
NORTHWESTERN UNIVERSITY

Towards Efficient and Accurate Image Matting

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Electrical Engineering

by

Philip G. Lee

EVANSTON, ILLINOIS

June 2014

2

c© Copyright by Philip G. Lee 2014
All rights reserved

3

Contents

List of Tables 5

List of Figures 6

Acknowledgment 9

Preface 10

I Prior Work 14

1 Introduction 15

2 Existing Matting Methods 18
2.1 Bayesian Matting . 18
2.2 The Matting Laplacian . 18
2.3 Poisson Matting . 19
2.4 Closed Form Matting . 20
2.5 Learning-Based Matting . 20

3 Existing Solution Methods 22
3.1 Decomposition . 22
3.2 Gradient Descent . 25
3.3 Conjugate Gradient Descent . 27
3.4 Preconditioning . 29
3.5 Applications to Matting . 29

II My Work 31

4 Addressing Quality & User Input 32
4.1 L1 Matting . 32

4.1.1 Methods . 33
4.1.2 Experiments & Results . 35

4.2 Nonlocal Matting . 37
4.2.1 Methods . 37
4.2.2 Experiments & Results . 41

5 Multigrid Analysis 43
5.1 Relaxation . 43
5.2 Jacobi Relaxation . 44
5.3 Gauss-Seidel Relaxation . 45
5.4 Damping . 46

4
5.5 Multigrid Methods . 46
5.6 Multigrid (Conjugate) Gradient Descent . 48
5.7 Evaluated Solution Methods . 52

5.7.1 Conjugate Gradient . 52
5.7.2 V-cycle . 52
5.7.3 Multigrid Conjugate Gradient . 53

5.8 Experiments & Results . 53

6 Extensions to Image Formation 58
6.1 Optical Flow . 58
6.2 Deconvolution . 59
6.3 Texture Modeling & Synthesis . 60

7 Conclusion 63

Bibliography 64

5

List of Tables

3.1 Comparison of solvers on the matting problem . 29

5.1 Initial convergence rates ρ0 on image 5 in [27]. Lower is better. 53
5.2 Iterations to convergence (residual less than 10−4) at 1, 2, and 4 Mpx on images from [27]. CG and

MGCG require more iterations as resolution increases while v-cycle requires less. 55
5.3 Fitting of v-cycle required iterations to anp (power law), with n being problem size in Mpx. Average

p is E[p] = −0.248, meaning this solver is sublinear in n. 56
5.4 Average rank in benchmark [27] on 11 Mar 2013 with respect to different error metrics. 57

6

List of Figures

1.1 Robust closed-loop tracking by matting. 16
1.2 Megapixel image (a), ground truth matte (b), user constraints (c), 20 iterations of conjugate gradient (d) 17

2.1 Pixel I is a linear combination of foreground and background colors F and B, which are normally
distributed. 19

2.2 Colors tend to be locally linearly distributed. 20

4.1 Notice the horizontal stripes begin to fade in our result. 35
4.2 Pink hair is remedied. 36
4.3 (a) Input image. (b) Labels after clustering Levin’s Laplacian. (c) Clustering nonlocal Laplacian. . . . 38
4.4 (a) Nonlocal neighbors at pixel (5,29). (b) Spatial neighbors at pixel (5,29). (c) Nonlocal neighbors at

(24,23). (d) Spatial neighbors at (24,23). 39
4.5 (a) Input image, pixel (76,49) highlighted in red. (b) Affinities to pixel (76,49) in [19] (c) Nonlocal

affinities to pixel (76,49). 40
4.6 MSE of Levin’s method vs. our method with the same amount of input on images from [27]. [19] =

black, nonlocal = gray. 42
4.7 Visual inspection of matte quality. (a) Input image. (b) Sparse user input. (c) Levin’s algorithm [19].

(d) Nonlocal algorithm. (e) Background replacement with (c). (f) Background replacement with (d). . 42

5.1 Jacobi method spectrum. 45
5.2 Gauss-Seidel spectrum. 46
5.3 Damped Jacobi spectrum. 47
5.4 Visualization of the v-cycle schedule. The V shape is the reason for the name. 48
5.5 Convergence on a 4 Mpx image. Horizontal line denotes proposed termination value of 10−4. 53
5.6 CG (a) & MGCG (b) slow down as resolution increases, while v-cycle (c) speeds up. 54

6.1 V-cycle applied to optical flow. 59
6.2 V-cycle on deconvolution . 60
6.3 Granite texture (a), full-resolution sample (b), quarter-resolution sample (c), full-resolution sample

obtained with multigrid Gibbs sampler (d). 62
6.4 Two-level multigrid sampler converges much faster than simple Gibbs sampling. 62

7

List of Algorithms

1 Backsubstitution for upper-triangular systems . 23
2 Cholesky decomposition . 24
3 Gram-Schmidt QR decomposition . 24
4 Steepest descent . 26
5 Conjugate gradient descent . 28
6 Incomplete Cholesky decomposition . 29
7 Nested Iteration . 47
8 V-Cycle . 48
9 Multigrid gradient descent. 50
10 Multigrid CG descent. 51
11 Gibbs sampler . 61
12 Multigrid Gibbs sampler. 61

8
ABSTRACT

Towards Efficient and Accurate Image Matting

Philip G. Lee

Matting is an attempt to separate foreground from background layers. There are three main problems to address:

improving accuracy, reducing required input, and improving efficiency. In our work L1 Matting [16], we improved

the accuracy by extending a method to include information from the L1 norm via median filters, which provides

noise resiliency and preserves sharp image structures. In our work Nonlocal Matting [17], we considerably reduce the

amount of user effort required. The key observation is that the nonlocal principle, introduced to denoise images, can

be successfully applied to the alpha matte to obtain sparsity in matte representation, and therefore dramatically reduce

the number of pixels a user needs to manually label. We show how to avoid making the user provide redundant and

unnecessary input, develop a method for clustering the image pixels for the user to label, and a method to perform high-

quality matte extraction. To address the issue of efficiency, we develop specialized multigrid algorithms in Scalable

Matting [18] taking advantage of previously unutilized priors, reducing the computational complexity from O
(
n2
)

to O
(
n0.752

)
. Further, we show that the efficient methods used for image matting extend to a wide class of image

formation problems.

9

Acknowledgment

Research is not a solitary art, but on the contrary is a collaborative one. Only a few names are attached to any single
published article, but for each one of them there are many more who are to thank. For those whose names may not
explicitly mentioned elsewhere in this book, I would like to give them full credit and my appreciative thanks here.

First, I thank my wife, Leidamarie Tirado-Lee for her consistent and ample moral support in my tenure as a Ph.D.
student. Being not just my wife and best friend, she is also a Ph.D. student herself and no matter what was happening,
she was always there to sympathize and empathize. My parents Marion and Kathy Isom also supported me throughout
my studies, for which I thank them very much. I also thank the members of my committee, Dr. Aggelos Katsaggelos
and Dr. Thrasyvoulos Pappas for guiding me during my candidacy. Further, my friends and colleagues Adam Barber,
Alireza Bonakdar, Robert Brown, Iman Hassani, Steven Manuel, Timothy Rambo, Esteban Rangel, Vlad Seghete, Jian
Shi, Cynthia Solomon, and Matthew Wampler-Doty deserve much credit in their ability to make me smile and share
in the crazy world of academic research.

Northwestern is a great place for the free exchange of ideas, and I would like to thank several people for their
intellectual discussions. First is Professor Jorge Nocedal, whose class in optimization I took, and who immediately
understood the problems I was having in my own research. Second is Associate Professor Paul Umbanhowar, who
visited like clockwork just to discuss whatever was currently happening in my Matlab session, and who was really great
to bounce ideas with. I would also like to thank Professor Kevin Lynch for letting me help to construct his dynamic
robotic manipulation system. It was a great change of pace, and refereshing to think about different problems.

There are a few individuals that deserve special recognition. First is Dr. Ilya Mikhelson. He was my first friend
after moving to Evanston, and became one of my closest. Not only did we collaborate professionally, but we met
at least once a week to discuss research, projects, philosophy, and personal subjects. I cannot imagine the past five
years without him. Second is Yin Xia. He is another good friend who, in addition to discussing research, taught me
much about Chinese culture. We shared many conversations about politics, culture, and computer vision, and enjoyed
many craft beers together. Professor Alan Sahakian also deserves special recognition. Although I know he was always
extremely busy with running the department and his own research, he never once turned me away if I had a question
about anything, even if it was just an elementary question about some electronic component. I am most grateful for
the advice he gave me during the middle of my tenure, when I was considering quitting my Ph.D. I am very glad it
worked out otherwise.

Finally, I thank my advisor Ying Wu for the entire experience at Northwestern. He brought me onboard with
enthusiasm from the very beginning. Unlike many, he is a true scientist searching for fundamental truths in our field.
He impressed upon me the importance of simplicity and clear communication in everything. As time went on, he
also became a paternal figure of mine, discussing many things including his philosophies of life and happiness. Mark
Twain said: “Great people are those who make others feel that they, too, can become great.” Dr. Wu is such a person.
I truly appreciate the wisdom he imparted.

10

Preface

I have little doubt this book is presently either actively under a projector, or waiting nearby to be propped under one.
If by chance someone is actually reading it, then you, dear reader, must be in a state of great depression. I know this,
because the only time I ever had to resort to reading someone else’s thesis, it was out of complete and utter frustration,
and I think I never once found whatever it was I was looking for in the first place.

Education: the path from cocky ignorance to miserable uncertainty. – Mark Twain

You see, graduate work is a tough and lonely business. At the beginning, you are bright-eyed and bushy-tailed and
ready to take on the world. However, you quickly realize that you have just moved somewhere where you know noone
and nobody in your lab is working with you on anything. You’re just that new guy that asks all the annoying questions.

Finally, after a semester or two, you’re forced into some distasteful collusion in order to do a group project that
will reduce the number of papers this professor has to grade, and you crawl from your dungeon into the light and
surprisingly meet a friend. He still doesn’t work on the project, but who cares at this point? He’s actually kind of
normal and wants to go to the gym and watch movies and whatnot.

However, he still doesn’t understand whatever it is that your advisor assigned you to work on. In fact, now that
you yourself have passed your glazed eyes over the background material, you aren’t sure either. What is this nonsense
about? Why does it say “obviously” here when it really means “we hit the page limit, so figure it out?” And why is
it that none of these fools post any code to clarify that one sentence that described all 42 parameters in their stupid
algorithm? Even worse...a Windows R© binary.

But, at least there are the really old papers that are pretty simple. You implemented them in MATLAB R© (that
god-awful hunk of junk) in a day. It took two weeks to run and the results looked like Ecce Mono1, but you got there.
There are even those two algorithms that you can both understand and that nearly work.

At least, that was my experience at the beginning of my Ph.D. As time went on, I gradually got used to the insanity
of Computer Vision articles in places like CVPR, but there was something really wrong about it all. I didn’t believe in
Computer Vision. Almost every article I tried to read seemed like they were trying to build a Maserati by duct-taping
rocks to a telephone pole, and then trying to sell me on it by showing me how much more robust it was than the other
telephone poles.

Get your facts first, then you can distort them as you please. – Mark Twain

This was a big shock coming from a Math degree. In those papers, you can hardly hide a lie or even stretch the
truth a bit. There is no salesmanship, and there is only what is true and what is not. If you can’t prove something, you
don’t write a paper. In Computer Vision, if you can’t prove something, you invent a dataset that is secretly biased in
favor of your algorithm, and you tweak the parameters for every single input and make a table showing how you can
beat the other algorithms by 0.1% 95% of the time. After I started to realize this, it made me very disappointed and I
nearly quit because of it. There is something wrong with Computer Vision. In fact, there are many things.

First, this is basically Computer Science, and computer scientists should always post free code in the general
interest of science. This does not happen in Computer Vision nearly often enough. Richard Stallman (founder of
GNU2) always used to argue that free code was safe code, because it is very difficult to hide a backdoor in the software
when you have so many eyeballs looking at the source code. In the same way, it is easy to hide dirty algorithmic
tricks when you only give a binary, and it is possible to completely manufacture all of the results when not even that is

1Ecce Homo, as restored by Cecilia Giménez. Go look it up; you won’t regret it.
2http://www.gnu.org

11
provided by the authors. If an author doesn’t give his code so that I can compile it and run it on the same dataset and
get the same results, it is a bullshit paper.

Let me provide a case study on the problems that lack of source code creates. Stay with me, because first
we have to understand the problem to understand why we need source code. Some benchmarks, like the popular
alphamatting.com [27] that I (am forced to) use in my work, have no way to prevent “human tuning.” It is sup-
posed to work like this: half of the dataset is given to you along with the ground truth result. You are supposed to use
this for training to set the parameters of your algorithm. Then, you are asked to run the algorithm on the second half
of the dataset, which does not contain the ground truth, and submit the results for blind analysis. Then, they compute
a bunch of metrics using their secret ground truth and give it back to you. You yourself are to run your algorithm on
your own machine and submit the results, asserting by the “honor system” that you did not manipulate the parameters
or do anything nefarious to get the result. This is patently absurd, because in practice what happens is that I submit
for the first time, then immediately start tuning my parameters according to the benchmark results until I start to see
good results, completely ignoring the training dataset. The training dataset becomes the results of other alpha matting
algorithms, and the learning algorithm becomes “learning by graduate student.”

It gets much worse in this particular benchmark: I can reverse engineer the hidden ground truth and get a perfect
score! The attack works as follows. One of the statistics you get back from the evaluation is the mean squared
error (MSE) to the hidden ground truth. This is a “leaky channel” that spews out information about the ground truth.
Suppose I am malicious (and I am), and for simplicity assume that there is only one matte to be evaluated. I can extract
the full ground truth αgt in the following manner:

1. Submit α = 0 to the evaluation, and get back the MSE, which is a scalar multiple of (αgt)Tαgt.

2. The metric you get is equivalent to ‖α− αgt‖2 which is equal to αTα− 2αTαgt + (αgt)Tαgt.

3. We got the last term from the first step, and αTα is observable to us, so we can get αTαgt by simple arithmetic
after retrieving the MSE from the evaluation.

4. Set α1 = 1 and leave the rest 0. Submit, get the MSE, and calculate αTαgt = αgt
1 .

5. Repeat for all pixels i to get αgt
i .

6. Now, submit the calculated αgt to the evaluation and get a perfect score!

What is the solution to this stupidity? It is to prohibit the authors of these algorithms from running their algorithm
on their own machines. It is to force the authors to provide their source code to the benchmark people, and have the
author of a competing algorithm review it, compile it, and run it. Better yet, the code should be attached to the paper
in the review process, and the reviewers should be the ones to generate and analyze the benchmark results. No code?
Good luck getting published without benchmark results.

Why is the current state of affairs acceptable in Computer Vision? Surely I am not the first person to see the lack
of academic integrity in the evaluation of our algorithms. Maybe it’s laziness; maybe it’s the urgent need to publish;
maybe it’s just true ignorance.

Secondly, the review process for conferences like CVPR is horrendous. There are many reasons for that. First is
that the reviewers are all graduate students with no idea and no desire to throughly read and understand the paper. I
know, because I was one. It was impossible for me to ascertain the novelty of a paper, because I simply didn’t have the
experience necessary to do so. It was impossible for me to ascertain the importance of the work for the same reason.
And finally, it was extremely difficult for me to understand the papers I did read thoroughly. This one is a chicken-
and-egg problem. Suppose you write a paper that is impossible to work through, with 20 equations on every page. I
can spend weeks to figure out what is going on, or I can do my homework. Further, if it looks complicated, there is a
tendency among us to feel inept and unable to comprehend the “great mind” who wrote it. So, complicated papers get
glossed over and accepted. Now, suppose you write a very simple paper with few equations and in a conversational
tone. It is so easy to read that I can find some logical flaws. Rejected. The lesson you quickly learn is not to explain
your ideas intuitively, but through symbols and layered notation that nobody will dare to read. CVPR reviewers will
be familiar with the phrase “seems correct, but did not check completely.”

All you need is ignorance and confidence and the success is sure. – Mark Twain

12
There is one more thing that mucks up the whole process: single stage review. You submit your paper. You wait 3

months. They come back terrible, as no one bothered to try to understand it, and you write your rebuttal. In practice,
the rebuttals are never read, and no decisions are ever changed from them. To change my review would be to admit I
was wrong, which is completely against human nature. No reviewer ever admits his uncertainty. We should not submit
articles to conferences and journals where we are not expected to make significant changes after the reviews come
back. This kind of expectation puts pressure on the reviewer to say under what conditions the paper must change so
that he will accept it. Then, he must either read it enough to give suggestions or just be lazy and defer to the other
reviewers.

Finally, very few researchers seem to care about the computational complexity of the algorithms they propose,
which is absurd for computer scientists. In case you are not already aware, the complexity is truly spectacular for most
of the proposed algorithms in the field. It is evident to see this by looking at the OpenCV3 library. It is a collection
of C++ routines to create vision algorithms. While I dislike the design of the library, it is very good about including
functions that run and could perhaps be composed to run near real time. Take a look, and you will see how small the
number of functions is compared with the number of published vision algorithms being proposed every year (part of
this is the unwilligness of researchers to produce open source code). I laugh out loud when I see someone requiring an
Eigenvalue decomposition on some huge matrix. Almost no paper describes an algorithm fast enough to get included
in OpenCV.

When I realized this mid-way through my Ph.D., I found it really irked me, and I finally found my passion in the
field. I wanted to make scalable algorithms. In spite of the fact that half of Part II does not consider scalability, the real
motivation for me to write this thesis is for the odd student to pick it up from under the projector, read it, and decide
that scalability is important.

Let me sing its merits. First, it is much less fluffy than most of the field. For example, image segmentation has
a gaping hole in its bid for existence: how do you define a good segmentation? However, if you can reduce the
complexity by a factor of 10, great! That is a very clear goal and accomplishment. Second, don’t you want someone
to actually run your algorithm in the future? As I am writing this, there is a 41 Mpx camera/phone4 on the consumer
market. If you can’t be efficient on a 256 × 256 patch, it is just going to be forgotten, and for a very good reason.
Finally, complexity analysis and writing good code to demonstrate it are going to make you a good computer scientist
and software engineer. The market for programmers is extremely hot, and I don’t ever see it cooling down. There is
now talk of including programming in high-school curricula as a core course. Everything is being programmed, and if
you can do something faster than anyone else, that is a valuable skill in the job market.

Before you, dear graduate student reader, put this book down, I’d like to share some tips with you that I wish I
would have had.

• Don’t work on fluffy things (research or otherwise).

• Revision control everything! Learn to use git and Github or Gitorious or some other hosting service.

– For unpublished papers, I highly recommend writing LaTeX code version-controlled with git, whose
“origin” is a bare repository in your Dropbox or other cloud storage folder.

• Never write closed code. License your code under the GPL and share it (again, Github and Gitorious are great).

• Use arXiv.org to submit your pre-prints when you submit to a journal/conference. It lets you cite the paper
and move on in your research immediately, prevents others from scooping you, and gives every other scientist a
free way to access your work.

• Don’t submit to CVPR.

• For the love of Thor, wipe your hard drive of all Microsoft products and install Linux. Debian5 is a sane
distribution.

• Thoroughly read and understand any articles assigned to you to review. If you can’t understand it, admit it,
and refuse to accept it until the arguments are simplified. Otherwise, provide a detailed review and give the
conditions under which you will accept this article explicitly.

3http://opencv.org
4Nokia Lumia
5http://www.debian.org

13
• Spend your weekends with your friends or looking for a date.

• Collaborate with as many people as possible, even if just informally.

• Read How to Win Friends and Influence People by Dale Carnegie.

• Don’t worry about failure in research (or anywhere else): 90% of your ideas will be crap.

• Go find your classmates in their offices/dungeons daily.

• If you’re at Northwestern, go check out the craft beer scene like Revolution Brewpub, Half Acre, Piece, Finch,
Temperance, etc. This beer is so good and the people are so nice!

To conclude, I want to remind you that you are a scientist. Be objective. Be open-minded. Reproduce others’
work. Make your whole work freely available. Contribute to society. Take chances, and take criticism.

14

Part I

Prior Work

15

Chapter 1

Introduction

The problem of extracting an object from a natural scene is referred to as alpha matting. Each pixel i is assumed to be
a convex combination of foreground and background colors Fi and Bi with αi ∈ [0, 1] being the mixing coefficient:

Ii = αiFi + (1− αi)Bi. (1.1)

Since there are 3 unknowns to estimate at each pixel, the problem is severely underconstrained. Most modern algo-
rithms build complex local color or feature models in order to estimate α. One of the most popular and influential
works is [19], which explored graph Laplacians based on color similarity as an approach to solve the matting problem.

The model that most Laplacian-based matting procedures use is

p (I | α) ∝ exp

(
−1

2
‖α‖2LG

)
and (1.2)

αML = arg max
α

p(I | α), (1.3)

where L is a per-pixel positive semi-definite matrix that represents a graph Laplacian over the pixels, and is typically
very sparse. However, LG always has positive nullity (several vanishing eigenvalues), meaning that the estimate is not
unique. So, user input is required to provide the crude prior:

p(α) ∝

{
1 if α is consistent with user input
0 o.w.

. (1.4)

This is usually implemented by asking the user to provide “scribbles” to constrain some values of the matte to 1
(foreground) or 0 (background). This gives a maximum a-posteriori estimation

αMAP = arg max
α

p(I | α)p(α), (1.5)

which may be unique depending on the constraints provided by the prior.
To get the constrained matting Laplacian problem into the linear form Ax = b, one typically chooses

(LG + γC)α = γf, (1.6)

where C is diagonal, Cii = 1 if pixel i is user-constrained to value fi and 0 o.w., and γ is the Lagrange multiplier for
those constraints. γ ≈ 10 seems to work well in practice, and is not a very sensitive parameter.

Besides the motivation to solve the matting problem for graphics purposes like background replacement, there
are many computer vision problems that can be cast as finding the matte for an image like dehazing [10], deblurring
[3], and even tracking. The last is particularly attractive as shown by [7], because the object to be tracked can be
considered the foreground, and the matting constraints can be propagated by very simple methods like SIFT [21]
matching to provide a robust closed-loop tracker as demonstrated in Fig. 1.1. To be useful though, such a tracker and
therefore the matting algorithm have to be real time. But, this becomes very difficult when the constraints are sparse
as is the case with SIFT matching, or when the image size grows large.

16

Figure 1.1: Robust closed-loop tracking by matting.

Since A is symmetric and positive definite (with enough constraints), it is tempting to solve the system by a
Cholesky decomposition. However, this is simply impossible on a modest-size image on modern consumer hardware,
since such decompositions rapidly exhaust gigabytes of memory when the number of pixels is larger than around 10
kilopixels (100× 100).

It is also tempting to use the equality constraints directly, which reduces the system size by the number of con-
strained pixels. In order to solve this reduced system in memory would again require the number of unconstrained
pixels to be less than about 10k. This is also impractical, because it places the burden on the user or tracking algorithm
to constrain at least 99 % of the pixels in megapixel and larger images.

It is therefore necessary to resort to more memory-efficient iterative algorithms, which take advantage of the
sparsity of A. There are many available iterative methods for solving the full-scale matting problem such as gradient
descent, the Jacobi method, or conjugate gradient descent. However, although memory-efficient, they are all incredibly
slow, especially as the resolution increases. There is a fundamental reason for this: the condition number of the system
is much too large for stable iterations without dense constraints. Since the Laplacians are defined on a regular pixel
lattice, its top eigenvectors correspond to high frequency kernels. Bad conditioning combined with the Laplacian
structure causes the residual error at each iteration to be primarily composed of high-frequency components. So, the
iterations focus on reducing the high-frequency errors first and the low-frequency errors last (see Fig. 1.2.d, which
is mostly a lowpass version of Fig. 1.2.c). To have better effective conditioning, we draw inspiration from [11] who
took the approach of defining a new Laplacian with very large kernels to trade off better conditioning at the expense
of some quality. But, there is a more natural and more general approach that does not come at the sacrifice of quality
or freedom of choice for the Laplacian.

Multigrid methods have been briefly mentioned by [31] and [11] for solving the matting problem, but they conclude
the irregularity of the Laplacian is too much for multigrid methods to overcome. However, we show that this is not
a problem at all when the upsample and downsample operations that define the grids are appropriately constructed.
What we propose is a type of multigrid solver, which solves the full-scale problem unaltered, does not restrict the
choice of the Laplacian, gives huge speedups without any sacrifice in quality, and scales linearly in the number of
pixels. We further propose better priors that may partially or fully resolve the ambiguity of the problem in common
situations.

17

(a) (b)

(c) (d)

Figure 1.2: Megapixel image (a), ground truth matte (b), user constraints (c), 20 iterations of conjugate gradient (d)

18

Chapter 2

Existing Matting Methods

2.1 Bayesian Matting
Bayesian matting [2] takes a naive Bayesian approach to matting where all of the distributions involved are multivariate
Gaussians. So, they would like to solve

arg max
F,B,α

L(I | F,B, α) + L(F) + L(B) (2.1)

L(I | F,B, α) = −‖I − (αF + (1− α)B)‖2 /σ2
C (2.2)

L(F) = (F − F̄)TΣ−1
F (F − F̄) (2.3)

L(B) = (B − B̄)TΣ−1
B (B − B̄) (2.4)

where L is the log likelihood. This is represented graphically in Fig. 2.1.
L(I | F,B, α) +L(F) +L(B) is not quadratic or convex necessarily. So, in order to solve it, they note that fixing

α makes the equation quadratic w.r.t F and B and vice versa and attempt solve it by doing an alternating optimization
on colors and α values. Notice this paper has no prior term L(α).

2.2 The Matting Laplacian
Matting by graph Laplacian is a common technique in matting literature [19, 33, 11, 17]. Laplacians play a significant
role in graph theory and have wide applications, so we will take a moment to describe them here. Given an undirected
graph G = (V,E), the adjacency matrix of G is a matrix AGij of size |V | × |V | that is positive ∀vivj ∈ E. AGij is the
“weight” on the graph between vi and vj . Further define DG

ii = d(vi) =
∑
j 6=iA

G
ij to be a diagonal matrix containing

the degree of vi, and let x be a real-valued function V → R. The Laplacian LG = DG − AG defines a particularly
nice quadratic form on the graph

q(x)
∆
= xTLGx =

∑
vivj∈E

AGij(xi − xj)2. (2.5)

By construction, it is easy to see that L is real, symmetric, and positive semi-definite, and has 1 (the constant vector)
as its first eigenvector with eigenvalue λ1 = 0.

This quadratic form plays a crucial role in matting literature, where the graph structure is the grid of pixels, and
the function over the vertices is the alpha matte α ∈ [0, 1]|V |. By designing the matrix AGij such that it is large when
we expect αi and αj are the same and small when we expect they are unrelated, then minimizing q(α) over the alpha
matte is finding a matte that best matches our expectations. The problem is that, as we have shown, one minimizer is
always the constant matte 1, so extra constraints are always required on α.

19

Figure 2.1: Pixel I is a linear combination of foreground and background colors F and B, which are normally dis-
tributed.

∆α ∆I

2.3 Poisson Matting
The idea presented by [30] was to use the concept of Poisson image editing [25] to construct the Laplacian. Somehow,
it is assumed that the gradients of the given matte are known, but that the values themselves need to be reconstructed
by solving the Poisson equations

∆α = g (2.6)
s.t. αΩ = f, (2.7)

where ∆ is the Laplace operator, Ω is the domain over which the matte is known to be f , and g is a forcing function.
The forcing function they decided on is based on the observation that the alpha matte and the image have similar

gradients along the foreground/background boundary up to a multiplicative scaling factor as demonstrated by Fig. 2.3.
This is somewhat justifiable mathematically by the observation that since

I = α(F −B) +B, (2.8)

∆α ≈ 1

F −B
∆I. (2.9)

Notice in this case that the matting Laplacian LG = ∆ = ∂2/∂x2 + ∂2/∂y2.
The main issue with this method is that it is not very accurate unless the constraints are very dense, because the

underlying assumption is that the field (F − B) is smooth and nonzero which is regularly violated. For this reason,
detailed user input is required to make up for the deficiencies in the assumptions.

20

Figure 2.2: Colors tend to be locally linearly distributed.

2.4 Closed Form Matting
In [19], AGij on the graph is given as ∑

k|(i,j)∈wk

1

|wk|
(
1 + 〈Ii − µk, Ij − µk〉(Σk+εI)−1

)
, (2.10)

where wk is a spatial window of pixel k, µk is the mean color in wk, and Σk is the sample color channel covariance
matrix inwk. This is probably best understood as a Mahalanobis inner product in color space. Ignoring the regularizing
ε term, defining the whitening transformation Ji(k) = Σ

−1/2
k (Ii − µk), the affinity above can be interpreted as an

expectation Ek[〈Ji(k), Jj(k)〉], the covariance of the whitened pixels Ji(k) and Jj(k) over windows k. In essence,
this is an affinity based on a Gaussian color model defined by Σk and µk, and the resulting matte can be interpreted as
a backprojection (or likelihood map) of the combined local color models.

The reason that such a model is acceptable is due to the linearity of natural image colors in local windows known
as the color line model (Fig. 2.2). Though this model does not always hold, it is good enough for many situations.

[29] demonstrated that [19]’s Laplacian intrinsically has a nullity of 4, meaning that whatever prior is used, it
must provide enough information for each of the 4 subgraphs and their relationships to each other in order to find a
non-trivial solution.

2.5 Learning-Based Matting
In [33], the color-based affinity in eq. (2.10) is extended to an infinite-dimensional feature space by using the kernel
trick with a gaussian kernel to replace the RGB Mahalanobis inner product. [5] provides many other uses of graph
Laplacians, not only in matting or segmentation, but also in other instances of transductive learning. In inductive
learning, we are given a training set distinct from the test set, and must learn everything from the training set. The
difference with other learning methods is that in transductive learning, we already know the whole dataset that we will
be asked to label (the pixels in matting), and that gives us information about how they are to be labeled. For example,
if AGij is large, we should believe that samples i and j share the same label, even though we may not know what the
label is.

21

22

Chapter 3

Existing Solution Methods

Although we have already hinted at some ways to solve the matting problem, here we would like to take an in-depth
look at the general structure of the problem and the approaches that others have taken to provide a solution.

3.1 Decomposition
It is often the case that certain decompositions of matrices can transform their solution into an easier form. The insight
is that there are some matrices for which we can efficiently solve the inverse problem. For example, in the case that an
n× n matrix A is diagonal (Aij nonzero only if i = j), then the solution to

Ax = b (3.1)

is simply bi = xi/Aii. It is easy to see that such a solution requires only n divisions, and is therefore a very efficient
O (n).

Another type of matrix that is easy to solve is the unitary matrix. We say a real square matrix U is unitary if and
only if

UTU = UUT = I. (3.2)

In other words, UT = U−1. In this case, solving

Ux = b (3.3)

is as easy as

x = UT b. (3.4)

In this case, each element of x requires n multiplications, so the total complexity is O
(
n2
)
. Of course we are often

not lucky enough to have unitary systems, but with some manipulation, unitary matrices often drop out of the analysis.
A slightly more complex type of matrix that we can still solve easily is the upper-triangular matrix. We say that a

matrix R is upper-triangular if and only if all the nonzeros lie on or above the main diagonal. In other words:

R =

R11 R12 R13 . . .
0 R22 R23 . . .

0 0
.

0 0 0 Rnn

 . (3.5)

In this case, if we have Rx = b, then it is clear that bn = xn/Rnn. Then, we can see

R(n−1)(n−1)xn−1 +R(n−1)nxnn = bn−1 =⇒ (3.6)

xn−1 =
1

R(n−1)(n−1)

(
bn−1 −R(n−1)nxn

)
. (3.7)

23
We can follow this recursive logic for all elements of the solution to get the general algorithm known as backsubstitu-
tion (see Algorithm 1). Since it is clear that element xi needs (n− i) multiplications, the complexity of the solution is
O
(
n2
)
.

Algorithm 1 Backsubstitution for upper-triangular systems
1: for i = n..1 do
2: s← bi
3: for j = i+ 1..n do
4: s← s−Rijxj
5: end for
6: xi ← s/Rii
7: end for

The technique of matrix decomposition is to turn one matrix into some sort of combination of these “easy” matri-
ces. For example, we might seek a decomposition that transforms the problem into a diagonal system. We say that a
matrix is diagonalizable if and only if it can be decomposed as

A = V ΛV −1 (3.8)

where Λ is a diagonal matrix, and V is non-singular. If such a decomposition can be found, we can find the solution
by transforming the problem:

Ax = b (3.9)

V ΛV −1x = b (3.10)

ΛV −1x = V −1b. (3.11)

So, we can first solve the easy problem

Λy = c, where c = V −1b, (3.12)

so that

x = V y. (3.13)

It turns out that a matrix is diagonalizable if and only if the eigenvalue decomposition of A exists. This would
mean we can take Λ and V as the eigenvalues and eigenvectors of A, satisfying

Avi = λivi, (3.14)

where Λii = λi, and the ith column of V is vi. Unfortunately, the only way to get the eigenvalues is find the roots of

det (A− λi) , (3.15)

which is an nth order polynomial in n. It is well-known that no explicit formula exists for finding the roots of such a
polynomial if n > 5, so unfortunately these decompositions are only useful for small matrices.

If the matrix A is symmetric, then we can imagine its decomposition into

A = LLT , (3.16)

where L is a lower triangular matrix (LT is upper-triangular). This is called the Cholesky decomposition. In this case,
the solution is

Ax = b (3.17)

LLTx = b. (3.18)

24

Algorithm 2 Cholesky decomposition
1: for j = 1..n do
2: Ljj ← Ajj
3: for k = 1..j − 1 do
4: Ljj ← Ljj − L2

jk

5: end for
6: Ljj ← L

1
2
jj

7: for i = j + 1..n do
8: Lij ← Aij
9: for k = 1..j − 1 do

10: Lij ← Lij − LikLjk
11: end for
12: Lij ← Lij/Ljj
13: end for
14: end for

By letting y = LTx, we can first solve Ly = b using forward substitution, a variant of Algorithm 1, then solve
LTx = y using Algorithm 1 in O

(
n2
)

time. By examining Algorithm 2, we can see the decomposition itself requires
j multiplications for element Lij , and summing over all j ≤ i ≤ n gives total complexity of O

(
n3
)
.

The QR decomposition uses a combination of a unitary matrix and a triangular matrix:

A = QR, (3.19)

where Q is unitary and R is upper-triangular. If we have such a decomposition, then it can be solved in the following
way.

Ax = b (3.20)
QRx = b (3.21)

Rx = QT b. (3.22)

So, we can just solve Rx = c using Algorithm 1 in O
(
n2
)

time where c = QT b.
TheQR decomposition can be realized by the Gram-Schmidt procedure in which orthogonal vectors are generated

sequentially. With the procedure given in Algorithm 3, we see that each vector qi needs 2n(i− 1) multiplications, and
summing over all n vectors gives O

(
n3
)

as the total complexity. There are other algorithms utilizing Householder
reflections [14] to obtain the decomposition that are more numerically stable.

Algorithm 3 Gram-Schmidt QR decomposition

1: A
∆
= [a1, . . . , an]

2: Q
∆
= [q1, . . . , qn]

3: q1 ← a1

4: q1 ← q1/ ‖q1‖
5: for i = 2..n do
6: qi ← ai
7: for j = 1..i− 1 do
8: qi ← qi − 〈qj , ai〉qj
9: end for

10: qi ← qi/ ‖qi‖
11: end for
12: R← QTA

A slight modification to the eigenvalue decomposition makes the problem much easier. If we change the decom-

25
position a bit such that

A = UΣV T (3.23)

for some diagonal Σ and unitary U and V , then

Ax = b (3.24)

UΣV Tx = b (3.25)

ΣV Tx = UT b. (3.26)

This is called the singular value decomposition (SVD). So, to get the solution, we can apply the same strategy as we
do for the eigenvalue decomposition:

Σy = c, where c = UT b, (3.27)

and then

x = V y. (3.28)

The procedure to construct the SVD is too long to include in algorithmic form here, but we state the result that it is
O
(
n3
)

complexity.
So, in increasing order of complexity, the typical matrix decompositions and solving routines are

1. Diagonal matrices (O (n))

2. Unitary matrices (O
(
n2
)
)

3. Triangular matrices (O
(
n3
)
)

4. Cholesky, QR, and singular value decompositions (O
(
n3
)
)

5. Eigenvalue decomposition (unclear, but usually O
(
n3
)

in practice).

Since the QR and singular value decompositions apply to arbitrary matrices and can be performed in a numerically-
stable manner, this suggests that solving dense matrix equations is fundamentally an O

(
n3
)

problem.
This was the conventional wisdom for hundreds of years until [4] proved otherwise. They showed that matrix

inversion can be performed stably in O(nω+η) time if and only if the matrix multiplication can also be performed
stably in O(nω+η) time. For these dense matrices, ω = 2 describes the O

(
n2
)

complexity of dense multiplication,
and η = 0.376 is a small extra factor required for stability. The argument comes from their proof that under the
assumptions, the QR decomposition is stably computed in O(nω+η) multiplications. Given that decomposition, the
inversion as we showed above is simple.

3.2 Gradient Descent
Matrix decomposition is a great technique for solving dense matrix equations. However, we encounter practical
problems when the system is sparse. We say a linear system is sparse if the number of nonzeros of the system is
O (n). The reason this creates trouble is because although a compressed representation of such a system may fit
comfortably in memory, the decomposition will be a full matrix (in general) and will tend to dominate the memory
usage as n becomes large.

When the size of a sparse system becomes large, we require techniques that do not require an explicit decom-
position. Rather, we favor techniques that can give succesively better approximations to the solution: that is to say
iterative techniques. The general approach is to define some function that is smooth and that is minimized at the
desired solution. Then, we can apply results from linear and nonlinear optimization to approach the solution.

One of the most natural ways to write such an objective function is

f(x)
∆
= ‖Ax− b‖22 , (3.29)

26
where ‖·‖2 is the Euclidean norm. If a unique solution exists, then f(x) is minimized at the point that satisfiesAx = b,
since f(x) ≥ 0 for any x by the properties of the norm, and f(x) = 0 at the solution.

We can rewrite the objective in terms of inner products:

f(x) = 〈x,ATAx〉 − 2〈x,AT b〉+ 〈b, b〉. (3.30)

The gradient, which represents the direction of greatest instantaneous increase is then

∇f(x) = 2ATAx− 2AT b. (3.31)

Because we want to minimize this function, this suggests the simple scheme

xn
∆
= xn−1 − δn−1∇f(xn−1), (3.32)

where δn > 0 is some step size that may or may not depend on n. For a given method to choose δ and x0, we obtain
an instantiation of gradient descent.

In our particular case for matting by graph Laplacian, A is positive semi-definite by construction, and we can get
better stability by changing the objective function to

f(x)
∆
=

1

2
〈x,Ax〉 − 〈x, b〉. (3.33)

Then, the gradient becomes

∇f(x) = Ax− b, (3.34)

which is zero only at the solution. This provides more numerical stability because the quadratic operator is now A
instead of ATA, and if the condition number of ATA is κ2, then the condition number of A is κ. A natural choice for
the step size is one that minimizes xn minimizes f(x) along the descent direction. This is called steepest descent, and
provides

δn
∆
=
〈rn, rn〉
〈rn, Arn〉

, where (3.35)

rn
∆
= ∇f(xn). (3.36)

The algorithm is given in Algorithm 4.

Algorithm 4 Steepest descent
x← x0

for i = 1..K do
r ← Ax− b
δ ← 〈r, r〉/〈r,Ar〉
x← x− δr

end for

For a more rigorous analysis of the convergence of steepest descent, refer to [28] that the error reduction ratio is
bounded by ∥∥eK∥∥

A

‖e0‖A
≤
(
κ− 1

κ+ 1

)K
, (3.37)

where κ is the condition number of A. If we require that the error reduction ratio∥∥eK∥∥
A

‖e0‖A
≤ ε, (3.38)

27
then we can get a lower bound on the number of required iterations K:(

κ− 1

κ+ 1

)K
≤ ε (3.39)

K log

(
κ− 1

κ+ 1

)
≤ log (ε) (3.40)

K log

(
κ+ 1

κ− 1

)
≥ log

(
1

ε

)
(3.41)

K log

(
1 + 1/κ

1− 1/κ

)
≥ log

(
1

ε

)
(3.42)

2K

(
1

κ
+

1

3κ3
+ · · ·

)
≥ log

(
1

ε

)
. (3.43)

So, we can chooseK ≥ 0.5κ log(1/ε) to sufficiently reduce the error. Since the number of iterations required isO (κ),
and Algorithm 4 requires O (n) multiplications per iteration if A is sparse, the total complexity for steepest descent
on sparse matrices is O (nκ).

3.3 Conjugate Gradient Descent
Conjugate gradient descent (CG) [12] is a modification of gradient descent that attempts to remedy the cycling problem
of gradient descent.

Let the notation

〈x, y〉A = 〈x,Ay〉, (3.44)

for a positive definite matrix A. We say that x and y are conjugate with respect to A iff. 〈x, y〉A = 0. Suppose that

P
∆
= {pi ∀i ∈ [1, n] | 〈pi, pj〉A = 0 ∀i 6= j} . (3.45)

That is, P is a complete set of mutually-conjugate vectors. We also write pi ⊥A pj to denote conjugacy. Since A > 0,
P is also a basis for Rn.

Then, we can write

x̂ =

n∑
i=1

αipi, (3.46)

with each αi ∈ R, where Ax̂ = b. Then,

b = Ax̂ =

n∑
i=1

αiApi. (3.47)

By choosing any pj ∈ P , we have

〈pj , b〉 =

n∑
i=1

αi〈pj , Api〉 (3.48)

= αj〈pj , Apj〉, (3.49)

due to the conjugacy of P . We can then recover

αj =
〈pj , b〉
〈pj , pj〉A

. (3.50)

28

Algorithm 5 Conjugate gradient descent
x← x0

r ← b−Ax
z ← r
p← z
for i = 1..K do

α← 〈r, z〉/〈p, p〉A
x← x+ αAp
rnew ← r − αAp
znew ← rnew

β ← 〈znew, rnew〉/〈z, r〉
p← znew + βp
z ← znew

r ← rnew

end for

It turns out that we can generate pi sequentially without significant effort, leading to Algorithm 5. Due to the fact
that the iteration steps are along the pi and that they are mutually conjugate and span the entire space, it is a fact that
(excepting numerical errors) the algorithm converges exactly to x̂ in at most n iterations.

If A is dense, then each iteration has O
(
n2
)

multiplications. Since we have to perform K = n iterations in the
worst case, this gives an overall worst-case complexity of O

(
n3
)

for dense matrices, and by the same logic O
(
n2
)

for sparse systems.
For a more rigorous analysis of the convergence of CG, refer to [28] that the error reduction ratio is bounded by∥∥eK∥∥

A

‖e0‖A
≤ 2

(√
κ− 1√
κ+ 1

)K
, (3.51)

where κ is the condition number of A. If we require that the error reduction ratio∥∥eK∥∥
A

‖e0‖A
≤ ε, (3.52)

then we can get a lower bound on the number of required iterations K:

2

(√
κ− 1√
κ+ 1

)K
≤ ε (3.53)

K log

(√
κ− 1√
κ+ 1

)
≤ log

(ε
2

)
(3.54)

K log

(√
κ+ 1√
κ− 1

)
≥ log

(
2

ε

)
(3.55)

K log

(
1 + 1/

√
κ

1− 1/
√
κ

)
≥ log

(
2

ε

)
(3.56)

2K

(
1√
κ

+
1

3
√
κ

3 + · · ·

)
≥ log

(
2

ε

)
. (3.57)

So, we can choose K ≥
√
κ/2 log(2/ε) to sufficiently reduce the error. Since the number of iterations required is

O (
√
κ), the total complexity for CG on sparse matrices is O (n

√
κ), a significant improvement from the O (nκ) of

steepest descent.

29

Table 3.1: Comparison of solvers on the matting problem
Algorithm Space Time

Complete Factorization O
(
n3
)
O
(
n3
)

Steepest Descent O (n) O (nκ) = O
(
n2
)

CG O (n) O (n
√
κ) = O

(
n1.5

)
3.4 Preconditioning
Preconditioning is a general framework that describes a way to reduce the number of iterations required in iterative
schemes by implicitly estimating the inverse of the system. The idea is to find a matrix T to modify the problem such
that

TAx = Tb. (3.58)

If T is chosen such that κ(TA)� κ(A), then iterative schemes applied to this new system will converge faster.
One choice for sparse positive definite matrices is the incomplete Cholesky factorization. If we had a Cholesky

factorization A = LLT , then we could construct T = A−1 and solve the problem in a single iteration. However, the
Cholesky factorization is dense and unsuitable to store for large sparse matrices. The incomplete Cholesky factoriza-
tion attempts to create a sparse matrix K that is similar to the dense factorization L. A simple way to create K is to
perform the Cholesky decomposition, but to set Kij to zero if Aij is zero. This procedure is given in Algorithm 6.
Then, the preconditioner T =

(
KKT

)−1
can be applied to reduce the condition number and the required number of

iterations. This is especialy popular to use with the conjugate gradient to obtain preconditioned conjugate gradient
method [15].

Algorithm 6 Incomplete Cholesky decomposition
1: for j = 1..n do
2: Kjj ← Ajj
3: for k = 1..j − 1 do
4: Kjj ← Kjj −K2

jk

5: end for
6: Kjj ← K

1
2
jj

7: for i = j + 1..n do
8: if Aij 6= 0 then
9: Kij ← Aij

10: for k = 1..j − 1 do
11: Kij ← Kij −KikKjk

12: end for
13: Kij ← Kij/Kjj

14: end if
15: end for
16: end for

3.5 Applications to Matting
In the existing literature, the previous solution methods are used in various fashions. Since the iterative methods have
complexity dependent on the condition number, we need to estimate that in order to get a clear picture of the practical
complexity. Since the matting Laplacian defines a second-order elliptic PDE, our system tends to have a condition
number κ ∈ O

(
n

2
d

)
, where d is the spatial dimensionality, which is 2 in this case [28]. So, we can substitute n for κ

in the complexity analyses to obtain Table 3.1.

30
Because all the methods summarized in Table 3.1 are not scalable as the resolution n grows, they are usually not

used directly in practice. Some of the matting methods modify the previous algorithms directly, some use heuristics
to simplify the solution, and some modify or decompose the input first.

In [30], the matting Laplacian is fixed across all instances of the problem to be the spatial Laplace operator.
Although there are specialized efficient methods to solve with this operator, the work instead chooses to use successive
over-relaxation (SOR), which is a straightforward iterative method that we will describe later. Since their method does
not have a fixed right-hand side, they iterate between the SOR stage and recomputing the right-hand side.

In [19], the matting Laplacian is data-dependent. For small images, they say they use the “backslash” operator in
MATLAB, which amounts to a Cholesky decomposition in this case. To deal with larger images, they downsample
to a small resolution, solve in the same manner, then do interpolation and thresholding to get back to full resolution.
They mention briefly that they implemented a multigrid solver to handle large problems, but give no details and state
that it degrades the quality.

[11] use the conjugate gradient method. To work on large images, they split the problem into axis-aligned rect-
angles that contain both foreground and background constraints. They then solve for the matte in each segment
independently.

31

Part II

My Work

32

Chapter 4

Addressing Quality & User Input

Quality and the amount of user input required to get that quality are two fundamental concerns of natural image
matting. Below, we describe our works [16] and [17] that make progress on both fronts.

4.1 L1 Matting
Many matting problems are formulated as minimization problems, where the objective function contains a term pro-
portional to the energy encoded by the image and the matte. In other words, we often see problems formulated under
L2 as

αΩ = arg min
α

∫
Ω

|T [I]− α|2 dx (4.1)

where T [I] is some transformation applied to the image, and Ω is small enough such that the matte is expected to be
roughly constant there. If there is little interaction between alpha values on different domains, then it is clear that the
optimum solution for alpha over each domain is the mean of T [I].

In closed-form matting, the terms of the objective function are∑
i∈wj

|αi − ajIi − bj |2 , (4.2)

and in poisson matting, the objective function is

αΩ = arg min
α

∫
Ω

∣∣∣∣ 1

F −B
∇I −∇α

∣∣∣∣2 dx. (4.3)

Such formulations utilizing the L2 norm have some nice statistical properties and solutions. However, there is little
reason to assume that the L2 norm is the “right” norm. The mean that is associated with this norm also has drawbacks.
It can be very sensitive to noise and outliers in some areas, and causes oversmoothing in other areas.

In our approach, we consider the usefulness of the L1 norm. It turns out to be that the median filtered image Ψ[I]
plays a crucial role in L1. Specifically, it is much smoother over foreground and background regions, but in contrast
with the mean intrinsic to L2 space, it tends to preserve information on the edges between foreground and background.
The L2 interpretation of this L1 feature is that it forces foreground and background to be smooth. This leads to the
intriguing conclusion that it is not always necessary to completely reformulate methods from L2 to L1 to utilize the
benefits of L1 space.

To illustrate this idea, we reformulate a the well-known method of closed-form matting. Since the local estimate of
the matte depends directly on the image data, there are often patches within the result that exhibit too much fluctuation
unless the smoothing parameter ε is chosen large enough, in which case the boundaries can become overly smooth.
By letting the matte depend on the L1 data Ψ[I] instead, we improve the quality of the homogeneous regions of the
matte without sacrificing as much of the quality along the boundaries. We show direct comparisons between the two
methods in the mattes of blurred objects and static objects, and provide numerical evidence that our method generates
better mattes.

33
We posit that matting using the median-filtered image Ψ[I] in place of the image itself generally provides better

results. The median filter is a non-linear filter that tends to preserve edges in an image while making the other regions
more uniform. Techniques such as closed-form and Poisson matting make the assumption that the foreground and
background images are smooth. But for most natural images, there is no reason to assume that they are, since there
is no natural phenomenon that causes physical objects to be band-limited. This makes such assumptions troublesome.
However, by using Ψ[I] instead, we smooth out the foreground and background in the appropriate places and better
satisfy the assumption, without compromising the information carried by edges.

4.1.1 Methods
Before we consider the L1 norm and its usefulness toward matting, we first need to define the median. Take Ω to be a
domain in Rn with finite Lebesgue measure and f ∈ C(Ω) ∩ L1(Ω) to be a real-valued function on Ω. According to
a theorem of [24], there exists a unique m∗ ∈ R where

M(m) :=

∫
Ω

|f(x)−m| dλn(x) (4.4)

is minimized. We call m∗ the median of f over Ω with respect to λn.
The typical minimization problem under L1 gives us

αΩ = arg min
∫

Ω

|T [I]− α| dx (4.5)

which we now recognize as the median of T [I] according to equation (4.4). The median, in contrast with the mean,
resolves the issue of noise sensitivity. It also does not cause oversmoothing issues near sharp edges, where most of the
perceptual information is located.

Now we explain the concept of L1 matting in an intuitive sense. For most of the image, α should be nearly constant
and either 0 or 1. This means that even though Ψ is non-linear,

Ψ[I] ≈ αΨ[F] + (1− α)Ψ[B] (4.6)

except near transition regions. And of course, Ψ[F] and Ψ[B] are smoother than F and B. But near the transition
regions, we have

Ψ[I] ≈ I = αF + (1− α)B. (4.7)

What equations (4.6) and (4.7) mean, is that if we are concerned only with Ψ[I], we eliminate the need for smoothness
assumptions on F and B for the large majority of the image. Another interpretation is that we force the smoothness
assumption to be true in regions that are clearly foreground or background.

Interestingly, in many cases it seems unnecessary to reformulate the whole problem to L1 to take advantage of Ψ.
As an example, we modify the closed-form approach. Notice that the individual terms of the objective function are of
the form ∑

i∈wj

|αi − ajIi − bj |2 . (4.8)

If we use the L1 norm instead of L2, we do not lose the meaning of the cost function, since its use is only to make the
solution easier to obtain. Taking wj sufficiently small, αi ≈ αj ∀i ∈ wj . So if we make these changes,

α∗ := arg min
∑
i∈wj

|α− ajIi − bj | (4.9)

which is nothing but a discrete version of equation (4.4). In other words, α∗ = Ψ[ajIi − bj], or

αi ≈ ajΨ[I]i + bj ∀i ∈ wj . (4.10)

However, care must be taken when considering the radius of Ψ. Any feature with a thickness smaller than the
radius will be obliterated. This can be a problem for images with fine structures (such as hair) near transition regions.
However, one way around this is to introduce a second operator which preserves these structures. In other words:

34

αi ≈ ajΨr1 [I]i + bjΨr2 [I]i + cj ∀i ∈ wj , (4.11)

where r1 is the radius of Ψ chosen to be smaller than the width of the finest structures, and r2 is a radius chosen
to sufficiently smooth the interior regions. S := Ψr1 [I] and L := Ψr2 [I]. The closed-form objective function then
becomes:

J(α,a,b, c) :=

1

2

∑
j∈I

∑
i∈wj

(αi − ajSi − bjLi − cj)2 + ε1a
2
j + ε2b

2
j

 .
(4.12)

The ratio ε1/ε2 should be chosen high enough to preserve the small features, but not so large as to destroy the smooth-
ness of interior regions, and both should be small enough to prevent global over-smoothing.

Since J is composed of quadratic functions of linear combinations of the variables, it is convex. This structure
also means that the gradient components are linear in terms of the variables. For example,

∂J

∂αk
= αk|wk| − Sk

∑
j∈wk

aj − Lk
∑
j∈wk

bj −
∑
j∈wk

cj , (4.13)

and in vector notation,

∂J

∂αk
=[0, . . . , |wk|, 0, . . . ,

0, . . . ,−Sk,−Sk, . . . ,
0, . . . ,−Lk,−Lk, . . . ,
0, . . . ,−1,−1, . . . , 0, . . .]x,

(4.14)

if x := [α,a,b, c]T .
So, the unconstrained problem can be solved exactly by a sparse set of linear equations given by

∂

∂xk
J = Ak · x = 0 if xk unconstrained

Ak · x = ek · x = vk if xk constrained to be vk

where Ak is the kth row of matrix A ∈ R4n × R4n.
We have implemented this matrix method in Matlab and have been using it when the number of pixels is relatively

small. However, notice that the number of non-zero entries is O(n). Therefore, the time complexity of the algorithm
is O(n2), which is quite steep for images as the resolution grows.

To get the solution more efficiently, it is worth noting that a well-constructed iterative gradient descent method
will terminate exactly on the optimal solution in 4n iterations or less (excepting round-off errors). Therefore, gradient
descent has a much better complexity of O(n). Each iteration of the descent forms the next estimate xp+1 by xp+1 =
xp − λ∇J(xp), where λ is the step size that minimizes J(xp − λ∇J(xp)). Since this is a 1-d minimization over λ,
we can find it easily, and the solution is

λ =
T1 − T2

T3 − T4
, (4.15)

35

(a) A moving car and the input scribbles

(b) Closed-form result followed by our result

Figure 4.1: Notice the horizontal stripes begin to fade in our result.

where

T1 =
∑
j∈I

(ε1a
p
j∇a

p
j + ε2b

p
j∇b

p
j)

T2 =
∑
j∈I

∑
i∈wj

(αpi − a
p
jSi − b

p
jLi − c

p
j)

×(∇αpi −∇a
p
jSi −∇b

p
jLi −∇c

p
j)

T3 =
∑
j∈I

(ε1(∇apj)
2 + ε2(∇bpj)

2)

T4 =
∑
j∈I

∑
i∈wj

(∇αpi −∇a
p
jSi −∇b

p
jLi −∇c

p
j)

2

and∇apj is the component of∇J(xp) corresponding to aj , for example.
The effect of our formulation as given by equation (4.12) is like an adaptive median filter. In interior regions, bj

should be larger that aj , meaning that the large-radius median filter is active. Near transition regions, aj should be
larger than bj . This suggests another way to formulate the problem.

Instead of a fixed-radius Ψ, it should be possible to design an adaptive version which is cognizant of transition
regions. Perhaps this could be done using gradient information. This is something we will pursue in the near future.

4.1.2 Experiments & Results
In figure 4.1, we show the tail of a car that is travelling from left to right, leaving a motion blur. Giving the image to
the closed-form method produces the image in the lower left. Utilizing median information gives our result bottom
right. Notice that not only have the horizontal stripes begun to fade, but the faint glow above the car has attenuated
as well. In general, the alpha matte in the foreground and background regions is smoother, without over-smoothing in
the transition region. The fact that we can achieve better results with motion-blurred images is quite significant, since

36

((a) A person’s face and the input scribbles

(b) Closed-form result followed by our result

(c) Background replacement

Figure 4.2: Pink hair is remedied.

37
recovering the unblurred image depends on a high-quality alpha matte in some recent algorithms [3]. There are some
artifacts near the edges and corners of the image, but they are only due to Matlab’s implementation of the median filter.

In figure 4.2, we show a typical portrait view of a person. The closed-form method result in the lower left corner
gives errors near the edges of the hair and where the hair changes color quickly due to highlights, where the assumption
of smooth foreground fails. It also produces a bit of noise in the matte in the area between the hair and the left and
right edges of the image. This means that some of the hair is assumed to be a bit transparent, which is obviously errant.
In our result at the bottom right, the matte is much smoother over the hair, and does not show the same noise as in
the closed-form result. As a result, background replacement with closed-form matting makes the highlights in the hair
appear pink, while ours stays truer to the original color.

For numerical comparison, we obtained 27 images along with their ground truth alpha mattes from [27]. We then
computed the alpha mattes for both methods with constant parameters, and found the absolute error with respect to
the ground truth mattes. The parameters were chosen to give the least average error for each method, which meant
ε = 10−5 for closed-form matting, and r1 = 0.5, r2 = 2, ε1 = 10−5, ε2 = 10−5 for our method. The input given
was a sparse trimap, meaning that 80% to 90% of the image is classified as unknown. The result of the experiment is
that the average error for our method is 93% of the closed-form error. Since the standard deviation for this figure was
only 6.4%, we can say with over 99.99% confidence that using L1 information is more effective at generating accurate
mattes given sparse trimaps. This means that our method could be more amenable to automatic generation of alpha
mattes, and we will pursue this in the near future.

4.2 Nonlocal Matting
So far, most papers on natural image matting have ignored one major question: what is good user input? In other
words, what is the best input a user can provide so that the algorithm gives the most accurate results? To the best of
our knowledge, there is very little in the literature to answer: what is good input, and how can we provide the least
amount of input for the most accuracy? We answer these questions in [17] by showing that the nonlocal principle
[1] acts as a very effective sparsity prior on the matte, and serves to dramatically reduce the human effort required to
generate an accurate matte. Using this technique, we can effectively handle textured regions, edges, and structure in a
way that no one has demonstrated before.

Suppose there is a subset of pixels that exactly cluster in the graph implied by Laplacian L, and that we constrain
one of the pixels in that cluster to have alpha value a. Then, the value of the objective function αTLα is minimized
if the rest of the pixels in the cluster are also labeled a. The reason is that, if we have K clusters, αTLα can be
decomposed as

αTLα =

K∑
k=1

∑
(i,j)∈Ek

Aij(αi − αj)2, (4.16)

where {Ek | k = 1, 2, . . . ,K} is a partition of the edge set E. Therefore, labeling the rest of the values in the cluster
as aminimizes αTLα. What this means is that if we can construct the affinities so that the graph clusters accurately on
foreground and background objects, the user only needs to constrain a single pixel in each cluster, and the algorithm
can do the rest of the work.

In many cases, obtaining a good clustering is difficult by using Levin et al.’s Laplacian [19]. The main reason is
that there is an overly strong regularization of the problem with spatial patches. This causes many clusters to be small
and localized (Fig. 4.3.b). This may be fine for large smooth regions, but is inappropriate for textured regions. In an
attempt to remedy this, Levin et al. presented another algorithm in [20] that combined the small clusters into larger
ones that they call matting components based on two priors: the components are heavily biased to be binary-valued,
and they do not overlap. Their solution is a nonlinear optimization procedure with a non-convex and non-differentiable
objective function.

4.2.1 Methods
In [17], we present a new approach that achieves better results directly. This new approach defines a new Laplacian
based on the nonlocal principle. The nonlocal principle [1] essentially states that given an image I , the denoised pixel

38

(a) (b) (c)

Figure 4.3: (a) Input image. (b) Labels after clustering Levin’s Laplacian. (c) Clustering nonlocal Laplacian.

i is a weighted sum of the pixels that have similar appearance, where the weights are given by some kernel k(i, j).
More formally,

E [I(i)] ≈
∑
j

I(j)k(i, j)
1

Di
, where (4.17)

k(i, j)
∆
= exp

(
− 1

h2
1

‖I(S(i))− I(S(j))‖2g −
1

h2
2

d2(i, j)

)
(4.18)

Di
∆
=
∑
j

k(i, j). (4.19)

Here, S(i) is a small spatial patch around pixel i, and d(i, j) is the pixel distance between pixels i and j. ‖·‖g
indicates that the norm is weighted by point-spread function (PSF) g, which can be a center-weighted Gaussian PSF
with standard deviation on the order of the radius of spatial neighborhood S(i).

The nonlocal principle defines a discrete data distribution k(i, ·)/Di for each pixel i, and implies that the image
can be sparsely represented by a few spatial patches. Suppose that, by analogy to Eq. (4.17), the alpha matte is such
that

E [αi] ≈
∑
j

αjk(i, j)
1

Di
, (4.20)

or, we can write

Diαi ≈ k(i, ·)Tα, . (4.21)

39

(a) (b)

(c) (d)

Figure 4.4: (a) Nonlocal neighbors at pixel (5,29). (b) Spatial neighbors at pixel (5,29). (c) Nonlocal neighbors at
(24,23). (d) Spatial neighbors at (24,23).

It then follows that

Dα ≈ Aα, where (4.22)

A =

 k(1, 1) · · · k(1, N)
...

k(N, 1) · · · k(N,N)

 , and (4.23)

D =

D1 0
. . .

0 DN

 . (4.24)

Therefore, (D−A)α ≈ 0, and αT (D−A)T (D−A)α ≈ 0. What this means is that we can effectively have a matting
Laplacian based on the nonlocal principle Lc = (D −A)T (D −A).

Due to (4.23), our affinity includes texture information, has little spatial regularization, and is nonlinear. Further,
since we expect sparsity from the nonlocal principle, Lc should exhibit the property of having a small number of
clusters for some permutation matrix P . For this reason, we refer to this Lc as the nonlocal clustering Laplacian.

To extract clusters from Lc, we adapt the method described in [23]. First, define

M =D
−1
2 LcD

−1
2 . (4.25)

Then, calculate the m smallest eigenvectors of M (we take m = 10), {V1, . . . , Vm}. Now, we create a matrix U such
that each column corresponds to an eigenvector, but normalized such that each row has unit length under the 2-norm.
In this way, each pixel is associated with a type of feature vector with m components. Then, we can treat U as the data
matrix in the k-means clustering algorithm [9]. So, we use k-means to do the final segmentation to locate the clusters.
Parameter k controls the final number of clusters and depends on the image complexity.

The key observation is that the number of clusters k that we need to describe the alpha matte is only on the order
of 10 to 20, even when the number of pixels is tens of thousands. According to the observation in (4.16), we only need

40

(a) (b) (c)

Figure 4.5: (a) Input image, pixel (76,49) highlighted in red. (b) Affinities to pixel (76,49) in [19] (c) Nonlocal
affinities to pixel (76,49).

the user to label k pixels in the entire image. This is in contrast to Levin et al.’s method, where their Laplacian does
not cluster very well (Fig. 4.3), especially for small k, requiring dense user input in the form of large scribble regions,
or even a nearly complete trimap.

To maintain accuracy of the matte near the edges, we present a modification to Levin et al.’s algorithm. First, some
notation. If C = {τ1, . . . , τn}, define α(C) to be a column vector of length n: [ατ1 , . . . , ατn]

T . Unless otherwise
specified, vectors are column vectors. S(i) represents a spatial neighborhood of pixel i (patch), and N(i) represents
the nonlocal neighborhood of pixel i.

Suppose

Qα(N(i)) ≈ Q [X(N(i)),1]

[
β
β0

]
(4.26)

∆
=X0(N(i))

[
β
β0

]
,

whereX is aN ×d vector of image features withN being the number of pixels, and d being the number of features or
channels (we use RGB or grayscale values), and Q = diag(k(i, ·)/Di), is a weighting matrix containing the nonlocal
data distribution. If we assume α is fixed, the optimal linear parameters are[

β∗

β∗0

]
=

(
XT

0 (N(i))QX0(N(i)) + λ

[
Id 0
0 0

])−1

XT
0 (N(i))Qα(N(i))

∆
= X†0(i,Q, λ)α(N(i)). (4.27)

Here, λ is a small number (10−5 or so) whose purpose is to ensure that the eigenvalues of XT (N(i))QX(N(i)) are
strictly positive so that the pseudoinverse defined in equation (4.27) exists and is unique.

Since we now have

α(N(i)) ≈ X0(N(i))X†0(i,Q, λ)α(N(i)) (4.28)
∆
= Biα(N(i)), (4.29)

we can construct the quadratic form

αTLmα
∆
= q(α) (4.30)

=

N∑
i=1

α(N(i))T (I−Bi)
T (I−Bi)α(N(i)). (4.31)

41
The difference from [19] is that their data matrices X0 are local, and weighted by a uniform data matrix Q = cI,
while our data matrices are nonlocal, and appropriately weighted by the nonlocal kernel, biasing the solution toward
our assumption (4.20), and inserting texture information into the algorithm.

To find α, we solve the following optimization:

α∗ = arg min
α

q(α)

s.t. α(C) = k

where C is the set of user-constrained pixels and k is the vector of constrained values. This can be solved exactly and
in closed form by a smaller quadratic program. Since we use this Laplacian Lm for matte extraction, we refer to it as
the nonlocal matting extraction Laplacian.

The result of this nonlocal modification is very important. First, by exploiting the nonlocal kernel, we utilize
some texture information on the image, effectively grouping pixels with similar texture. Second, the neighborhoods
used in calculating the Laplacian are essentially adaptively varying in size as shown in Fig. 4.4, removing the highly
spatial clustering effects of previous methods (see Fig. 4.3.b), and therefore reducing the amount of input needed.
Another advantage is that the nonlocal neighborhoods can safely be much larger. The effect of large neighborhoods
is interpreted by [11] as a large point spread function on the matte, causing convergence of iterative solvers to greatly
speed up. Conversely, if the pixel’s patch is not very similar to any other in the image, the nonlocal neighborhood will
be very small and convergence there will be slow. Therefore, an iterative solver can provide feedback to the user based
on the local convergence rates about the quality of the final matte, and where he or she should provide additional input.

4.2.2 Experiments & Results
To formally evaluate the algorithm we have developed, we test its accuracy on the dataset given by [27] by the mean
squared error (MSE) as well as by visual inspection of matte quality. We use the algorithm in [19] for comparison,
since it is the state of the art with respect to sparse user input. We provide it with the same user input as to our
algorithm.

The results for the MSE are shown in Fig. 4.6, where we can immediately see a drastic reduction in MSE. In fact,
the average ratio of the Levin’s MSE to the nonlocal MSE is 4.04 with a sample standard deviation of 1.0. Therefore,
we can say that our method outperforms Levin’s with confidence > 99.99% when the input is sparse. Perhaps even
more important is the observation that our MSE curve is much smoother, suggesting our method is more robust to
variations in user input.

However, the MSE does not have a linear correlation to human perception. So, we need to visually verify that the
extracted mattes are high quality despite the sparse input. For this, we provide several examples in Fig. 4.7. First, it
is obvious that the amount of input required for our method is miniscule. The effects of spatial regularization can be
seen as oversmoothing in column (c), while our results in (d) remain crisp. In column (e), background replacement
highlights the limitations of [19], showing significant bleed-through, while ours in column (f) appears much cleaner.
It is clear that even with such sparse input, the matte quality is much higher with our nonlocal matting.

42

Figure 4.6: MSE of Levin’s method vs. our method with the same amount of input on images from [27]. [19] = black,
nonlocal = gray.

(a) (b) (c) (d) (e) (f)

Figure 4.7: Visual inspection of matte quality. (a) Input image. (b) Sparse user input. (c) Levin’s algorithm [19]. (d)
Nonlocal algorithm. (e) Background replacement with (c). (f) Background replacement with (d).

43

Chapter 5

Multigrid Analysis

No matter what method we choose to construct the matting Laplacian, we end up with a large, sparse, ill-conditioned
problem. There are a number of methods to solve large linear systems Au = f for u. We have already covered several
of these in chapter 3, finding that the best of these generally give O

(
n1.5

)
time complexity on the matting problem.

However, they are very generic solution methods and do not take advantage of several key features of our problem.
The first advantage we have is that u and f are images. Further, A must be a linear operator on the space of those

images. This means that the problem has a sense of resolution built into it. Resolution allows us to get approximate
answers to the full scale problem by downsampling the entire system, solving it quickly in small scale (since smaller
n means smaller complexity), and then upsampling to full scale.

Secondly, we have good priors on u. For us, u is the alpha matte image, and in most cases we are matting opaque
objects with little transparency. This means that u is nearly constant (0 or 1) everywhere, with fractional values near
the object boundary. Further, unless the object is pathalogical like a fractal, the ratio of the number of boundary pixels
to n goes to zero like n−0.5 with increasing resolution. We know that if u is locally constant, that Au is locally
minimized since A is a graph Laplacian in which constant vectors are in the null space. Since we expect u to be nearly
constant everywhere as n grows, there must be a solver which can take advantage of this fact to converge much more
quickly than those generic solvers.

Multigrid methods are designed to fully take advantage of both of these expectations. The general idea is to
generate a set of succesively coarser resolution systems, and to solve for the low frequencies in small resolution, then
upsample and iterate to solve for the high frequencies in high resolution, and to do so in a recursive manner. In this
chapter, we review these methods and analysis briefly, and A full treatment is given in [22]. As we studied in [18], we
will see that such methods are quite ideal in our circumstance and gives a sub-linear complexity solver for matting.

5.1 Relaxation
First, we must discuss relaxation iterations. These are iterative linear solution methods, where the iteration is of the
affine fixed-point variety:

u← Ru+ g. (5.1)

Standard relaxtion methods include the Jacobi method, Gauss-Seidel, and successive over-relaxation (SOR). If û is
the solution, it must be the case that it is a fixed point of the iteration: û = Rû + g. For analysis, we define the error
and residual vectors

e
∆
= û− u and

r
∆
= f −Au

so that original problem Au = f is transformed to Ae = r. We can then see that

e← Re i.e.
enew = Re (5.2)

44
is the iteration with respect to the error. We can see that at the solution, u = û means that the error e = 0. It is
important to realize that while r is the observable residual, e is unobservable in practice, obscured by requiring A−1.

Since we are concerned with how quickly the error converges to 0, it would be nice to say how much the error
is reduced in each iteration. The ratio ‖enew‖ / ‖e‖ captures the per-iteration error reduction and is what we call the
convergence rate.

From Equation 5.2, we can see that the convergence rate ‖enew‖ / ‖e‖ is bounded from above by the spectral radius
ρ(R), since for any consist norm we have ‖Re‖ ≤ ‖R‖ ‖e‖, and ρ(R) ≤ ‖R‖. So, a simple upper bound for the error
reduction after j iterations is

∥∥ej∥∥ / ∥∥e1
∥∥ ≤ ρ(R)j . For quickest convergence and smallest error, we obviously want

ρ(R) to be much less than 1.
Recall ρ(R) = maxi

∣∣∣µi∣∣∣, where µi are the eigenvalues of R. So, to analyze the convergence, we need to under-
stand the eigenvalues. Since e can be quite a complicated function in practice, it is useful to decompose the error e in
the basis of eigenvectors vi of R:

e1 =

n∑
i=1

aivi. (5.3)

In other words, ai is the amount of spectral energy that e has at “frequency” i. We can think of it as frequency since
the underlying graph is regular in structure, giving Eigenvectors that are increasingly oscillatory as i increases. This,
this decomposition is very much a data-dependent version of the Fourier transform. Then, after j iterations, we can
see that

ej =

n∑
i=1

µjiaivi. (5.4)

So, the closer µi is to zero, the faster the vi component of e converges to 0. For Laplace operators, ρ(R) = µ1, the
lowest “frequency” Eigenvalue, and µ1 < 1 making the iteration always convergent.

Since µ1 is closest to 1, the v1 (low-frequency) component dominates the convergence rate, while the higher-
frequency components are more easily damped out (for this reason, relaxation is often called smoothing). Further, we
explain that the convergence rate rapidly approaches 1 as n grows. To break this barrier, we need a technique that can
handle the low-frequencies just as well as the high frequencies.

5.2 Jacobi Relaxation
A first attempt to solve Au = f is just to satisfy each equation independently:

ui(new) ← fi −Aiu, (5.5)

where Ai is the ith row of A. This is the strategy of the Jacobi Method. More completely, if D, −L, and −U are the
diagonal, lower, and upper triangular parts of A resp., then A = D − L− U and the Jacobi Method is:

u← D−1(L+ U)u+D−1f. (5.6)

We can see that the relaxation matrix RJ = D−1(L + U). Since D is diagonal, it is trivial to invert and can
be done once and amortized over all the iterations. Further, RJ can be constructed in-place from A, and the only
additional storage required is a temporary vector u(new). Also advantageous is the fact that each element of u is
updated independently of all others, allowing trivial parallelization of the method. The only remaining question is how
fast it converges.

In our case, RJ = D−1(L+U) is the normalized graph adjacency matrix D−1(AG), also called the random walk
Laplacian. From well-known facts, its spectrum gives ρ(RJ) ≈ 1− c/n2 for some constant c. In order for the error to
be reduced to some tolerance τ , ∥∥ej∥∥ / ∥∥e0

∥∥ ≤ τ =⇒ (5.7)

(1− c/n2) ≤ τ =⇒ (5.8)

j ≈ n2− log(τ)

c
∈ O

(
n2
)
. (5.9)

45

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

Ja
co

b
i
E
ig

e
n
v
a
lu

e
s

Normalized Frequency

Figure 5.1: Jacobi method spectrum.

In fact, for typical Laplace operators on regular grids, common analysis gives

µi ≈ cos

(
πi

n+ 1

)
, (5.10)

which plotted against normalized frequency (πi)/(n+1) gives Fig. 5.1. We can see that while the medium frequencies
converge quickly, the low- and high-frequency errors converge very slowly.

5.3 Gauss-Seidel Relaxation
Gauss-Seidel is another relaxation method very similar to the Jacobi method. Instead of independently solving each
equation simultaneously, it attempts to do so sequentially. For example, it will update u1, then update u2 using the
new value of u1 it just computed. Unlike the Jacobi method, this means that it can be performed entirely in-place.

The Gauss-Seidel iteration can be described by

u← (D − L)−1Uu+ (D − L)−1f, (5.11)

so, the iteration matrix in this case is

RG = (D − L)−1U. (5.12)

Though we will not prove it here, it results that ρ(RG) ≤ [ρ(RJ)]
2, meaning the convergence rate is half of the Jacobi

method, converging much more rapidly. In fact, the spectrum of RG typically gives µhi ≈ cos2(iπh), which is plotted
in Figure 5.2. However, the cost of the increased performance is the loss of the ability to parallelize the scheme.

46

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

G
a
u
ss

-S
e
id

e
l
E
ig

e
n
v
a
lu

e
s

Normalized Frequency

Figure 5.2: Gauss-Seidel spectrum.

5.4 Damping
One problem with the methods above is that the converge just as slowly at high frequencies as they do at low frequen-
cies. This can be remediated by introducing damping.

RJ(ω)
∆
= (1− ω)I + ωRJ , giving (5.13)

µ(ω) = 1− ω + ω cos

(
πi

n+ 1

)
, (5.14)

If we choose ω = 2/3, then that reduces the magnitude of the mid and high-frequency eigenvalues to 1/3, leaving the
low-frequency eigenvalues relatively unchanged. The resulting eigenvalues are plotted in Figure 5.3.

Damping can also be applied to Gauss-Seidel. In that case, the iteration remains convergent for 0 ≤ ω < 2, and
for ω > 1, it is called successive over-relaxation or SOR. Damped relaxation gives us the ability to focus on how to
improve the convergence rate for the low-frequency error components.

5.5 Multigrid Methods
Multigrid methods are a class of solvers that attempt to fix the problem of slow low-frequency convergence by integrat-
ing a technique called nested iteration. The basic idea is that, if we can downsample the system, then the low-frequency
modes in high-resolution will become high-frequency modes in low-resolution, which can be solved with relaxation.

Without loss of generality, we can assume for simplicity that the image is square, so that there are N pixels along
each axis, n = N2 total pixels, with h = 1/(N − 1) being the spacing between the pixels, corresponding to a
continuous image whose domain is [0, 1]2. Since we will talk about different resolutions, we will let nh = (1/h+ 1)2

denote the total number of pixels when the resolution is h. We will also assume for simplicity that the spacings h differ
by powers of 2, and therefore the number of pixels differ by powers of 4. The downsample operators are linear and
denoted by I2h

h : Rnh → Rn2h , and the corresponding upsample operators are denoted by Ih2h = (I2h
h)T . The choice

of these transfer operators is application-specific, and we will discuss that shortly.
The idea of nested iteration is to consider solutions to

I2h
h Auh = I2h

h fh, (5.15)

47

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

Ja
co

b
i
E
ig

e
n
v
a
lu

e
s

Normalized Frequency

R_J
R_J(2/3)

Figure 5.3: Damped Jacobi spectrum.

that is to say a high-resolution solution uh that solves the downsampled problem exactly. Such a system is over-
determined, so we can restrict our search to coarse-grid interpolants uh = Ih2hu

2h. So, we get

I2h
h AIh2hu

2h = I2h
h fh. (5.16)

Since Ih2h = (I2h
h)T , we can see that A2h ∆

= I2h
h AIh2h is the equivalent coarse system. Of course we can repeat this to

get A4h and so on. The advantage of a smaller system is two-fold: first, the system is smaller and therefore is more
efficient to iterate on, and second, the smaller system will converge faster due to better conditioning.

So, supposing we can exactly solve, say, u16h, then we can get an initial approximation uh0 = Ih2hI
2h
4h . . . I

8h
16hu

16h.
This is the simple approach taken by many pyramid schemes, but we can do much better. The strategy is good if we
have no initial guess, but how can this be useful if we are already given uh0 ? The modification is subtle and important:
iterate on the error e instead of the solution variable u.

Algorithm 7 Nested Iteration
1: rh ← fh −Ahuh
2: r2h ← I2h

h rh

3: Estimate A2he2h = r2h for e2h using e2h
0 = 0.

4: uh ← uh + Ih2he
2h

Of course, step 3 suggests a recursive application of Alg. 7. Notice that if the error is smooth (eh ≈ Ih2he2h), then
this works very well since little is lost by solving on the coarse grid. But, if the error is not smooth, then we make
no progress. In this respect, nested iteration and relaxation are complementary, so it makes a lot of sense to combine
both. This is called v-cycle, and is given in Alg. 8. A visualization of the algorithm is shown in Fig. 5.4.

The idea of multigrid is simple: incorporating coarse low-resolution solutions to the full-resolution scale. The
insight is that the low-resolution parts propagate information quickly, converge quickly, and are cheap to compute due
to reduced system size.

When the problem has some underlying geometry, multigrid methods can provide superior performance. It turns
out that this is not just heuristic, but also has nice analytic properties. On regular grids, v-cycle is provably optimal,
and converges in a constant number of iterations with respect to the resolution [8].

48

Algorithm 8 V-Cycle
1: function VCYCLE(uh,fh)
2: if h = H then return exact solution uh

3: end if
4: Relax on Ahuh = fh

5: rh ← fh −Ahuh (compute residual)
6: e2h ← VCYCLE(e2h = 0,I2h

h rh) (estimate correction)
7: uh ← uh + Ih2he

2h. (apply correction)
8: Relax on Ahuh = fh

9: return uh
10: end function

h

2h

4h

8h

r2h

r4h

r8h e8h

e4h

e2h

Figure 5.4: Visualization of the v-cycle schedule. The V shape is the reason for the name.

It is also important to see that the amount of work done per iteration is O (n) in the number of variables. To see
this, we can take relaxation on the highest resolution to be 1 unit of work. Looking at Alg. 8, there is one relaxation
call, followed by recursion, followed by another relaxation call. In our case, the recursion operates on a problem at 1/4
size, so we have the total work asW (n) = 1+W (n4)+1 = 2+W (n4). In general, the relaxation costs nh/N , and the
expression becomesW (nh) = 2nh

n +W (nh

4). If we continue the expression,W (n) = 2+2 1
4+2 1

16+· · · = 2
∑∞
i=0

1
4

n,
which converges to W (n) = 8/3. In other words, the work done for v-cycle is just a constant factor of the work done
on a single iteration of the relaxation at full resolution. Since the relaxation methods chosen are usually O (n), then a
single iteration of v-cycle is also O (n). So, we get a lot of performance without sacrificing complexity.

V-cycle (and the similar w-cycle) multigrid methods work well when the problem has a regular geometry that
allows construction of simple transfer operators. When the geometry becomes irregular, the transfer operators must
also adapt to preserve the performance benefits. When the geometry is completely unknown or not present, algebraic
multigrid algorithms can be useful, which attempt to automatically construct problem-specific operators, giving a kind
of “black box” solver.

5.6 Multigrid (Conjugate) Gradient Descent
Here, we describe a relatively new type of multigrid solver from [26] that extends multigrid methods to gradient and
conjugate gradient descent. Please note that our notation changes here to match that of [26] and to generalize the
notion of resolution.

If the solution space has a notion of resolution on ` total levels, with downsample operators Ii` : Rn` → Rni , and
upsample operators I`i : Rni → Rn` (ni < n` ∀i < `), then define the multi-level residuum space on xk at the kth

49
iteration as

Rk = span
{
rk` , . . . , r

k
1

}
, where (5.17)

rki = I`i I
i
`r
k
` , ∀i < ` and (5.18)

rk` = f −Auk, (5.19)

where rk` is the residual at the finest level at iteration k, and rki is the projection of the fine residual to the coarser
levels. This residuum space changes at each iteration k. Gradient descent in this multi-level residuum space would
be to find correction direction d ∈ Rk s.t. 〈uk + d, q〉A = fT q ∀q ∈ Rk. In other words, the correction direction
is a linear combination of low-resolution residual vectors at iteration k, forcing the low-resolution components of the
solution to appear quickly.

To find step direction d efficiently, one needs to orthogonalizeRk by the Gram-Schmidt procedure:

d̂i = rki −
i−1∑
j=1

〈rki , dj〉Adj , ∀i ∈ 1, . . . , ` (5.20)

di =
d̂i∥∥∥d̂i∥∥∥

A

, (5.21)

d =
∑̀
i=1

〈rk` , di〉di. (5.22)

These equations give an O (n` × `) algorithm if implemented naı̈vely. But, since all of the inner products can be
performed at their respective downsampled resolutions, the efficiency can be improved to O (n`). To get an idea
how this can be done, consider computing the inner product 〈di, di〉A. First see that [26] guarantees the existence of
the low-resolution correction direction vector dco

i ∈ Rni such that it can reconstruct the full-resolution direction by
upsampling, i.e. di = I`i d

co
i . Now, notice that

〈di, di〉A = dTi Adi

= (I`i d
co
i)TA(I`i d

co
i) (5.23)

= (dco
i)T (Ii`AI

`
i)d

co
i (5.24)

= (dco
i)TAid

co
i , (5.25)

Where Ai is a lower-resolution system. Since Ai is only ni × ni, and ni � n` if i < `, then working directly on the
downsampled space allows us to perform such inner products much more efficiently.

Standard gradient descent is simple to implement, but it tends to display poor convergence properties. This is
because there is no relationship between the correction spaces in each iteration, which may be largely redundant,
causing unnecessary work. This problem is fixed with conjugate gradient (CG) descent.

In standard conjugate gradient descent, the idea is that the correction direction for iteration k is A-orthogonal
(conjugate) to the previous correction directions, i.e.

Dk ⊥A Dk−1, (5.26)

where Dk is iteration k’s correction space analagous to Rk. This leads to faster convergence than gradient descent,
due to never performing corrections that interfere with each other.

The conjugate gradient approach can also be adapted to the residuum space. It would require that d ∈ Dk, where
span{Dk,Dk−1} = span{Rk,Dk−1} andDk ⊥A Dk−1. However, as shown by [26], the resulting orthogonalization
procedure would cause the algorithm complexity to be O (n` × `), even when performing the multiplications in the
downsampled resolution spaces. By slightly relaxing the orthogonality condition, [26] develops a multigrid conjugate

50
gradient (MGCG) algorithm with complexity O (n`).

Dk = span
{
dk1 , . . . , d

k
l

}
(5.27)∥∥dki ∥∥A = 1 ∀i ∈ 1, . . . , ` (5.28)

dki ⊥A dkj ∀i 6= j (5.29)

D1 = R1 (5.30)

dk−1
i ⊥A dkj ∀k > 1, i ≤ j (5.31)

Rk +Dk−1 = Dk +Dk−1 (5.32)

We present Alg. 10, which fixes some algorithmic errors made in [26].

Algorithm 9 Multigrid gradient descent.
1: while numIter > 0 do
2: numIter ← numIter − 1
3: r` ← b−Ax
4: d` ← r`
5: for i = `− 1..1 do
6: ri ← Iii+1ri+1

7: di ← ri
8: end for
9: for i = 1..` do

10: ki ← Aidi
11: for j = i..2 do
12: kj−1 ← Ij−1

j kj
13: end for
14: s1 = 0

15: for j = 1..i− 1 do
16: sj ← sj + (kTj dj)dj

17: sj+1 ← Ij+1
j sj

18: end for
19: di ← di − si
20: ki ← Aidi
21: di ← di(k

T
i di)

− 1
2

22: end for
23: s1 ← (dT1 r1)d1

24: for i = 2..` do
25: si ← Iii−1si−1

26: si ← si + di
27: end for
28: x← x+ s`
29: end while

In multigrid algorithms such as these, we have freedom to construct the transfer operators. If we want to take
full advantage of such algorithms, we must take into account our prior knowledge of the solution when designing the
operators.

51

Algorithm 10 Multigrid CG descent.
1: Do one iteration of multigrid gradient descent.
2: while numIter > 0 do
3: numIter ← numIter − 1
4: r` ← b−Ax
5: dnew

` ← r`
6: for i = `− 1..1 do
7: ri ← Iii+1ri+1

8: dnew
i ← ri

9: end for
10: for i = 1..` do
11: ki ← Aidi
12: for j = i..2 do
13: kj−1 ← Ij−1

j kj
14: end for
15: s1 = 0
16: for j = 1..i− 1 do
17: sj ← sj + (kTj d

new
j)dnew

j

18: sj+1 ← Ij+1
j sj

19: end for
20: di ← di − si
21: ki ← Aidi
22: di ← di(k

T
i di)

− 1
2

23: ki ← Aid
new
i

24: for j = i..2 do
25: kj−1 ← Ij−1

j kj
26: end for

52

27: s1 ← 0
28: for j = 1..i− 1 do
29: sj ← sj + dnew

j (kTj d
new
j)

30: sj ← sj + dj(k
T
j d

new
j)

31: sj+1 ← Ij+1
j sj

32: end for
33: dnew

i ← dnew
i − si

34: si ← dnew
i − di(kTi di)

35: if ‖si‖∞ > ε ‖dnew
i ‖∞ then

36: dnew
i ← si

37: else
38: dnew

i ← di
39: di ← 0
40: end if
41: ki ← Aid

new
i

42: dnew
i ← dnew

i (kTi d
new
i)−1/2

43: end for
44: d1 ← dnew

1

45: s1 ← d1(dT1 r1)
46: for i = 2..` do
47: di ← dnew

i

48: si ← Iii−1si−1

49: si ← si + di(d
T
i ri)

50: end for
51: x← x+ s`
52: end while

5.7 Evaluated Solution Methods

5.7.1 Conjugate Gradient
CG and variants thereof are commonly used to solve the matting problem, so we examine the properties of the classic
CG method alongside the multigrid methods.

5.7.2 V-cycle
In order to construct a v-cycle algorithm, we need to choose a relaxation method and construct transfer operators. We
chose Gauss-Seidel as the relaxation method, since it is both simple and efficient. Through experiment, we found that
simple bilinear transfer operators (also called full-weighting) work very well for the matting problem. The downsample
operator I2h

h is represented by the stencil 1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16

 .
If the stencil is centered on a fine grid point, then the numbers represent the contribution of the 9 fine grid points to
their corresponding coarse grid point. The corresponding upsample operator Ih2h is represented by the stencil 1

4
1
2

1
4

1
2 1 1

2
1
4

1
2

1
4

 .
This stencil is imagined to be centered on a fine grid point, and its numbers represent the contribution of the corre-
sponding coarse grid value to the 9 fine grid points. The algorithm is then given by Alg. 8.

53

20 40 60 80 100 120 140 160 180 200
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Iteration

R
es

id
ua

l

Convergence at 4 Mpx

CG
MGCG
v−cycle

Figure 5.5: Convergence on a 4 Mpx image. Horizontal line denotes proposed termination value of 10−4.

Resolution CG MGCG v-cycle
0.5 Mpx 0.594 0.628 0.019

1 Mpx 0.357 0.430 0.017
2 Mpx 0.325 0.725 0.017
4 Mpx 0.314 0.385 0.015

Table 5.1: Initial convergence rates ρ0 on image 5 in [27]. Lower is better.

5.7.3 Multigrid Conjugate Gradient
We also examine the multigrid conjugate gradient algorithm of [26], which is a more recent multigrid variant, and
seems like a natural extension of CG. For this algorithm, we find that the bilinear (full-weighting) transfer operators
also work very well. The algorithm is given by Alg. 10, where we give the full pseudo-code as the original pseudo-code
given in [26] is erroneous.

5.8 Experiments & Results
In order to compare the solution methods, we choose the matting Laplacian proposed by [19], as it is popular and
provides source code. Please note that we are comparing the solvers, and not the performance of the matting Laplacian
itself, as these solvers would equally apply to other matting Laplacians. We set their ε parameter to 10−3, and we form
our linear system according to Eq. (1.6) with γ = 1.

All methods are given the initial guess α0 = 0. To make the objective value comparable across methods and
resolutions, we take ‖f −Aαi‖2 / ‖f −Aα0‖2 = ‖f −Aαi‖2 / ‖f‖2 as the normalized residual at iteration i, or
residual for short. We set the termination condition for all methods at all resolutions to be the descent of the residual
below 10−4.

First, we evaluate the convergence of conjugate gradient, multigrid conjugate gradient, and v-cycle. Typical be-

54

0 100 200 300 400 500 600 700
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Iteration

R
es

id
ua

l

CG Convergence w.r.t. Resolution

0.5 Mpx
1 Mpx
2 Mpx
4 Mpx

(a)

0 100 200 300 400 500 600 700
10−15

10−10

10−5

100 MGCG Convergence w.r.t. Resolution

Iteration

R
es

id
ua

l

0.5 Mpx
1 Mpx
2 Mpx
4 Mpx

(b)

0 100 200 300 400 500 600 700
10−15

10−10

10−5

100

Iteration

R
es

id
ua

l

V−cycle Convergence w.r.t. Resolution

0.5 Mpx
1 Mpx
2 Mpx
4 Mpx

(c)

Figure 5.6: CG (a) & MGCG (b) slow down as resolution increases, while v-cycle (c) speeds up.

55

CG MGCG v-cycle
Image 1 Mpx 2 Mpx 4 Mpx 1 Mpx 2 Mpx 4 Mpx 1 Mpx 2 Mpx 4 Mpx

1 143 159 179 81 81 94 12 11 11
2 151 176 185 73 86 99 12 10 10
3 215 280 334 103 108 118 12 9 8
4 345 439 542 143 171 230 16 14 11
5 180 211 236 44 120 95 13 12 10
6 126 148 180 65 91 61 11 10 9
7 152 179 215 86 84 96 11 10 8
8 314 385 468 135 167 180 16 12 9
9 237 285 315 87 119 91 12 11 8

10 122 149 180 72 72 95 10 9 8
11 171 192 78 77 96 32 12 11 7
12 127 151 179 65 86 77 9 8 7
13 266 291 317 143 156 159 18 15 11
14 125 145 175 76 79 83 13 12 11
15 129 156 190 67 69 105 12 12 11
16 292 374 468 123 171 178 15 14 12
17 153 190 230 63 81 86 10 8 7
18 183 238 289 86 104 107 26 22 16
19 91 104 116 52 58 61 12 10 8
20 137 164 199 81 82 101 12 9 7
21 195 288 263 118 83 137 22 16 15
22 118 139 161 62 75 72 11 9 7
23 140 166 196 64 77 74 11 9 8
24 213 266 325 76 131 104 14 14 10
25 319 455 629 142 170 249 39 31 24
26 370 432 478 167 192 229 41 32 24
27 271 304 349 121 144 147 17 15 12

Table 5.2: Iterations to convergence (residual less than 10−4) at 1, 2, and 4 Mpx on images from [27]. CG and MGCG

require more iterations as resolution increases while v-cycle requires less.

56

Image a p
1 11.8 -0.065
2 11.7 -0.140
3 11.8 -0.309
4 16.2 -0.261
5 13.2 -0.183
6 11.0 -0.144
7 11.2 -0.220
8 16.0 -0.415
9 12.3 -0.270

10 10.0 -0.160
11 12.5 -0.343
12 9.02 -0.180
13 18.2 -0.340
14 13.0 -0.120
15 12.2 -0.061
16 15.2 -0.156
17 9.90 -0.265
18 26.4 -0.333
19 12.1 -0.289
20 12.0 -0.394
21 21.4 -0.300
22 11.1 -0.321
23 10.9 -0.236
24 14.6 -0.216
25 39.1 -0.347
26 41.2 -0.381
27 17.2 -0.243

Table 5.3: Fitting of v-cycle required iterations to anp (power law), with n being problem size in Mpx. Average p is

E[p] = −0.248, meaning this solver is sublinear in n.

57

Method SAD MSE Gradient Connectivity
Ours 11.1 10.8 12.9 9.1
[19] 14 13.9 14.5 6.4
[11] 17 15.8 16.2 9.2

Table 5.4: Average rank in benchmark [27] on 11 Mar 2013 with respect to different error metrics.

havior on the dataset [27] is shown in Fig. 5.5 at 4 Mpx resolution. CG takes many iterations to converge, MGCG
performs somewhat better, and v-cycle performs best.

Next, we demonstrate in Fig. 5.6 that the number of iterations v-cycle requires to converge on the matting problem
does not increase with the resolution. In fact, we discover that v-cycle requires fewer iterations as the resolution
increases. This supports a sub-linear complexity of v-cycle on this problem in practice since each iteration is O (n).

We list a table of the convergence behavior of the algorithms on all images provided in the dataset in Table 5.2.
This demonstrates that MGCG performs decently better than CG, and that v-cycle always requires few iterations as
the resolution increases. By fitting a power law to the required iterations in Table 5.3, we find the average number of
required v-cycle iterations is O

(
n−0.248

)
. Since each iteration is O (n), this means that this is the first solver demon-

strated to have sublinear time complexity on the matting problem. Specifically, the time complexity is O
(
n0.752

)
on

average. Theoretical guarantees [8] ensure that the worst case time complexity is O (n).
Though surprising, the sub-linear behavior is quite understandable. Most objects to be matted are opaque with a

boundary isomorphic to a line segment. The interior and exterior of the object have completely constant α locally,
which is very easy for v-cycle to handle at its lower levels, since that is where the low frequency portions of the
solution get solved. This leaves the boundary pixels get handled at the highest resolutions, since edges are high-
frequency. These edge pixels contribute to the residual value, but since the ratio of boundary to non-boundary pixels
is O

(
n−0.5

)
, tending to 0 with large n, the residual tends to decrease more rapidly per iteration as the resolution

increases as proportiontely more of the problem gets solved in lower resolution.
Another way to view it is that there is a fixed amount of information present in the underlying image, and increasing

the number of pixels past some point does not really add any additional information. V-cycle is simply the first
algorithm studied to exploit this fact by focusing its effort preferentially on the low resolution parts of the solution.

Perhaps if we had enough computational resources and a high-enough resolution, v-cycle could drop the residual
to machine epsilon in a single iteration. At that point, we would again have a linear complexity solver, as we would
always have to do 1 iteration at O (n) cost. In any case, O (n) is worst case behavior as guaranteed by [8], which is
still much better than any solver proposed to date like [11] and [32] (which are at best O

(
n2
)
). We would also like to

mention that the per-iteration work done by the proposed method is constant with respect to the number of unknowns,
unlike most solvers including [11] and [32].

Table 5.1 lists the initial convergence rates ρ0 (the factor by which the residual is reduced per iteration). [8]
guarantees that the convergence rate for v-cycle is at most O (1) and bounded away from 1. We discover that on the
matting problem the convergence rate is sub-constant. Yet again, v-cycle dramatically overshadows other solvers.

Although a MATLAB implementation of [19] is available, we found it to use much more memory than we believe
it should. We therefore developed our own implementation in C++ using efficient algorithms and data structures to
run experiments at increasing resolution. Since there are 25 bands in the Laplacian, and 4 bytes per floating point
entry, the storage required for the matrix in (1.6) is 95 MB/Mpx, and the total storage including the downsampled
matrices is about 127 MB/Mpx. The time to generate the Laplacian is 0.8 s/Mpx. The CPU implementation runs at
46 Gauss-Seidel iterations/s/Mpx and 11 v-cycle iterations/s/Mpx. Assuming 10 iterations of v-cycle are run, which
is reasonable from Table 5.2, our solver runs in about 1.1 s/Mpx, which is nearly 5 times faster than [11] at low
resolutions, and even faster at higher resolutions. Upon acceptance of this paper, we will post all the code under an
open-source license.

Although we consider this to be a matting solver rather than a new matting algorithm, we still submitted it to the
online benchmark [27] using [19]’s Laplacian. The results presented in Table 5.4 show some improvement over the
base method [19], and more improvement over another fast method [11]. In theory, we should reach the exact same
solution as [19] in this experiment, so we believe any performance gain is due to a different choice of their ε parameter.

58

Chapter 6

Extensions to Image Formation

The methods we utilize in [18] are not limited to image matting. Those multigrid methods extend to a wide range of
problems we refer to as image formation problems in Computer Vision and Image Processing. In general, if a problem
has the following characteristics, we can use multigrid methods to greatly enhance the efficiency:

1. Linear form Au = f , and A > 0

2. u is an image, or at least can be downsampled

3. A is large and sparse and κ(A)→∞ as n→∞

We investigate three such problems in our field, namely optical flow, image deconvolution, and texture modeling and
synthesis to show the utility of these methods in greatly reducing the computational cost that has heretofore been
associated with them.

6.1 Optical Flow
Optical flow is a classic Computer Vision problem. It asks for the displacement field for each pixel between two
frames of video. It starts by assuming that a pixel i retains its color after movement δi from frame t to frame t+ 1:

It+1(i+ δi) = It(i). (6.1)

Further, by assuming small displacement,

It+1(i+ δi) = It+1(i) + δTi ∇It+1(i) +O
(
‖δi‖2

)
≈ It+1(i) + δTi ∇It+1(i). (6.2)

Then, we have

It(i) ≈ It+1(i) + δTi ∇It+1(i), or (6.3)

δTi ∇It+1(i) ≈ It(i)− It+1(i). (6.4)

Taken across all pixels i, and writing this in matrix notation:
. . . 0 0

. . . 0 0
0 ∇uIt 0 0 ∇vIt 0

0 0
. . . 0 0

. . .

n×2n

(
δu
δv

)
2n×1

= It − It+1, or (6.5)

[Du Dv] δ = g (6.6)

59

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 20 40 60 80 100 120

R
e
si

d
u
a
l

Iteration

Horn-Schunck Optical Flow

CG
V-cycle

Figure 6.1: V-cycle applied to optical flow.

Obviously, there are 2n variables in the vector field, but only n constraining equations. Solving this requires prior
information on the field. Horn and Schunck [13] used a Laplace operator L as the regularizing term, since they expect
the motion field to be smooth. Also, to get the system to be square, we end up with([

D2
u DuDv

DvDu D2
v

]
+ λ

[
L 0
0 L

])
δ =

[
Du

Dv

]
g

∆
= f. (6.7)

Here, λ is a Lagrange parameter for the regularization on the smoothness of the motion field δ. Just as in matting, we
end up with a large sparse system, whose variable represents something like an image.

1. X Linear form Au = f , and A > 0

2. X u is an image, or at least can be downsampled

3. X A is large and sparse and κ(A)→∞ as n→∞

This problem is perfectly-suited to be solved efficiently by multigrid algorithms. In fact, multigrid methods were
studied in the solution of optical flow in the 1980s [6], perhaps because multigrid methods were in their heyday at the
same time as optical flow made its mark. However, nobody ever analyzed the computational complexity. When we
apply the same methods from [18] to Horn-Schunck optical flow, we get nearly the same results as before, and again
obtain a sub-linear solver (Figure 6.1).

6.2 Deconvolution
Deconvolution is a fundamental issue in Image Processing. If an image gets filtered by some process, we may wish to
deconvolve the noisy filtered image to get an approximation of the original. In other words

Hu = v, or (6.8)

HTHu = HT v, (6.9)

whereH is a convolutional matrix for the filter, u is the original image, and v is the filtered image. BecauseH is rarely
full-rank, we need to regularize the system in some way to be able to recover u. A very simple way is to regularize the
2-norm of u, since we do not expect solutions with very high energy:

(HTH + λI)u = HT v, (6.10)

60

Original Filtered

CG V-cycle

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 10 20 30 40 50 60 70 80 90 100

R
e
si

d
u
a
l

Iteration

Deconvolution

CG
V-cycle

Figure 6.2: V-cycle on deconvolution

where again λ is the regularization parameter. IfH represents a sort of highpass kernel, we again have nearly the same
problem as in Chapter 5, and we expect multigrid algorithms to give a large increase in performance.

1. X Linear form Au = f , and A > 0

2. X u is an image, or at least can be downsampled

3. X A is large and sparse and κ(A)→∞ as n→∞

6.3 Texture Modeling & Synthesis
There are two major veins of research about image textures. One concerns itself with describing or modeling the
texture, and the other concerns itself with synthesizing textures. The goal of modeling is more or less to provide a
prior p(I | T) over images I for a given type of texture T . The usefulness of such a prior is apparent in applications
like super-resolution, where textured regions may be superresolved by matching low-resolution textures to a set of
high-resolution texture models. Texture synthesis is the opposite side of the coin, in which we ask to generate a
sample texture image from p(I | T), whether or not we have such an explicit model.

These two approaches are unified in [34] in a very elegant way, in which a texture model is learned from examples
of the texture by creating an explicit Gibbs distribution, which is sampled using a Gibbs sampler in order to perform
the learning. The result is an explicit form for p(I | T) which can evaluate the likelihood of an image under the texture
model, and can also generate new images. The disadvantage in both learning and synthesis is the reliance on the Gibbs
sampler.

The Gibbs sampler is a mechanism by which a Gibbs distribution (equivalently a Markov Random Field) can be
sampled by mariginalizing the distribution for a single pixel, drawing the pixel value from the marginal, and repeating
over all pixels in the image for a very large number of iterations until the distribution of the entire image converges
to that of the model. It is not at all clear how long or even if such an algorithm will converge, and in this particular
context, it may be necessary to visit each pixel in the image hundreds or thousands of times before the generated
texture can be said to be drawn from the model.

In practice, we observe for a fixed model, the complexity of generating a texture with n pixels is O (n). However,
as the resolution of the learned texture increases, the model must incorporate features from larger and larger filters to
capture the large-scale structures. This means that in order to accurately learn and synthesize a texture with n pixels,

61

the total complexity is something likeO
(
n2
)
. Since even small textures on a 128×128 grid can take hours to converge

on modern hardware, we need more efficient algorithms to make this type of modeling and synthesis practical.
We propose importing and modifying the concepts of multigrid analysis to the Gibbs sampler in order to make

synthesis more efficient. First, let us look at the Gibbs sampling algorithm 11. Its inputs are the initial texture u, the
marginal distributions p(v, i) = p (u(v) = i | u(−v)), and the number of sweeps w to perform. The initial texture is
typically one whose pixels are chosen uniformly randomly, the marginals are given by FRAME in this case and are
constructed by computing histograms of filter responses, and w is a parameter that is increased until the algorithm
appears to truly generate samples from the texture distribution.

Algorithm 11 Gibbs sampler
1: function GIBBS(uM×N , p(v, i), w)
2: for numFlips = 1..wMN do
3: v ← draw (U(0..M − 1, 0..N − 1))
4: for i = 0..G− 1 do
5: fi ← p(v, i)
6: end for
7: u(v)← draw(f)
8: end for
9: end function

The improvement we are proposing is sketched in Algorithm 12. In this case, we assume we have a texture model
for the given texture at various resolutions so that ph(v, i) is the marginal for the texture at grid spacing h. The idea
is that we should first do a few iterations of Gibbs sampling at full resolution to begin smoothing the initial texture,
downsample it to initialize the next lower resolution estimate, recursively call the sampler on the lower resolution and
obtain a low-resolution sample, then upsample it and do more iteration at full resolution.

Algorithm 12 Multigrid Gibbs sampler.
1: function MGGIBBS(uh, ph(v, i), w)
2: uh ← gibbs(uh, ph(v, i), w) (pre-smoothing)
3: if h = H then
4: return uh
5: end if
6: u2h ← I2h

h uh (low-resolution estimate)
7: rh ← uh − Ih2hu2h (high frequency residual)
8: u2h ← mgGibbs(u2h, I2h

h ph(v, i), w) (recurse on low resolution)
9: uh ← rh + Ih2hu

2h (upsample and replace high frequencies)
10: uh ← gibbs(uh, ph(v, i), w) (post-smoothing)
11: return uh
12: end function

Although the results are preliminary, we are getting promising results from the proposed sampler. We trained
full- and quarter-resolution models from a granite texture. See the original and synthesized textures from the learned
models in Figure 6.3. We compared the convergence of the synthesis of using the full-scale model only with the Gibbs
sampler vs. using both models in the proposed multigrid Gibbs sampler in Figure 6.4. Since we get much improved
performance in this test case, we expect very promising results from this algorithm as we have more time to develop it
in the future.

62

(a) (b) (c) (d)

Figure 6.3: Granite texture (a), full-resolution sample (b), quarter-resolution sample (c), full-resolution sample ob-
tained with multigrid Gibbs sampler (d).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 5 10 15 20

R
e
si

d
u
a
l

Iteration

Faster Gibbs Sampling

Gibbs
MGGibbs

Figure 6.4: Two-level multigrid sampler converges much faster than simple Gibbs sampling.

63

Chapter 7

Conclusion

The research summarized in this thesis focuses on three major aspects of natural image matting: improving quality,
decreasing required input, and most importantly, improving efficiency. To improve quality, we found in [16] that errors
caused by oversmoothing can be better handled by incorporating median-filtered color channels into the color model.
To decrease the required input, we found in [17] that constructing graph Laplacians from nonlocal patches is a much
better regularizer than the typical spatial smoothness regularization, which can perform well even when the input is
sparse. Finally, we found in [18] that the matting problem can be solved exactly by iterative multigrid methods in
sublinear time complexity, a substantial improvement from the commonly-used conjugate gradient algorithm.

We consider the last work to be the most important. Not only does it work well for matting, but we show that the
results extend to many similar problems in Computer Vision and Image Processing. This allows matting and other
tasks to be implemented efficiently so that they are practical to use in the future as image resolution grows.

We did not invent multigrid algorithms, but were the first to do extensive studies on their utility in our field. Further,
they are not always applicable in every image problem. In a strict sense, the problems must be well-behaved satisfying
particular assumptions. However, the underlying concepts seem fundamental to image formation problems, and our
results demonstrate that when approaching these problems, we should not blindly apply generic solution methods.
Rather, we should seek to exploit the fact that we are solving for images, and that images should be treated differently
from arbitrary data.

We hope this work reawakens not only interest in the utility of multigrid algorithms in Computer Vision, but also
compels others to focus on the complexity of the algorithms in our field. In a world increasingly dominated by “big
data,” it is less and less acceptable to propose algorithms that cannot be implemented efficiently. We must endeavor to
find techniques that can scale gracefully into the forseeable future.

64

Bibliography

[1] A. Buades, B. Coll, and J.-M. Morel. A non-local algorithm for image denoising. In Computer Vision and
Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 2, pages 60–65. IEEE,
2005. 37

[2] Y.-Y. Chuang, B. Curless, D. H. Salesin, and R. Szeliski. A bayesian approach to digital matting. In Computer
Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference
on, volume 2, pages II–264. IEEE, 2001. 18

[3] S. Dai and Y. Wu. Motion from blur. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE
Conference on, pages 1–8. IEEE, 2008. 15, 37

[4] J. Demmel, I. Dumitriu, and O. Holtz. Fast linear algebra is stable. Numerische Mathematik, 108(1):59–91,
2007. 25

[5] O. Duchenne, J. Audibert, R. Keriven, J. Ponce, and F. Segonne. Segmentation by transduction. In IEEE
Conference on Computer Vision and Pattern Recognition, 2008. CVPR 2008, pages 1–8, 2008. 20

[6] W. Enkelmann. Investigations of multigrid algorithms for the estimation of optical flow fields in image sequences.
Computer Vision, Graphics, and Image Processing, 43(2):150–177, 1988. 59

[7] J. Fan, X. Shen, and Y. Wu. Closed-loop adaptation for robust tracking. In Computer Vision–ECCV 2010, pages
411–424. Springer, 2010. 15

[8] J. Gopalakrishnan and J. E. Pasciak. Multigrid convergence for second order elliptic problems with smooth
complex coefficients. Computer Methods in Applied Mechanics and Engineering, 197(49):4411–4418, 2008.
47, 57

[9] J. Hartigan and M. Wong. A k-means clustering algorithm. JR Stat. Soc., Ser. C, 28:100–108, 1979. 39
[10] K. He, J. Sun, and X. Tang. Single image haze removal using dark channel prior. In Computer Vision and Pattern

Recognition, 2009. CVPR 2009. IEEE Conference on, pages 1956–1963. IEEE, 2009. 15
[11] K. He, J. Sun, and X. Tang. Fast matting using large kernel matting laplacian matrices. In Computer Vision and

Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 2165–2172. IEEE, 2010. 16, 18, 30, 41, 57
[12] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems, volume 49. NBS,

1952. 27
[13] B. Horn and B. Schunck. Determining optical flow. Artificial intelligence, 17(1-3):185–203, 1981. 59
[14] A. S. Householder. Unitary triangularization of a nonsymmetric matrix. Journal of the ACM (JACM), 5(4):339–

342, 1958. 24
[15] D. S. Kershaw. The incomplete Cholesky—conjugate gradient method for the iterative solution of systems of

linear equations. Journal of Computational Physics, 26(1):43–65, 1978. 29
[16] P. G. Lee and Y. Wu. L1 matting. In Image Processing (ICIP), 2010 17th IEEE International Conference on,

pages 4665–4668. IEEE, 2010. 8, 32, 63
[17] P. G. Lee and Y. Wu. Nonlocal Matting. In 2011 IEEE Conference on Computer Vision and Pattern Recognition,

pages 2193–2200. IEEE, 2011. 8, 18, 32, 37, 63
[18] P. G. Lee and Y. Wu. Scalable Matting: A Sub-linear Approach. arXiv:1404.3933 [cs.CV], 2014. 8, 43, 58, 59,

63
[19] A. Levin, D. Lischinski, and Y. Weiss. A closed-form solution to natural image matting. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 30(2):228–242, 2008. 6, 15, 18, 20, 30, 37, 40, 41, 42, 53, 57

65
[20] A. Levin, A. Rav Acha, and D. Lischinski. Spectral matting. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 30(10):1699–1712, 2008. 37
[21] D. G. Lowe. Object recognition from local scale-invariant features. In Computer vision, 1999. The proceedings

of the seventh IEEE international conference on, volume 2, pages 1150–1157. Ieee, 1999. 15
[22] S. F. McCormick, editor. Multigrid Methods. Society for Industrial and Applied Mathematics, 1987. 43
[23] A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In Advances in Neural

Information Processing Systems 14: Proceeding of the 2001 Conference, pages 849–856, 2001. 39
[24] S. Noah. The Median of a Continuous Function. Real Analysis Exchange, 33(1):269–274, 2007/2008. 33
[25] P. Pérez, M. Gangnet, and A. Blake. Poisson image editing. In ACM Transactions on Graphics (TOG), volume 22,

pages 313–318. ACM, 2003. 19
[26] C. Pflaum. A multigrid conjugate gradient method. Applied Numerical Mathematics, 58(12):1803–1817, 2008.

48, 49, 50, 53
[27] C. Rhemann, C. Rother, J. Wang, M. Gelautz, P. Kohli, and P. Rott. A perceptually motivated online benchmark

for image matting. In Proc. CVPR, pages 1826–1833. Citeseer, 2009. 5, 6, 11, 37, 41, 42, 53, 55, 57
[28] J. R. Shewchuk. An introduction to the conjugate gradient method without the agonizing pain, 1994. 26, 28, 29
[29] D. Singaraju, C. Rother, and C. Rhemann. New appearance models for natural image matting. 2009. 20
[30] J. Sun, J. Jia, C.-K. Tang, and H.-Y. Shum. Poisson matting. In ACM Transactions on Graphics (ToG), volume 23,

pages 315–321. ACM, 2004. 19, 30
[31] R. Szeliski. Locally adapted hierarchical basis preconditioning. In ACM Transactions on Graphics (TOG),

volume 25, pages 1135–1143. ACM, 2006. 16
[32] C. Xiao, M. Liu, D. Xiao, Z. Dong, and K.-L. Ma. Fast Closed-Form Matting Using a Hierarchical Data Structure.

Circuits and Systems for Video Technology, IEEE Transactions on, 24:49–62, 2014. 57
[33] Y. Zheng and C. Kambhamettu. Learning Based Digital Matting. In ICCV, 2009. 18, 20
[34] S. C. Zhu, Y. Wu, and D. Mumford. Filters, random fields and maximum entropy (FRAME): Towards a unified

theory for texture modeling. International Journal of Computer Vision, 27(2):107–126, 1998. 60

66

Vita

Philip Lee was born in Oconee county South Carolina on 24 Feb 1986. He graduated from West-Oak High School
and began studying at Clemson University in 2004. During the summer of 2006, he attented a research experience for
undergraduates in analytic number theory at Clemson University under the supervision of Neil Calkin, Kevin James,
and David Penniston, resulting in a 2008 publication. During the summer of 2007, he worked at the National Security
Agency as an intern in the Director’s Summer Program, where he improved the efficiency of a statistical language
modeling algorithm by a factor of 103. He received the Bachelor of Science degree in Mathematics from Clemson,
and graduated Summa Cum Laude in May 2008.

Philip began his Ph.D. career at Northwestern University in September 2009 under the supervision of Ying Wu in
the department of Electrical Engineering and Computer Science. He has focused his research efforts on the natural
image matting problem in Computer Vision. His published works include two papers that improve the accuracy and
usability of matting, and another that fundamentally improves the efficiency of a whole class of matting algorithms
as well as image formation problems in general. Philip also co-authored several other papers while at Northwestern
that develop new realtime algorithms for tracking and depth/color camera calibration. During the summer of 2011, he
worked as a research intern at Kodak, where he developed an algorithm to fuse sets of photos together to automatically
remove unwanted objects in consumer photos. He received his Ph.D. from Northwestern University in Electrical
Engineering in June 2014.

