probability of wrong cascade
as compared to when having no review.

Proof. 1) The probabilities of wrong cascade can be calcu-
lated using the transition diagrams and the first-step technique
in Markov chain analysis. For both values x = 1 and z = 1/2,
we obtain a wrong cascade probability of (¢/p)?.

2) When there are no reviews, result from [2] gives a wrong
cascade probability of a ((;1/ )’Q —7» which is less than (q/p)D

Proposition 1 suggests that one should look at regions where
reviews are even stronger. Unfortunately, Proposition 2 shows
that except for the reviews having perfect strength, one cannot



guarantee a better performance with reviews for all values of

€ (0.5, 1). To illustrate, we consider all values x < 1/3, i.e.
reviews are more than triple the signals’ quality. In Fig. 3, the
underlying Markov chain is 2-D where the first and second
coordinates denote r,, and a,,, respectively.
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Figure 3: States transitions for V' = G, and = <
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Proposition 2. Assume 0 < xz < 1/3 (i.e. reviews
than triple the signals’ quality):

are more

1) Plwrong| decreases in the review quality, 6, and

2) At z = 0 (i.e. perfect reviews), Plwrong] = ¢% which
is lower than that for having no review.

3) For x bounded away from 0, there exists a threshold
po € (0.5,0.75) such that for signal quality with p < po,
we are better off having no reviews.

Proof. 1) Again, using the first-step technique for Markov
chains, we solve a system of linear equations for the proba-
bility of wrong cascade starting from state (0,0). This gives
a result of:

Plwrong] = [1 — p(26 — 2pd +2p — p/0)] / [1 — 2pq(1 — )]

which is decreasing in 9.
2) For perfect reviews, a wrong cascade happens if and only
if the first two agents have low signals, which happens with

probability ¢* < [(¢/p)?] / [(a/p)* +1].
3) po is the solution to:

[(a/p)?] / [(a/p)* +1]. 3)

First, we will show the existence of pg in (0.5,0.75). In fact,
(3) is equivalent to:
F(0) 2 9° 166 +(2/6) = 6] 497 [-145 -
+p[126 4+ (1/6) — 7]+ (2 —46) = 0.

Plwrong] =

(2/6) +10]
“)

Note that f(p) is continuous in p. It can be easily shown that
for any ¢ € [0.5,1], f(0.5) > 0 and f(0.75) < 0. Thus, by
the Mean Value Theorem there exists a root py € (0.5,0.75).

Now we show that pg is the only root of f(p) in (0.5,1).
Since f(0) <0, f(p) has another root p; € [0, 0.5). Moreover,
p = 1 is another root of f(p) (note that at p =1, 6 = 1). In
addition, since f(p) is a cubic polynomial in p with positive

highest order coefficient, we conclude that for 0.5 < p < po,
f(p) > 0= LHS®) > RHS(8); and for py < p < 1,

flp) <0=LHS(8) < RHS(8) . L]
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Figure 4: Wrong herding probability, V = G.

Fig. 4 illustrates both Propositions 1 and 2. For all cases, the
probability of wrong cascade decreases in the signal quality p.
Moreover, except for reviews with perfect accuracy, one would
prefer having no reviews for low enough signal quality.

IV. TIME UNTIL CORRECT CASCADEFORV = B

In Section II, we argue that for a bad product, only correct
(V) cascades can happen, which also last forever. In this
section, we examine the distribution of the time until a correct
cascade by determining its tail exponent. In the following let
n > 0. Conditioned on V = G (resp. B), let {FF} (resp.
{#B}) be the sequence of o-algebras generated by {H,,}.
Similar to the models in [6] and [8] where reviews do not
exist, in our model the Markov process {¢,,} also exhibits the
martingale property as presented in the following lemma:

Lemma 1. {1/¢,} (resp. {{,}) is a martingale process
conditioned on V = B (resp. V = G) adapted to the filtration
{327’?} (resp. {yf})

Proof. Given /,...,¢, and p,6 as common knowledge,
subsequent agents know agent n + 1’s decision rule. If agent
n + 1 follows an N cascade, ¢, 11 = £, thus the martingale
property follows naturally. Otherwise, for V' = B, if agent
n + 1 follows his own signal then:

E[1/ln11|Z7] = P[Ans1 = N|V = B][(1 = p)/p] /tn

+ PAnt1 =Y, Rnsr =G|V = Bl [p/(1 = p)| [6/(1 = 8)] /tn
+P[Ans1 =Y, Roy1 = BIV = B [p/(1 = p)][(1 = 6) /0] / £n
=1/0,. (5)

Similarly if agent n + 1 cascades to Y when V = B then:
E[1/lpi1|FB) =6/t + (1 —=6) /b, =1/ln.  (6)

From (5), (6), it follows that { - 7 } is a martingale for V = B.
For V = @, similar method shows that {£,} is a martingale.
O

Using Lemma 1 and techniques from [1], we use the mar-
tingale property to bound the tail probability of the time until




correct cascade. This can also be used to give a bound on the
expected time until correct cascade. Let X and Y be two ran-
dom variables representing the increments Ah,, = hp11 — Ay,
for h,, in [—1, 1] and h,, > 1, respectively. Let f1(\) and fa(\)
be their corresponding moment generating functions (MGFs),
where A is a real variable. Let p = max%fl(A),fg(A)) and

Ah
€2 L We have:

define the random process {M,,} = { e

Lemma 2. {M,} is a super-martingale adapted to {F}}.
Proof.

E[M, 41| Z7] _ B[t /pnt | ZB]  E[erAhn]
M, B A [ pn o
maz (E[e**],E[e*Y])

=1

p
O
Let 7 = min{n > 0 : h,, < —1} be the stopping time when
N cascade happens. Now we use Lemma 2 to give an upper-
bound on the tail-probability of 7 in the following proposition.

Proposition 3. P[T > n] < e*p"”, where 0 < p < 1.

Proof. For feasibility, we require 0 < p < 1, which implies
A € (0, ln(%)). Since 7 is a stopping time, so is n A 7. Thus
{M, A} is also a super-martingale. Thus by hg = 0 we have:
1=eMo = My > E[Myur. | 4]
> E[Mppr; T > n|5ﬂf]ﬁ”[7 > n)
= E[eMnrr /p" 1 > | FP P > n]
> E[en /p™ 7 > n|FS Pl > 1]
> e’\(_l)p_"IP’[T > n), since h, > —1 when 7 > n
= P[r >n| < e,
O
The above bound is a function of n, the agent index, the
dummy variable A, and the two MGFs fi, fo. Our objective
is to choose A and p which minimize this bound. We solve
this numerically and compare the minimum bound with the

tail-probability obtained using Monte-Carlo simulation for
different values of p and 4.
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Figure 5: Tail-probability of time until /N cascade, p = 0.70.
Fig. 5 shows that both simulation results and numerical
bounds are decreasing as § increases. Moreover, the higher

value of §, the faster the rate at which both the simulation and
the numerical results decay to zero.

V. CONCLUSIONS AND FUTURE WORK

This paper studied a simple observational Bayesian learning
model. We assumed that subsequent agents can perfectly
observe the previous actions and, in addition, feedback in the
form of reviews, which depend on the actions. We showed
that the reviews could increase the probability that agents
misinterpret the true value of a good product. In practice, in
online platforms like Yelp, Amazon, etc. customers reviews
come with a variability of strengths. Even though this scenario
was not considered in this paper, our results indirectly implied
that a platform planner should opt to cut out the reviews of
bad qualities and release only the “good” ones. In fact, this
strategy is already adopted by many platforms, e.g. Amazon
with verified purchase reviews, or Yelp with filtered reviews.
Moreover, our results suggested that no matter how strong the
reviews quality, agents might not perform better if their prior
knowledge are limited. This implies that a platform planner
should consider spending their budget on improving both the
product’s marketing efficiency and the reviews’ reliability.

In the future work, we plan to study the possibility of having
reviews with strengths non-homogeneously distributed across
the population. Another possible direction is by considering
having reviews when both type of actions are taken, where
agents have the option to leave the reviews and assuming that
not all agents would exercise this option.
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