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Abstract

We address the problem of performing efficient similariiy jo
for large sets of moving objects trajectories. Unlike poes ap-
proaches which use a dedicated index in a transformed space,
premise is that in many applications of location-based ises;
the trajectories are already indexed in their native spanerder
to facilitate the processing of common spatio-temporalrigse
e.g., range, nearest neighbor etc. We introduce a novehmniist
measure adapted from the classic Fréchet distance, wlinhbe
naturally extended to support lower/upper bounding usheun-
derlying indices of moving object databases in the nativacep
This, in turn, enables efficient implementation of varigagetctory
similarity joins. We report on extensive experiments destiating
that our methodology provides performance speed-up addtajy
similarity join by more tharb0% on average, while maintaining
effectiveness comparable to the well-known approacheiléor-
tifying trajectory similarity based on time-series anadys

1 Introduction

Previous research efforts on efficient similarity search
in time series data sets mainly follow the GEMINI frame-
work [9],[12],[17],[24]: given a similarity measure on the
time series, each trajectory is transformed into a pointin a
high-dimensional metric space and an index is constructed
in the transformed space using the defined measure (or the
lower-bounding measure if one is proposed). Theses-
formed space approaché&sve been proved efficient for a
large number of different similarity measures in a varidty o
time series application domains.

When it comes tanoving object trajectoriesrhich con-
stitute a special category of time series data, we observe
that one can perform the similarity join more efficiently
using a different approach. The transformed space ap-
proaches [9],[12],[17],[24] incur extra overheads by duil
ing dedicated index structures and applying trajectonystra
formations. However, one can exploit the fact that trajecto
ries are often already indexed in theiative spacein or-
der to facilitate processing of the common spatio-temporal
gueries such as range, nearest neighbor, etc. [7],[19], [20
Existing spatio-temporal database prototypes have linite

The advances in Global Positioning Systems, wirelesssupport for trajectory similarity join. Typically, joinsra
communication systems and miniaturization of computing implemented as nested loop joins or sorted-merge joins,
devices have brought an emergence of various applicationsvhich require a large amount of expensive distance compu-
in Location-Based Services (LBS). As a result, there is an tation [14], [28]. The main focus of this work is to provide
increasing need for efficient management of vast amountsefficient and scalable similarity joins of spatio-tempdrat

of location-in-time information for moving objects. An im-
portant operation on spatio-temporal trajectories, wiisch

jectories.
Our main contributions can be summarized as follows:

fundamental to many data mining applications, is the simi- ¢ We introduce a novel distance measure based on the

larity join [5], [15]. Given a user definesimilarity measure

a similarity join identifies all pairs of objects that sayisf
the join predicate in which the condition is specified by the
measure. Efficient similarity joins are especially dedgab
for spatio-temporal trajectories, because the distanice-ca
lation between trajectories is generally very expensive du
to the intrinsic characteristics of the data.
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Fréchet distance [1], which is highly effective in idewiifg
similar trajectories.

e WWe propose lower and upper bounding approximations
of the exact distance measure, which are straightforwardly
applicable to the spatio-temporal indices and can prune a
significant portion of the search space.

e We present an efficient trajectory similarity join in the
native space, which combines the distance calculatiors wit
incremental accesses to the spatio-temporal indices.

e We conduct extensive experimental evaluations to show
the efficiency and effectiveness of our proposed techniques



The rest of this paper is organized as follows. Section 2 to utilize the spatio-temporal indices available in theveat
provides the necessary background. Section 3 formallyspace. Recently,Pelelkas al.[19] identified several differ-
defines our distance metric and the approximation bounds.ent similarity distance for trajectories, and argued tlaahe
Section 4 elaborates on our index-based trajectory joinof them is more appropriate than the others in different set-
framework. Section 5 presents our experimental results.tings.

Section 7 reviews related work and concludes the paper. 2.2 R-tree Based Indexing of Trajectories

2 Preliminary The R-tree and its variants have been widely used for
indexing arbitrary dimensional data [18]. An R-treeisa B+-
tree like access method, where each R-tree node contains
an array of(key, pointer)entries wherekeyis a hyper-
rectangle that minimally bounds the data objects in the
2.1 Trajectories and Similarity Measures subtree pointed at bgointer. In a leaf node, thg@ointeris

We assume that objects move in a two-dimensional @0 object identifier, while in a non-leaf node it is a pointer
space, and that a trajectofyr is a sequence of points (O &child node onthe nextlower level. _
D1, P2, ..., Pi, .., P, Where each poinp; represents the lo- When indexing spatio-temporal tra!ectonefs wlth the
cation of the moving object at timig, and is of the form  transformed space approach, each trajectory is first trans-
(X,Yi.ti), forty <tp < ... <t < .. <ty. Foragiventra- formed into a single point in a high-dimensional (metric)
jectory, its number of points is called thint length(p- space and a h|gh—d|menS|on§I indexing structure is used to
length) of the trajectory. The time interval betwaeandt,, index these points. Under this GEMINI framework [12], a
is called thedurationof the trajectory, denoted yTr. The high-dimensional R-tree is but one optional index struetur

In this section, we introduce the concept of spatio-
temporal trajectories, and discuss the existing simylarit
measures and the indexing of trajectories using R-tree.

portion of the trajectory between two poirgsand p; (in- However, spatio-temporal trajectories can also be in-
clusive) is called egmenand is denoted as; . A segment dexed in their native space. Several such implementations
between two consecutive points is calletine segmentlf have been developed in the moving object database liter-

the sampling rates of trajectories are different, resgltim ~ ature [7],[18], [20] for processing various spatio-temgdor
trajectories with positions sampled at different time giam ~ dueries. Directly indexing the entire trajectories may in-
we could simply perform a re-sampling and insert artificial roduce large dead space and decrease the discriminating
locations by applying linear interpolation. power of the index, hence the general idea is to split a long
Several distance measures for trajectories have beedf@ectory into a number of segments, and index the seg-
proposed in the literature. Thiey-norms [12] are the ~ Ments [18]. Each leaf node in the R-tree contains a num-
most common similarity measures. For example, given ber of 3-dimensional minimum bounding hyper-rectar_lg_les
two trajectoriesTr; and Tr; of the samep-length, one (MBR) that_ enclpse the se_g_ments generated from splitting,
can define the similarity measure based on the Eu__togetherwnh u_n|que_|dent|f|ers that match each segm_ent to
clidean distances between the corresponding points asitS corresponding trajectory. The segments of the trajecto
] N ries do not have to be of the same length, and a particu-
L2(Tri, Try) = \/ZKG[LH} dist(py, Pi), wheredist(py, py) = lar leaf node may contain segments from different trajecto-
(pl-X — pLx)? + (pl.y — p)2. While L, can be calcu- ries. The problem of optimally spliting the trajectories t
lated in time linear to the length of the trajectories, it is support efficient data mining has recently been investijate
sensitive to noise and lacks support for local time shift- in [3] and is beyond the scope of this paper.
ing, i.e., trajectories with similar motion patterns that a . . . .
out of phase. Th®ynamic Time Warping(DTW) dis- 3 Spatio-Temporal Distance of Trajectories
tance [17] overcomes the above problem by allowing tra-  In this Section, we introduce our new distance measure
jectories to be stretched along the temporal dimension, anchased on the classical Fréchet distance [1]. We observe
is recursively defined asDTW(Tr;,Trj) = dist(p‘17 p’l) that the commonly used similarity measures may not be
+min(DTW(RestTr;),RestTr;)), DTW (Res{Tr;), Trj), appropriate for trajectories of moving objects and have a
DTW(Tri, RestTrj))), whereRestTr) = ph,...,ph. To guestionable applicability to sptio-temporal indices e t
reduce the impact of the quadratic complexity of DTW on native space. To exemplify this, we paraphrase the popular
large data sets, a lower-bounding function together with a man walking dogxample [1] in Figure 1. If the Hausdorff
dedicated indexing structure was used for efficient prun- distance [2] is used, one can assert that the motion of
ing [17]. Similar to DTW, other distance measures have alsothe man and the dog are always within a distance.of
been proposed, e.g., ti&dit Distance on Real Sequence However, this measure pertains only to ttoeites of the
(EDR) [9] and the distance based bongest Common Sub- man and the dog, completely ignoring the dynamics of their
sequencéL.CSS) [24]. The commonality is that they all fol-  representative motions [22]. As illustrated in Figure k& th
low the transformed space approach, and are not designetbcations of the man and the dog at some time instance




can be much larger thaa. Popularly, this means that
the minimum length of leash is the fine measure of their
distance.

A more general distance function is the Fréchet distance,

defined for two continuous curvés [a;,b;] andg: [az, by]

as: & (f,g) = infq gmaxepoq || f(a(t)) —g(B(t))||, where

a (B) ranges over all the possible continuous and monotoni-
cally increasing functionf, 1] — [ag, b1] ([0,1] — [a2, b2]).
Spatio-temporal trajectories in real settings consisedks

The importance of the temporal dimension is empha-
sized by the matching window. An idea similar to ours
(temporal matching window constraint) has also been used
for other similarity measures [25], where a window size of
5% — 20% of the entire trajectory duratidkTr is reported
sufficient for most application in terms of finding similar
trajectories. Further stretching the temporal matchingrwi
dow not only result in longer execution time of the distance
function, but may deteriorate the accuracy of the distance

of coordinate points at discrete time stamps, and the loca-measure due to over-matchingd,pr has the following

tion of a moving object between these points is obtained

via interpolation when needed. Hence it suffices to define a

discreteversion of the Fréchet distance as follows [11]:

Man at t;

/’/// «
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man-trajectory
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Figure 1:lllustration of Fréchet Distance

Let Try = (pi,...,pL) and Trp = (pZ,...,p2) be two
trajectories. Acoupling CbetweenTr; andTrp is a se-
quence{(ps,,Pp,), (P&, P3,) -~ (P&, P3)} of distinct
pairs such thagy = 1,b; = 1,ax = n,bx = n and for all
a; andb; we haveaj 1 = g oraj 1 =a +1, b1 = b
or bi;1 = b+ 1, i.e., the matching is monotonically non-
decreasing. Thiength||C|| of the couplingC is the maxi-
mumlink of all the pairs in the couplin@, where a link is

defined as the Euclidean distance between the two points

nally, the discrete Fréchet distance between two trajecto
riesTry andTr; is defined adqr(Try, Trz) := min{||C|| :

Cis acoupling offr; andTr2}. An important observation

is that exploring all the possible couplings is exhaustive a
costly. By considering all pairs dfp}, pj) without pay-

ing attention to their temporal distances may distort tlaé re
spatio-temporal similarity of moving objects. Motivated
by this, we further constrain the definition of the discrete
Fréchet distance by considering only pairs of points whose

temporal distances are bounded by a given window thresh-

old. Thew-constrained discrete Bchet distancéwDF) is
defined as follows:

DEeFINITION 3.1. Given two trajectories Tr and
Tro, their w-constrained discrete Echet distance
Owpr(Tr1,Trz) := min{||Cy|| : Cw is a w-constrained
coupling of Ti and Tp, st V(p3,p5) € Cw =
lIpa,t — Pt < w}, where w is a parameter that deter-
mines the limit of the temporal matching window.

properties:

(1) Owpr(Try,Tr1) = 0, (2) Owpr(Try,Trz)
Swor (Trz,Try) and(3) dwpr (Try, Trz) < dwpr(Try, Trs) +
owpr(Trs, Trp). Hence, we have:

PropPoOsITION3.1. &,pr defines a pseudo-metric on the
set of spatio-temporal trajectories.

Due to space limit, the proofs of the claims are omitted
from this paper and are presented in [10].

The wDF distance can be computed using dynamic
programming and has a complexity@(%nz). However,
unlike DTW and EDRWDF is a pseudo-metric and can
utilize the triangular inequality for pruning during sirmilty
search [8]. More importantlywDF has led us to the
derivation of two approximation distances that providereve
greater pruning power, which we discuss next.

3.1 Efficiency and Approximation of wDF

For long trajectories, the brute force computatiowbf-
can be costly. We propose two efficient approximations that
can bound the exa®tDF distance and are much faster to
compute: one that guarantees a lower-bound and one that
guarantees an upper-bound for the ex@oF distance, re-
spectively. The proposed approximations make use of a
coarser representation of the spatio-temporal trajeori
obtained through splitting a given trajectory into segrsent
and representing them by the sequence of MBRs that en-
close the corresponding segments.

MBR

Tr2

Time

(a) MinDist and MaxDist for MBRs (b) Construction of LBDawor using MinDist
Figure 2:Bounding the exact wDF distance with MBRs
Consider two trajectoriesTr; and Trp, each ap-

proximated by a sequence of MBRs, e.gMi

{MBR},...,MBR'}, M, = {MBR,...,MBRZ}, thelower-

bound coupling @ betweenM; and M- is defined as

a monotonically non-decreasing matching between the



pairs of MBRs from each sequence. In particular, the representation. This can be illustrated by usingwheping

link of a pair in the lower-bound coupling@; is de- matrix concept [21] to describe the relevant coupling be-
fined as theMinDist between the two composing MBRs, tween two trajectories. The values in the cells of the warp-
i.e., the minimum spatial distance between any two ing matrix denote the distances between the corresponding
points from the respective MBR (c.f. Figure 2 (a)). matching MBRs/points. Figure 3 (b) shows the warping
The length ||CL|| of the lower-bound couplingCl, is matrix between the MBRs of the two trajectori€s and
max{ MinDist(M BR“&i , MBRZ,i )} whereup =vi =1, u =t Try, and Figure 3 (¢) shows the warping matrix between the
andvg = s. Thew-constraining condition is specified over actual points of the two trajectories. Intuitively, calatil

the time intervals of MBRs. Assuming thMBR! and ing LBDs, - (UBD3, ) or WDF is the process of finding a
MBR enclose segmerttp; ,..., pf) and (p?,,..., pf, ) re- path[21] from the lower-left corner to the upper-right cor-
spectively, they will be considered as a possible painin a  ner that minimizes the maximum value over all cells on the
constrained coupling only #p., p%, s.t. ||pj .t — p§ -t/ < path. The amount of computation faBDs, .. (UBDs, )

w. As an example, consider the scenario depicted in Fig-is significantly less because of the reduced matrix size. In-
ure 2 (b), due to the limit of the warping window sizeev- stead of computing the exadf,pr distance each time, we
ery MBR can only be matched with its corresponding MBR compute theLBDs,,. andUBDs, . With only O( A% ?_22)

on the other trajectory, and the two MBRs next to it, e.g., time, and exclude unqualified candidates, substantially re
the first MBR ofTr, can only be matched with the first two  ducing the number of theDF distance calculations. In the
MBRs of Tr1, although itdMinDist to the third MBR ofTry example of Figure 3 (b), we computed a path (shown in
is much smaller. Formally: large grey cells) for th& BD, . (UBD;,,,.), then in Fig-
DEFINITION 3.2. Given two sequences of MBRg kind ure 3 (c), we only need to consider the matrix cells that
M, for trajectories T and Tr respectively, the lower- are covered by the grey path, and eventually obtained our

bound distance of Trand Tk is: LBD;s, . (M1,M2) := warping path (shown in small black cells). The exagsr
min{||CL||: Cf, is a w—constrained lower-bound coupling  distance is then the maximum value of the black cells. Ap-
of M1 and Mp}. parently the search space has been significantly reduced.

Similarly, we define ampper-bound coupling on the Theorem 3.1 ensures that the MBR-based pruning will not
two sequences of MBRBI; andM,, where the link of a  introduce any false negatives.
pair is defined as thklaxDistbetween the two composing
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The construction ofBD;, . between two trajectories
from. their. MBRs is iIIustrat_ed in Figure 2 (b), and the Figure 3: Warping matrices for calculating LBg,.
relationship of these two distance bounds and the exacty BDs, .. and wDF: X cells are automatically excluded by
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distance is given bY the following: _ the temporal matching window, grey cells are potentially
THEOREM3.1. Given two trajectories Tr and Tbp, useful and black cells are on final path
and the corresponding sequences of MBRg, avid M, Moreover, we can do even better with the approximation

that approximate them, for any matching window w the distances by further limiting the search space, using aa ide
following holds: LBR,,. (M1,M2) < &wpr(Try,Trz) < similar to early abandoning27]. Consider the warping
UBDj, o (M1, M2). matrix Mapprox in Figure 3 (b) for calculating-BDs,

We note that Theorem 3.1 applies to arbitrary trajectory betweenTr; and Trp. Initially, it only consists of “x”
splitting strategies, and the problem of optimally spiiti cells and white cells and all the white cells are assigned
the trajectories is beyond the scope of this paper [3]. Fora value ofo. We access MinDists between the MBRs in
simplicity, we assume in the rest of this paper that the tra- ascending order, and update the values of the corresponding
jectories are uniformly split into segments of equal length cells, e.g., cell1,2)=0.7, cell(8,9) = 0.8, cell(3,4) = 0.9,
|. From their definitions.BD5, . andUBD3, . can be ...(grey cells). After each update, we invoke the dynamic
computed using the same dynamic programming algorithmprogramming algorithm and try to find a path for computing
for computingwDF, except that the MinDists/MaxDists be- theLBDs, .. Atfirst there is no such path available, and the
tween MBRs are used instead of Euclidean distance be-algorithm will quickly returnco. After updating a cel(i, j),
tween points. However, the amount of distance computa-if we obtain the first path connecting the two corners in the
tion involved can be greatly reduced because of the coarsematrix, then this is the optimal path (since any path formed



later will use a cell updated after c€ll, j) and will have
a larger MinDist value than celi, j)). Consequently, the
LBD;, . distance is equal to the MinDist value of cgllj).

spectively. The algorithm accesses both trees in a man-
ner similar to the incremental distance join [15]: descend-
ing from their roots simultaneously, and concurrently as-

At this point the distance calculation has been completedsigning the segments from the second set to the closest

and the rest of the cells can be pruned. In the example oftrajectory from the first set.

Figure 3 (b), the critical cell after which we could find the
path iscell(6,6) and as a result,BD;, . (Tr1,Tr2) equals
3.5. Note that cells such &9,4) are never considered at
any time since its value is greater tha.3This important
observation is formalized as follows:

THEOREM3.2. When calculating LBR . (UBD;,.)
between two trajectories Trand Tp, if the pairwise dis-

An important data struc-
ture used in the algorithm is a priority queue of the form
(elem, elen®, mindist). The firstitem in each triple is from

R; and the second one froRp. Each item can be either a
node of the R-tree, or a leaf node entry, i.e., the MBR of a
particular segment. The third item in a triple is @ Dist
between the first two items, and the dequeue operation will
always remove the triple with the smallégtnDist. In ad-

tances between the MBRs are incrementally accessed in asdition to the priority queue, the algorithm uses two other

cending order of their MinDists (resp. MaxDists), the num-
ber of MinDists (resp. MaxDists) calculation and accesses
is minimum.

Theorem 3.2 requires that the MinDists/MaxDists are

sorted in ascending order, which may incur an extra over- S ¢ X i
€{]ance which is the maximum possible distance allowed to

head. However, the key observation is that such an orderin
can be naturally obtained by maintaining a priority queue
while accessing the MBRs in the R-tree [15]. The worst
case complexity is still bounded i(n?), wheremis the

number of MBRs in each trajectory. However, we observed

in our experiments that in practice significant speed up can

be achieved, since not ai cells of the warping matrix
need to be evaluated. In addition, although boBD;,
andUBDg, - can be calculated using Theorem 3.2, in prac-
tice we only invoke dynamic programming once to calcu-
late LBDg,,. Instead of calculating the exadtBDs, .,

we use the path fotBD;, . to calculate an upper-bound
on UBDg,,, Which in practice approximates the actual
UBDs, . distance very well. More specifically, we straight-
forwardly compute the correspondiiaxDist values, us-
ing precisely the pairs of matching MBRs from th8D;, -
coupling. We then use the maximum of thédaxDists to
bound theJ BD;, . from above. By definition ) BD;, -,

this bound is guaranteed to be greater than or equal to thd

value ofUBDs, . -

4 Index-Based Trajectory Join UnderwDF

In this section, we present our framework for spatio-
temporal similarity join of trajectories under teDF dis-

data structures. The first is tivearping matrix directory
(WMD) that maintains an entry for each trajectory fr&m
storing a list of incompletéBD;5,,. andUBD;, . warp-

ing matrices between that trajectory and a trajectory from
S,. Each entry in WMD also maintains apper bound dis-

ecome an answer candidate. In addition, each entry has
a flag that indicates whether the nearest neighbor for this
particular trajectory has been found. The second structure
is thecandidates tabl¢CT) that stores for each trajectory
from S; its candidate answers in a sorted list, in ascending
order of theLBDg, -

The join process is illustrated in Algorithm 1. After
initializing the relevant data structures, the main body of
the algorithm is a while loop that continuously processes
the next triple dequeued:

e When both elements in the triple are MBRs of trajectory
segments (line 4-17), it first checks whether the correspond
ing entry from WMD iscompleteand if so, simply discards
the triple from further consideration. Otherwise, it penfie
early abandoning by checking whether tt#D;5, _ is less
than the upper bound distance (line 7). This check uses the
fact thatLBDs, - is greater than th#linDist between the

wo MBRs. Then the relevant warping matrices in the cor-
responding WMD entry are updated and the algorithm ex-
amines whether the update generates a complete path in the
LBDs, - Warping matrix. If so, th&.BDs, . andUBDs,
distances are calculated.BDs, . is used to insert a new
entry into the candidates table, ad@Ds, . is used to up-

tance measure. Assuming that each trajectory is uniformlydate the upper bound distance of the entry. Finally, if the
split into segments that are indexed by a 3-dimensional R-MinDist is greater than the entry’s upper bound distance,
tree, we describe the nearest neighbor join algorithm, andthis WMD entry is flaggedtompletesince the correspond-

present several important variants.
4.1 Nearest Neighbor Join

Given two sets of spatio-temporal trajectories, tiear-
est neighbor joirretrieves for each trajectory from the first
set its most similar trajectory from the second set, using
wDF as the similarity measure.

The inputs to the algorithm are the two trajectory sets
S1 and Sy, indexed by disk-based R-tre& and Ry, re-

ing LBD3, . Will be greater than the upper bound distance,
and the relevant warping matrices are discarded.

e When only the first element in the triple is the MBR of

a segment (line 18-22), the algorithm checks whether the
corresponding entry in WMD is flaggemmpleteand if so

the triple is discarded since it (and any new triple formed
by further descending the R-tree) may not produce a better
answer than the existing candidate. Otherwise the second



Algorithm 1 Index-Based Trajectory Join

Input: R-treeRy, Rp; Trajectory sef;, S,; temporal matching windoww
[* filtering stage */
1: priority queueQ.ENQUEUKER;.root, Ry.root, 0)
2: while ! Q.ISEMPTY do
3: (el,e2, mindist) <= Q.DEQUEUE

4: if bothel ande2 are segment MBRthen
5: Try < trajectory ofel, Tr, < trajectory ofe2
6: if WMDI[Tr4] flaggedincompletethen
7: if MinDist(el,e2) < E.upperbounddist then
8: insert MinDist, MaxDist ofl, €2 intoWMD|Tr1)
9: if a path exists for the MinDist warping matrix between
Try andTr, then
10: computel BD;, . and an upper bound &JBD;,
betweenTry, Try
11: if UBDs, o < E.upperbounddist then
12: E.upperbounddist <= UBDjs,
13: insertTr, andLBDg, . into CT[Try]
14: else
15: set flag ofW MD[Tr4] ascomplete
16: else ifWMD[Tr4] flaggedcompletethen
17: discard the paifel, e2)
18: else ifel is segment MBRhen
19: if WMDI[Tr4] flaggedcompletethen
20: discard the tripl¢el, 2, mindist)
21: else
22: expandElemeifel, e2,Q)
23: else ife2 is segment MBRhen
24: expandElemerie2, el, Q)
25:  elseifbothel ande2 are nodehen
26: expandBalancedEleméetd, €2, Q)

[* refinement stage */
27: for every entryTr; in CT do
28: computedypr (Tri, Trj) for each candidatdr; until the nearest
neighbor is found

node is expanded by calling the functierpandElement
ExpandElementxpands one of the input nodes by pairing
each one of its children with the other input element if they
are temporally withirw, and inserts the resulting triples into
the priority queue.

e When only the second element in the triple is the MBR

largest computedDF distance value.

4.2 Variants of the Similarity Join

Algorithm 1 for nearest neighbor join requires minor
modifications to calculate other similarity joins among tra
jectories in our framework.

e k-nearest neighbor join (kNN join) [5]: A kNN join
finds for each trajectory fror§; its k nearest neighbors
from S, in terms of thewDF distance. For each trajectory
from S,, after the firstk candidates are added to the can-
didate table, the minimum of thei¥rBDs, - is used as the
upper bound. We continue to add new candidates as long
as theirLBDs, . distances are smaller than the current up-
per bound, and update the upper bound with the new tighter
UBD;, - if necessary. This only requires that line 11-12 in
Algorithm 1 are changed to maintain th@perbounddist

with the minimum of thek candidatesUBDs,.S. In the
refinement stage, we calculate the exabi- distance for
every candidate and select thérajectories with the small-
est distance values. Again, we could use the triangular in-
equality ofwDF to prune some of the distance computation.

e Range Join[5],[17]: A range join finds for each tra-
jectory fromS; all the trajectories frond, that are within

a givenwDF distance of it. For this extension, we simply
need to fix thaupperbounddist to the range query thresh-
old in line 7 of Algorithm 1 and remove line 11-12 for up-
dating theupperbounddist, i.e., we retrieve for each tra-
jectory inS; all the candidates whoséBDg, _ is less than
the given distance threshold during the filtering stage, and
refine the answers using the exa®F distance.

We also note that our framework can straightforwardly
support the time interval join [4], where the kNN or range
predicate is defined using only some portions (segments)
of trajectories within a specified time interval of interest
In this case we retrieve only the index nodes and leaf
node entries that intersect with the given time intervafrfro
the same index structure. This can be easily handled by
changing line 3 of Algorithm 1 to check whether the two
elements from the triple are temporally intersecting with

of a segment (line 23-24), the first node is expanded by the querying interval. If so we continue with the normal

callingexpandElementith elerml andelen® exchanged.

processing procedure, otherwise we simply discard the

e When a pair of nodes is processed (line 25-26), the triple.

algorithm chooses to expand one of the nodes by calling

expandBalancedElementhich tries to keep the balance

of the depth when descending the two trees. The node to

5 Experimental Results
In this section, we empirically evaluate the efficiency and

expand is the one with a shallower depth or with a larger effectiveness of our proposed techniques.

area if both nodes are at the same depth [15].

We have implemented our similarity join framework in

After the while loop terminates, the refinement step is Java. All our experiments are executed on a PC with
performed on the CT using the triangular inequality of a Pentium IV 3.0GHz CPU and 1GB of memory. To
wDF for pruning (line 27-28). For every entry of the evaluate the efficiency of the proposed algorithms, we
candidates table, we examine the candidate trajectories iruse the network-based traffic generator [6] and produce
ascending order of theltBD;, .. and calculate the exact moving object trajectories based on the road networks of
wDF distance, until either all the candidate trajectorieceha Oldenburg (OB) and San Francisco (SF). To obtain some
been examined, or the nekBD;s, . is greater than the quantitative observations about the potential use of our



framework for data mining applications, we use thiBF Next we evaluate the efficiency and the scalability of our
distance for classification in data sets provided by the UCR trajectory join algorithm. Due to the limited space, we fo-
Time Series Collection [16]. We index the trajectories with cus on the nearest neighbor join only. The next two sets
a 3-dimensional R-tree and uniformly split each trajectory of experiments compare the efficiency of three different ap-
into segments. The resulting segments are then inserted int proaches: (1) our framework using td®F distance, (2)
the R-tree, where each data entry in the leaf node containghe metric-based join [26] (essentially a sequential se@n o
one segment. The page size is set to 4KB, and an LRUthe entire data set but uses the triangular inequality fanpr
buffer with 1000 pages is used. Unless stated otherwise, theng as much as possible) withDF as the distance metric
wwindow size is set to 15% of the entire trajectory duration. and (3) similarity join on DTW distance with lower-bound
indexing [17], as a representative of the transformed space
approach. For the DTW based approach, we implement
the join as a batch of similarity search queries where each
query is a trajectory from the first data set that is used to
search for its nearest neighbor in the second data set. We
to remove its impact from further experiments. Increasing US€ the same parameters, e.g., the number of points in each
the number of splits implies tighter bounds but may also segmer?U.plece—Wlse appro>§|mat|0n, the R-tree parameters
and splitting strategy, etc. in both our framework and the

increase the costs for calculating them, whereas decreas® | . : o
ing the number of splits deteriorates filtering effectivene DTW implementation. We also take into account the time it

We perform a nearest neighbor join for trajectories gener- takes for approach (1) and (3) to build the index structure.
ated from the road networks of OB and SF, with 400 and

5.1 Efficiency of Similarity Join

Although our results are independent of the trajectory
splitting strategy adopted, before evaluating the perfor-
mance of our similarity join framework, we need to deter-
mine the trajectory splitting size for our data sets in order

. . . . Idenb () i
1000 points respectively. We generate 200 trajectories us- ~ , _ @o%rrepmese o @Smimesepesy
ing the road networks and use this set as the first set for o ss|  "Shitaesion = | | 'Dwbeseddon =
101 i : 4] wDF based Join ----%--- WDF based Join ----%--- X

the join algorithm, we then add small perturbations to each < s 1 s
trajectory, i.e., slightly offset the location of each ptoim g 257 1 g
the trajectory, and use the perturbed set as the second set of 12 I | °r e
trajectories for the join algorithm. We vary the number of 2 | AT o

. . . [} X
points contained in each segment from 5 to 200 and the re- & o5 |- *] 2 T s o
sults are shown in Figure 4 (a). Based on the results, we fix R e : ‘

B - . . 0 500 1000 1500 2000 0 500 1000 1500 2000

the number of points in each segment to 20 in the following Number of Trajectories Number of Trajectories

experiments.
Figure 5:Scaling with Number of Trajectories

(a) Impact of Segment Size (b) Tightness of Bounds

Ouir first set of experiments reports the total running time

[
N
(=]

ol oot 1000 | D= 008 e of the nearest neighbor join as a function of the number of
008y | trajectories. Figure 5 compares the performance of thethre
80 H x . .
0.06 1 approaches on trajectories generated from road networks

i P of OB and SF, respectively. Each OB trajectory contains

400 points and each SF trajectory contains 1000 points.
We observe that our join framework clearly outperforms
e the metric-based join, yielding a speed-up of up to 10
0 500 1000 1500 2000 .
Total Number of Trajectories times. Furthermore, our approach scales well to large
trajectory sets since the running time grows linearly with
Figure 4:Impact of Segment Size and Tightness of Bounds respect to the number of trajectories, whereas the running
With the uniform split model, we then evaluate the tight- time for metric-based join grows quadratically. This is
ness of the two distance bountBDs,,. andUBDs, .. because with our index-based join, the number of exact
We use the road networks of OB and SF to generate varyingdistance calculation grows only linearly with the number of
number of trajectories, and randomly pick one trajectory to trajectories, the rest of the distance calculation are gaun
perform a nearest neighbor query on the data set, using thén the other hand, metric-based join does not have this
two distance bounds for pruning. We record the total num- property. While the DTW based approach also outperforms
ber of times the exa®tDF distance is calculated, and divide the metric space based approach by a large factor, it is
this number by the total number of trajectories in the data on average more than 2 times slower than our approach.
set. The result ratio is shown in Figure 4 (b). Using our This discrepancy becomes even larger on the SF data set.
approximate distance bounds, we only need to perform lessThe main reason is that when the number of points in
than 2% of thevDF distance calculation. each trajectory increases, the dimensionality of the index

0.04 - B

0.02 |- B

Total Running Time (sec)

Percentage of $w$DF Calculation Performed

0 50 100 150 200
Number of Points per Segment



structure used to index the trajectories in the transformed Data set -norm  DTW WDF ()

. . . . i 0,
space, i.e., the index of the DTW distance, also grows. This Synthetic Ctrl. - 0.12 = 0.017 0.02 (13%)
ill reduce the selectivity of the index and admit more false Gun-Point 0.087 0.087 0.027.1%%)
will Te _ Yy 1N : : CBF 0148 0004  0.027 (18%)
positives that will need to be eliminated with the expensive Face(all) 0.286 0.192 0.142.@%)
DTW distance calculation. Increasing the number of points OSU Leaf 0.483 0.384 0.421 (3%)
per segment/piece-wise approximation can not solve the Swedish Leaf 0213 0.157  0.1827%)
problem, as it will yield a wider bounding envelop used by 50 Words 0369 0242 0.301.6%6)

DTW and loosen the lower-bounds [17]. Working in the Trace 024 0.01 0 (4%)
. ' ) 9 Two Patterns 0.09 0.0015 0.0045 (@%)
native space, our approach does not have this problem of Wafer 0.005 0.005  0.0045 (13.2%)
dimensionality. When the number of points per trajectory Face(Four) 0.216 0.114  0.307.3%)
increases, it only increases the total number of segmedts an Lightning-2 0.246  0.131  0.229 @%)
the size of the R-tree structure. However, the extra acsesse Lightning-7. 0.425 — 0.288  0.329 {@6)
to the indices are paid off by the reduction of false posttive ECG 012 0.12 013 (1%)
0 p y p Adiac 0.389  0.391  0.381 (B5%)
because of the lower/upper-bounds. Yoga 0.17 0.155  0.143 (2%)
Fish 0.217 0.16 0.181 (1%)
(a) 400 Trajectories (b) 1000 Trajectories Beef 0.467 0.467 0.467 @A))
! Metric based Join —— 35 Metric-based Join —— | Qoﬁeg 0.25 0.179 0.0714 '&%)
DTW based Join ---»--- 3l DTW based Join ---%--- i OliveOil 0.133 0.167 0.167 (5%)

WDF based Join ----x--

0.8 WDF based Join ----%--- B

0.6

ol Table 1:Effectiveness of wDF Distance

02

Total Running Time (k sec)

0 Rt ST S
0 200 400 600 800 1000 0 200 400 600 800 1000
Number of Points per Trajectory Number of Points per Trajectory

observe that the classification error rates yieldedvdF

are clearly superior to .-norm, and is comparable with
DTW (wDF wins in 7 data sets, ties in 2 data sets and
Figure 6:Scaling with Trajectory Length loses the rest). This is because whilBF can handle local

Our next set of experiments investigates the similarity time shifting, it is more sensitive to noise than DTW. We
join performance with respect to the number of points per note that using a uniform window size of 15% yields only
trajectory. We fix the number of trajectories in OB and SF slightly different results [10].
to 400 and 1000 respectively and increase the number of
points in each trajectory. From Figure 6, we can observe6 Related Work
that Ourapproach scales Verywe”With the number of pOintS The pr0b|em of turbo_charging data mining process
per trajectory, and consistently delivers a speedup of morepy similarity join has been investigated in [5] for low-
than 2 with respect to the DTW based approach. The dimensional data. In this work, we focus on joining spatio-
speedup increases as the number of points per trajectoryemporal trajectories and the main goal is to utilize the in-
grows from 200 to 1000. dex structure to prune a large number of expensive distance
5.2 Effectiveness of wDF calculation which dominates the join process. A trajec-

In order to evaluate the effectiveness of our proposed!tory join using the l,-norms and a specialized index struc-
similarity measure, we use a one-nearest neighbor classififuré was presented in [4]. However, the approach can not
cation algorithm as suggested by Keagtal. on 20 differ- be straight.forwalrdly _extended to support different spatio
ent data sets [16]. These data sets cover various appficatio temporal similarity join.
domains, e.g., robotics, industry, botany etc. Foreachgro I [25] the indexing of LCSS and DTW using MBRs
of data, a training set and a testing set are provided togetheOf trajectory segments is explored. However, the proposed
with the correct cluster labels. We compare the classifica-/0wer-bound distance are calculated in conjunction with

tion error ratio ofwDF against that of p-norm and DTW @ query sequence, which makes the efficient extension
from [16], as shown in Table 1. to similarity join questionable. The issue of what is a

The classification error ratio ofDF is obtained by  semantically appropriate distance measure for trajectory
finding the optimal warping window size for the purpose similarity is addressed in [19]. [13] considers similarity
of this comparison (and so does DTW), and the percentagesearch for trajectories using spatio-temporal indices and
in parentheses indicate the ratio of matching windowsize proposes a novel distance measure, however the work does
to the trajectory duration. We perform an exhaustive searchnot address the similarity join of trajectories. We note
using all possible matching window sizes, and report the that the constructing MBRs over time series data for lower
one that yield the minimum classification error ratio. We bounding has been explored for other similarity measures



along with the idea of early abandoning [17],[23],[27]. In
this respect, we applied owDF distance and combine
similarity joins and spatio-temporal indices in the native
space of moving object trajectories [7],[18],[20]

7 Concluding Remarks & Future Work

In this paper, we introduced a new similarity measure
wDF for location-related time series data, based on Fréchet
distance [1]. In order to compute the distance efficiently,
we proposed two approximations for effective upper/lower- [
bounding. We then combined these approximations with

[10]

11]

[8] L. Chen and R. T. Ng. On the marriage of Ip-norms and edit
distance. InvVLDB, 2004.

[9] L. Chen, M. T.Ozsu, and V. Oria. Robust and fast similarity

search for moving object trajectories. iGMOD Confer-

ence 2005.

H. Ding, G. Trajcevski, and P. Scheuermann. Efficient

similarity join of spatio-temporal trajectories. [fechni-

cal Report NWU-EECS-08-01, Northwestern University,

http://www.eecs.northwestern.edu/ hdil17/publicaibtm|

2007.

T. Eiter and H. Mannila. Computing discrete freches-di

tance. InTechnical Report CD-TR 94/64, Technische Uni-

versitat Wien1994.

spatio-temporal indices in the native space for pruning, an [12] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos.t Fas

presented a similarity join framework under our distance
measure that supports a number of different similarity join
variants. Our experimental results have demonstrated t
efficiency and scalability of our proposed technique in
the context of moving object trajectories, and verified the
effectiveness of our distance measure.

One immediate extension of this paper is to improve

[

subsequence matching in time-series database&aGMOD
Conference1994.

hélS] E. Frentzos, K. Gratsias, and Y. Theodoridis. Indesduh

most similar trajectory search. I€DE, 2007.

14] R. H. Giting, V. T. de Almeida, D. Ansorge, T. Behr,

Z. Ding, T. Hose, F. Hoffmann, M. Spiekermann, and
U. Telle. "secondo: An extensible dbms platform for re-
search prototyping and teaching”. IGDE, 2005.

the robustness of our distance measure against outlier$15] G. R. Hjaltason and H. Samet. Incremental distance join

in the data. SincevDF is sensitive to noise, one can

alleviate this problem by apply some filtering technique [16] E. Keogh, X. Xi

similar to EDR and LCSS [9], [24] when determiningF.
We have considered using a median filter to protect the

algorithms for spatial databases. $\GMOD Conference
1998.

L. Wei, and C. Ratanamahatana. The
UCR Time Series dataset. Inttp://www.cs.ucr.edu/ ea-
monn/timeseriesdata/, 2006.

warping matrix from noise. Our preliminary experiments [17] E. J. Keogh and C. A. Ratanamahatana. Exact indexing of

indicate that the median filter substantially improves the
effectiveness owDF for classification purposes. However,
there are two important issues that we need to address:

dynamic time warpingKnowl. Inf. Syst.7(3), 2005.

[18] Y. Manolopoulos, A. Nanopoulos, A. Papadopoulos, and

Y. Theodoridis, editors.R-trees: Theory and Applications
Springer-Verlag, 2006.

(1) choosing the optimal filter size, or properly adjusting [19] N. Pelekis, I. Kopanakis, G. Marketos, I. Ntoutsi, G.An-

it (for adaptive algorithms); (2) median filters need not
yield metric distance, which may slow down the refinement

drienko, and Y. Theodoridis. Similarity search in trajegto
databases. IMIME, 2007.

step of Algorithm 1. We will focus on these issues in the [20] D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel ap-

future work. Another interesting avenue of future work is to

extend our approach towards more general types of motion[21] Y. Sakurai

and richer representations of the trajectory models.
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