Triggers and Continuous Queries in Moving Objects Databases

Goce Trajcevski
Dept. of Computer Science
University of Illinois at Chicago
Chicago, Il 60607
gtrajcev@Qcs.uic.edu

Abstract

This work addresses the problem of maintaining the
consistency of the answers to continuous queries which
are posed by the users of the Moving Objects Databases
(MOD). We propose a framework which enables detect-
ing and processing the pending queries whose answers
need to be re-evaluated upon modifications to the MOD.
Relevant syntactic elements of the user’s queries and
their semantic implications are identified, and the ba-
sic components of a system that can be used for this
task are specified. We show how triggers can be used to
maintain the answers to the users’ queries “up to date”
with respect to the modifications to the MOD and we
demonstrate that our system can be implemented on top
of the existing ORDBMS.

Keywords: Moving Objects Databases, Continuous
Queries, Triggers.

1 Imtroduction and Motivation

A wide range of applications (traffic control, trans-
portation industry, digital battlefields, environment
monitoring, dynamic resource discovery, ...) need some
form of a management of the location information [12].
The ability to store and process information about
moving objects has spurred a lot of recent scientific
research, where the subject is termed Moving Objects
Databases (MOD) [23, 1, 14]. On the other hand, there
is a bulk of work that has been done in the field of Ac-
tive Database Systems. The seemingly straightforward
event-condition-action paradigm, which adds a reac-
tive behavior to the database systems, has been inves-
tigated from many aspects [5, 22]; and prototype sys-
tems have been implemented (e.g. STARBURST [21],

*Research partially supported by NSF grant EIA-0000536

Peter Scheuermann *

Dept. of Electrical and Computer Engineering

Northwestern University
Evanston, Il 60208
peters@ece.nwu.edu

Chimera [3]). Due to the recent trend for supporting
universal applications, commercial Object-Relational
Database Management Systems (ORDBMS) are now
offering new (application-specific) complex data types;
inheritance; user-defined routines which implement op-
erators/methods over the user-defined types; exten-
sions to SQL ([8]), predicates (e.g. intersects, contains)
and functions for spatial calculations (e.g. distance).

The above observations point out a strong existing
body of work which, so far, seems uncorrelated. In this
paper we tackle an important problem in the MOD
using active rules (triggers) and we demonstrate that
the proposed framework can be implemented using the
existing ORDBMS.

1.1 ProblemDescription and Our Contrib utions

Consider a MOD which stores the information about
the trajectories of (a set of) moving objects. The
MOST model in [15], identified three categories of
queries: — instantaneous, for which the answer is evalu-
ated immediately and transmitted to the user; — conti-
nous, which need to be evaluated at every “clock-tick”
so that the consistency of their answer is ensured; —
persistent, which not only need to be evaluated at each
time instance, but may also require evaluation over an
unbounded history.

In this work we focus on continuous queries like, for
example Q1: “Retrieve all the vehicles which will be
no further than 0.8 miles from me, between 8:00PM
and 8:10PM”. If the query was posed at 6:30PM, it
becomes continuous one, because many modifications
to the MOD can occur between the time Q)1 was posed
and the relevant time-interval for its answer. For exam-
ple, one of the cars that was part of the answer to Q1
changed its motion plan at 7:45PM. Not all the mod-
ifications to the MOD may be relevant to @1, e.g. an
accident at 7:30PM, on a road segment which affects
no vehicle that is part of the answer of Q1.

Our goal is to maintain the information about pend-
ing continuous queries to the MOD and avoid re-
evaluation of their answers when it is not necessary,
under the standard modifications: Updates, Deletions
and Insertions. The main contributions of this work
are:

o We identify the relevant syntactic elements of the
users’ continuous queries and their semantic impacts.
e We propose a framework which can be used to detect
the set of queries whose answers are affected by the
modifications to the MOD.

e We describe the specifications of the triggers which
enable the MOD to properly react to the modifications
(and avoid re-evaluation of continuous queries when
not needed).

2 Preliminary Background

In this section we briefly introduce the model of the
trajectory and its construction, and the issues related
to the modifications of the MOD.

2.1 Trajectory Model and Updates

In order to capture the spatio-temporal nature of a
given moving object, we need to, somehow, represent
its motion. This information pertains to the object’s
whereabouts at a given time instance — (location,time),
and is represented using a trajectory [18]:

e A trajectory of a moving object is a piece-wise lin-
ear function f : T — (z,y), represented as a se-
quence OfPOints ("El,yl’tl)} ($27y2at2)’ e (wn’yn’tn)
(t1 < ta < ... < tp). For a given a trajectory Tr, its
projection on the X-Y plane is called the route of Tr.
The object is at (z;,y;) at time ¢;, and during each
segment [t;,t;41], it moves along a straight line from
(zi,vi) to (zit1,Yi+1), and at a constant speed. The
expected location of the object at any time ¢ € [t;, t;41]
(1 <4 < n) is obtained by a linear interpolation.

Relative to now, a trajectory can represent both the
past and the future motion of objects. The future mo-
tion plan is constructed by using electronic maps' and
the speed profiles information, which are input to the
time-dependent shortest path algorithm [4] (see [18]
for details). For the past motion of the object(s), one
can use a set of 3D points (z1,y1,t1), (Z2,Y2,t2), ...,
(Zn,Yn,tn), generated by the on-board GPS, which
were transmitted by a moving object periodically. The
points are "snapped” on the map, and then connected
with the time-dependent shortest path.

This model of a trajectory can be represented
as a User-Defined Type (UDT) in an ORDBMS.

ILike, for example, the ones of Geographic Data Technology.

trajectory is a row type LIST of point, which is
another row type having X,Y and T attributes:
MOT(oid,trajectory, ...other static attributes)

In the rest of this paper, MOT denotes the table
which stores the moving object trajectoris and MOD
denotes the moving objects database.

2.2 Modifications to the MOT

There are few sources which can cause modifications
to the MOT, that we consider:

1. insert— At any time instance, a new trajectory may
be inserted in the database, which is assigned a unique
oid.

2. delete — An existing trajectory of a given moving
object (given oid) may be deleted from the MOT.

3. update — There are two basic sources of updating a
trajectory:

3.1. — A given moving object may decide to change
its route.

3.2. — There may be some unforseen variations to
the speed profiles used for constructing a future tra-
jectory: accidents; road-works; bad weather; etc... In
this case, the MOD server needs to utilize some sort
of a real-time information to keep the (location-time)
information accurate?. The details of identifying the
trajectories affected by traffic incidents and their up-
dates are presented in [17].

3 Classification of MOD Queries

In this section we analyze the important aspects of
the requests that a user can pose to the MOD. We
identify the significant time-aspects as syntactic ele-
ments in the queries, as well as the categories of queries.

We distinguish between two continuous Query Re-
quests (QR) to the MOD: 1. Query Requesting No-
tification (QRN) in which the user basically requests
from the MOD to notify her/him when certain event
occurs/ certain condition becomes true, like QRN; :
“Notify me when I am within 2 miles from hospital,
between 1PM and 3PM”. 2. Query Requesting Answer
(QRA) in which an anwer-set needs to be transmitted
to the user. For example, QRA; : “Retrieve the mo-
tels that will be no further then 1 mile from my route,
between 9PM and 10PM”.

3.1 Significant Timesof the Requests

There are three significant time-instances pertaining
to a given QR:

2For example, (www.ai.uic.edu) maintains the current traffic
information for the expressways around Chicagoland.

o Time Posed — t,, which is the time at which the QR
is sent to the MOD.

e Time to Answer — t,, which is the time at which the
user wants the answer-set transmitted. For example,
the user may pose a QRA> at 4PM: “Retrieve all the
motels that will be no further then 1 mile from my
route, between 9PM and 10PM, and send me the an-
swer at 6PM” (t, = 6PM).

o Termination Time — t;, which is the time after which
the QR is no longer valid. In the context of QRA2
above, this time is t; = 10PM.

3.2 Categoriesof Queries

Now we present the categories of queries which can
be used in a QR. We do not address here the issues of
their linguistic constructs or processing [14, 18].

e Location Queries: These queries pertain to the ob-
jects’ whereabouts and time. We consider two variants:
1. Where_at(t,0id) — returns the ezpected location (i.e.
the (z,y) coordinates) of the object oid at time ¢.

2. When_at(z,y,0id) — returns the time at which the
object oid is expected to be at location (z,y).

¢ Range Queries: These spatiotemoral queries re-
turn the set of moving objects which are within a given
(static) region, for a given time-interval. The basic syn-
tax is Inside(R,t1,1t2).

e Within Distance Queries: These queries have
a query_object as one parameter and return a set of
answer_objects (syntax is Within_Distance(obj, t1,t2))
Based on the the nature (Dynamic or Static) of the
query_object and the answer_objects, one can have for
variants of this type of query: DD, DS, SD and SS (a
spatial query).

¢ k-Nearest_Neighbour(k-NN) Queries: With the
standard semantics — return the k nearest objects to a
given object and, again with the 4 variants.

4 Basic Components

In this section we define the basic architecture which
is needed to maintain the information about queries
posed to the MOD and to properly update it upon
modifications to the MOT.

4.1 Schemas

We extend the M OT schema, introduced in Section
2, with two more attributes — Pending Posed Queries
(ppq) and Part of Query Answer (pga). Both of the
new attributes serve as flags: ppg of the object oid; is
0 if and only if there is no query posed by oid; which is
still “pending”. Otherwise, the value of the ppq is the

number of pending queries posed by the object oid;;
the pga for a given oid; is 0 iff there are no queries
(posed by a mobile or web-based user) for which oid;
is part of their answer-set. ppqg = n denotes that the
given oid; is part of the answers for n different queries.
We have two more relations®, Issued and
PartAnswer with their respective schemas:
Issued(User_id,Query_id,Terminate) and
PartAnswer (Query_id,0Object_id).
The first relation keeps track of which user (recall that
we can have web-based users) issued a particular query,
and its ¢t; parameter. The second one maintains the in-
formation about objects which are part of the answer
for a given query.

4.2 Scripts

We have several PL/SQL (or, equivalently, Embed-

ded SQL) scripts:

1.) TransmitAnswer(Q,U) is used to transmit the
answer of the query @ to the user U, who posed it.
It extracts the t, parameter of a given query qid.
SELECTs all the Object_id FROM the PartAnswer
WHERE PartAnswer.Query_id = qid and send them
to the uid.

2.) Receive(U,Q), upon receiving the query @ from
the user U (uid) assigns a unique gid to @; and inserts
the tuple (uid,qid,t) into the table Issued. If uid
is a mobile user, it also increments by one the value
of its ppq attribute in the M OT. Then, it invokes the
script Eval(qid) (see below) and creates an instance
of the script TransmitAnswer (qid,uid).
3.) Eval(Q), basically evaluates a query g¢id. It
properly updates the PartAnswer table with all the
(qid,0id) tuples, where oid is an element of the
answer-set for). If this was the first invocation of
Eval(Q) (i.e. PartAnswer (Query_id,Object_id)
did not have any tuples with gid), then the value
for the pga attribute of each oid in the MOT table
is incremented by one. Otherwise: — if the tuple
(qid,oid_i) was in the PartAnswer, but oid_i is no
longer in the answer-set for @), the tuple is deleted,
and the pga value for oid_i in the MOT is decremented
by one; — if the tuple (qid,oid_i) was not in the
PartAnswer, the tuple is inserted and the pga value of
the oid_i is incremented by one in the M OT.

4.) Eval_A11() simply scans the Issued relation and,
for every query ¢id whose Terminate attribute is not
less than tcyrrent, invokes the Eval (qid).

5.) Eval_All_Issued(UID) scans the Issued relation

3We assume that the “static” data i.e. hospitals, motels, land-
marks are properly represented and can be queried/accessed, say
w.r.t. names and geo-coordinates.

and, for every tuple for which Issued.User_id = UID
and Issued.Terminate > teurrents invokes
Eval(Issued.Query_id). If its execution caused
modifications to the PartAnswer and there is an exist-
ing instance of the script TransmitAnswer (QID,UID)
for which QID = Issued.Query_id, the new answer
set is transmitted to the user UID.

6.) ReEval_Answer (0ID) scans the relation
PartAnswer. and for every tuple for which
PartAnswer.0Object_id = 0ID, it invokes the script
EVAL (PartAnswer.Query_id).

7.) Remove(QID) removes the tuple for which
Issued.Query_id = QID; decrements the MOT.ppq
counter for the respective MOT.oid = Issued.User_id
(if the tuple is still in the MOT; removes every
tuple from PartAnswer table for which its re-
spective attribute = PartAnswer.Query_id = QID
and decrements the MOT.pqa attribute of the cor-
responding MOT.oid = PartAnswer.Object_id.
Finally, it removes any existing instance of the
TransmitAnswer (QID,UID).

8.) Purge(Issued) periodically checks the Issued
table. For every tuple for which the value of the
Terminate attribute is less than t.yrrent, it invokes
the Remove (Issued.Query_id) script.

5 Active Rules

This section describes the syntax and semantics
of the respective active rules which ensure that the
changes to the queries’ answers are properly consid-
ered.

5.1 Updatesto the MOT

Recall that an update may be initiated by the mobile
user itself or by the MOD server, when unexpected
traffic conditions are detected from a real-time traffic
site. To capture this, we have two triggers:

CREATE TRIGGER MOD_UPDATES_1
AFTER UPDATE OF Trajectory ON MOT
WHERE MOT.ppq > O
Eval_All_Issued(MOT.oid) and:

CREATE TRIGGER MOD_UPDATES_2

AFTER UPDATE OF Trajectory ON MOT

WHERE MOT.pqa > 0

ReEval_Answer (MOT.oid)
The triggers are designed so that they capture both
cases: the updated object has posed a query to the
MOD; the updated object is part of an answer for
a query posed by another object. We illustrate the
behavior of the triggers with the following example,
illustrated on Figure 1:

Example 1. Assume that the moving object 0id4 posed
the following query at 1PM: “retrieve all the objects
which will be no further than 0.25 miles from me be-
tween 3:50PM and 4:00PM, and send me the answer at
3PM”, and it was assigned Query_id = qid7. When its
answer was calculated, it had the objects 0id6 and 0id9.
Now, suppose the Real-Time traffic site reported a con-
gestion on certain road segments at 3:30PM. The MOD
will identify the affected trajectories and update them
accordingly (c.f. [17]). The thicker portions of the oid5
and 0id6 on Figure 1 illustrate the slow-down update.
This is an event which “awakes” both triggers. Since
the moving object 0id6 has not posed any queries itself,
the condition part of the trigger MOD_UPDATES 1
fails. However, since 0id6 is part of the answer to
the qid7 (posed by the oid4), the condition for the
MOD_UPDATES_2 is satisfied. Thus, its action is ex-
ecuted, which invokes the script ReEval_Answer(0id6).
The sequence of execution is illustrated by the numbers
in the circles above the arrowed lines. After executing
Eval(qid7) it is detected that, due to the slow-down,
0id6 is no longer part of the answer set. However,
the object o0idb5 which, initially, was moving too fast
to be “..no further than 0.25 miles from me (= oid4)
between 3:50PM and 4:00PM...” (c.f. specifications
of qid7), now is slowed down enough so that it be-
comes part of the answer. Since the output generated
by Eval(qid7) has changed, the new answer is transmit-
ted to the user oid4.

5.2 Deletionsto the MOT

When a certain tuple is deleted from the MOT table
(e.g. the moving object has a serious engine problem
and it will not a traffic participant), again we need to
consider its effects to the pending user’s queries. Any
query posed by the affected object itself is no longer
of interest:

CREATE TRIGGER MOD_DELETIONS_1
AFTER DELETE ON MOT
REFERENCING OLD AS 01dTuple

WHERE (01dTuple.ppq > O)
REMOVE(X) WHERE (X IN

SELECT Query_id

FROM Issued

WHERE Query_id = 01dTuple.ID)

In case the deleted object either has not posed any
queries itself, or the ones that it posed are alredy
removed from the Issued table, due to the execution
of the MOD_DELETIONS_1 trigger above (for which we
always assign higher priority), we have:

CREATE TRIGGER MOD_DELETIONS_2

Issued

Real-Time
Traffic

- ' Map+Drive_times|| Static

Geo-objects|

0id4] qid7|4PM

(UID)

Eval_All_Issued

PartAnswer

w

(@]

oy

¥ MOT

L

j

Zz
oid4 1 |5 @
oids| ——"\/ 0o |o
0id6| — "~ &

(0id6)

qid7 oid5

/@

0|d9‘\/—/\/\ ‘

/@

qid7 - |- -oid6-
qid7 0id9

- event

MOD_UPDATES_1 e
MOD_UPDATES_2 |
condmon Remove(UID) /

Purge(l
TransmiAnswer(qid7,0id4) urge(Issued) @

ReEval_Answer|

actlon

Figure 1. Triggers upon update to MOD

AFTER DELETE ON MOT

REFERENCING OLD AS 01dTuple
WHERE (01dTuple.pga > 0)
ReEval_Answer (01dTuple.ID)

In case the deleted object had both posed queries AND
was part of some other query’s answer, it is handled
by the first trigger, MOD_DELETIONS_1, and the sec-
ond trigger has no effect because all the tuples for
which PartAnswer.Object_id = 01dTuple.id are al-
ready deleted.

5.3 Insertionsto the MOT

An insertion of a new moving object could possibly
affect the answer set to every pending query in the MOD.
Thus, we have the following:

CREATE TRIGGER MOD_INSERTIONS, for which:

e Event: AFTER INSERT ON MOT

e Action: Eval_A11()

This situation is most straightforward to specify, but
most complicated for the efficient processing of (its im-
pact on) the pending users’ queries (brute force ap-
proach is to simply re-evaluate every query in the MOD).
The optimization problem is beyond the scope of this
work and an ongoing research topic.

6 Related Work

The topic of active databases has been extensivelly
studied for a long time [5, 22] (see the collection in [10]
for an extensive list of references). Many aspects have
been investigated: — termination and confluence [19]; —
coupling modes between transactions which generated
events vs. condition evaluation and actions execution
[5]; — expressiveness and behavior issues [11, 2]. How-
ever, at the time when the research in the field of Active
Databases was at its peak, the research on Moving Ob-
jects Databases was barely at its infancy. Due to the
specific nature of the spatio-temporal domain, none of
the works can be applied directly to the MOD settings.

Moving Objects Databases research has attracted a
lot of attention in the recent years. Researchers have
identified and investigated several aspects: — Access
Methods: both in primal [14, 16] and in dual space
[1, 7]; — Uncertainty: its communication cost vs. im-
precision trade-off [23], and implication on the spatio-
temporal range queries [18]; — Linguistic issues and
models: modeling and querying moving objects by pre-
senting a rich algebra of operators and data types [6]
and the special case of road networks [20].

The MOST model [15] represented moving objects
as a function of (location, velocity_vector) and intro-
duced the notion of dynamic attributes and continuous
queries, which are the topic of our work. As defined,

continuous queries required re-evaluation with every
clock-tick and the algorithms use rather “esoteric” lan-
guage (FTL-based). Our advantage is that we identi-
fied the important time-parameters and the catagories
of queries and, based on their semantics, proposed a
methodology which utilizes triggers to avoid evaluation
of the continuous queries with every clock-tick.

7 Concluding Remarks and Future

Work

We presented a framework for evaluating continous
queries posed to the MOD. After presenting the cat-
egories of queries and their relevant “semantic dimen-
sions”: — time instances and dynamic vs. static na-
ture of query_objects and query_answers, we proposed
a framework which, upon modifications to the MOD
will re-evaluate only the queries whose answer-set may
be affected by those modifications. We identified the
basic elements of the architecture (scripts and data ta-
bles) which can be implemented on top of the “off the
shelf” ORDBMS.

Our ongoing research is targeted towards efficient
execution of re-evaluation of the queries’ answers, in
a similar spirit to [13] and incorporating the context-
awareness in the query processing [9].

References

[1] A. K. Agarwal, L. Arge, and J. Erickson. Indexing
moving points. In 19th ACM PODS Conference, 2000.

[2] C. Baral, J. Lobo, and G. Trajcevski. Formal char-
acterization of active databases: Part ii. In DOOD,
1997.

[3] S. Ceri, P. Fraternali, S. Paraboschi, and L. Tanca.
Active rule management in chimera. In J. Widom and
S. Ceri, editors, Active Database Systems: Triggers
and Rules for Advanced Database Processing. Morgan
Kaufmann, 1996.

[4] S. E. Dreyfus. An appraisal of some shortest — path
algorithms. Operations Research, 17(3), 1969.

[6] P. Fraternali and L. Tanca. A structured approach
for the definition of the semantics of active databases.
Transactions on Database Systems, 20(4), 1995.

[6] R. H. Giting, M. H. Bohlen, M. Erwig, C. Jensen,
N. Lorentzos, M. Schneider, and M. Vazirgiannis. A
foundation for representing and queirying moving ob-
jects. ACM TODS, 2000.

[7] D. Kollios, D. Gunopulos, and V. J. Tsotras. On in-
dexing mobile objects. In 18th ACM PODS Confer-
ence, 1999.

[8] Oracle Corporation. Oracle8i: Spatial Cartridge
User’s Guide and Reference, Release 8.0.4, 2000.
http://technet.oracle.com/docs/products/oracle8/doc-
index.htm.

[9] A. Pashtan, R. Blatter, A. Heusser, and P. Scheuer-
mann. Catis: A context-aware tourist information sys-
tem. In International Workshop on Mobile Computing
(IMC), 2003.

[10] N. Paton, editor. Active Rules in Database Systems.
Springer-Verlag, 1999.

[11] P. Picouet and V. Vianu. Semantics and expres-
siveness issues in active databases. In Priniciples of
Database Systems, 1995. full version 1996.

[12] E. Pitoura and G. Samaras. Locating objects in mo-
bile computing. IEEE Transactions on Knowledge and
Data Engineering (TKDE), 13(4), 2001.

[13] S. Prabhakar, Y. Xia, D. Khalashnikov, W. Aref,
and S. Hambrusch. Query indexing and velocity con-
strained indexing: Scalable techniques for continuous
queries on moving objects. IEEE - TKDE, 51(10),
2002.

[14] S. Saltenis and C. Jensen. Indexing of moving objects
for location-based services. In Intl. Conf. on Data En-
gineering, ICDE, 2002.

[15] A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao.
Modeling and querying moving objects. In 13th Int’l
Conf. on Data Engineering (ICDE), 1997.

[16] J. Tayeb, O. Ulusoy, and O. Wolfson. A quadtree —
based dynamic attribute indexing method. The Com-
puter Journal, 41(3), 1998.

[17] G. Trajcevski, O. Wolfson, B. Xu, and P. Nelson. Real-
time traffic updates in moving object databases. In
MDDS (in conjunction with DEXA), 2002.

[18] G. Trajcevski, O. Wolfson, F. Zhang, and S. Chamber-
lain. The geometry of uncertainty in moving objects
databases. In 8th International Conference on Extend-
ing Database Technology (EDBT), March 2002.

[19] S. Urban, M. Tschudi, S. Dietrich, and A. Karadimce.
Active rule termination analysis: An implementation
and evaluation of refined triggering graph method.
JIIS, 12(1), 1999.

[20] M. Vazirgiannis and O. Wolfson. A spatiotemporal
model and language for moving objects on road net-
works. In SSTD, 2001.

[21] J. Widom. The starburst active database rule system.
IEEE Transactions on Data and Knowledge Engineer-
ing, 8(4), 1996.

[22] J. Widom and S. Ceri. Active Database Systems:
Triggers and Rules for Advanced Database Processing.
Morgan Kaufmann, 1996.

[23] O. Wolfson, A. P. Sistla, S. Chamberlain, and
Y. Yesha. Updating and querying databases that track
mobile units. Distributed and Parallel Databases, 7,
1999.

