
Abstract In this paper, we present a robust, decen-

tralized approach to RF-based location tracking. Our

system, called MoteTrack, is based on low-power radio

transceivers coupled with a modest amount of com-

putation and storage capabilities. MoteTrack does not

rely upon any back-end server or network infrastruc-

ture: the location of each mobile node is computed

using a received radio signal strength signature from

numerous beacon nodes to a database of signatures

that is replicated across the beacon nodes themselves.

This design allows the system to function despite sig-

nificant failures of the radio beacon infrastructure. In

our deployment of MoteTrack, consisting of 23 beacon

nodes distributed across our Computer Science build-

ing, we achieve a 50th percentile and 80th percentile

location-tracking accuracy of 0.9 and 1.6 m respec-

tively. In addition, MoteTrack can tolerate the failure

of up to 60% of the beacon nodes without severely

degrading accuracy, making the system suitable for

deployment in highly volatile conditions. We present a

detailed analysis of MoteTrack’s performance under a

wide range of conditions, including variance in the

number of obstructions, beacon node failure, radio

signature perturbations, receiver sensitivity, and bea-

con node density.

1 Introduction

Using radio signal information from wireless trans-

mitters, such as 802.11 base stations or sensor network

nodes, it is possible to determine the location of a

roaming node with close to meter-level accuracy [1, 2].

Such RF-based location tracking systems have a wide

range of potential applications. We are particularly

concerned with applications in which the robustness of

the location-tracking infrastructure is at stake. For

example, firefighters entering a large building often

cannot see due to heavy smoke coverage and have no a

priori notion of building layout. An RF-based location

tracking system would allow firefighters and rescuers to

use a heads-up display to track their location and

monitor safe exit routes [3]. Likewise, an incident

commander could track the location of multiple res-

cuers in the building from the command post. Such

capabilities would have greatly improved FDNY res-

cue operations on September 11, 2001, according to the

McKinsey reports [4].

We note that our system needs to be installed and

calibrated before it can be used. We consider this part

of bringing a building ‘‘up to code’’, similar to installing

smoke detectors, fire and police radio repeaters in

high-rise buildings, and other such safety devices. For

scenarios where an offline calibration is infeasible (e.g.

because the emergency is in a remote location such as a

field, highway, etc.), our scheme as described in the

paper is not appropriate. It remains an open research

question how to address this issue, and we provide

some suggestions in the future work section.

RF-based location tracking is a well-studied prob-

lem, and a number of systems have been proposed

based on 802.11 [1, 2, 5–7] or other wireless technologies

K. Lorincz (&) � M. Welsh �
Division of Engineering and Applied Sciences, Harvard
University, Cambridge, MA 02138, USA
e-mail: konrad@eecs.harvard.edu
URL: http://www.eecs.harvard.edu/~konrad/projects/
motetrack

M. Welsh
e-mail: mdw@eecs.harvard.edu

Pers Ubiquit Comput

DOI 10.1007/s00779-006-0095-2

123

ORIGINAL ARTICLE

MoteTrack: a robust, decentralized approach to RF-based
location tracking

Konrad Lorincz Æ Matt Welsh

Received: 22 August 2005 / Accepted: 9 November 2005
� Springer-Verlag London Limited 2006

[8]. To date, however, existing approaches to RF-based

localization are centralized (i.e., they require either a

central server or the user’s roaming node, such as PDA

or laptop, to compute the user’s location) and/or use

a powered infrastructure. In a fire, earthquake, or

other disaster, electrical power, networking, and other

services may be disabled, rendering such a tracking

system useless. Even if the infrastructure can operate

on emergency generator power, requiring wireless

connectivity is impractical when a potentially large

number of wireless access points may themselves have

failed (e.g., due to physical damage from fire).

In addition, most previous approaches are brittle in

that they do not account for lost information, such as

the failure of one or more transmitters, or perturba-

tions in RF signal propagation. As such, existing ap-

proaches are inappropriate for safety-critical

applications, such as disaster response, in which the

system must continue to operate (perhaps in a de-

graded state) after the failure of one or more nodes in

the tracking infrastructure.

In this paper, we present a robust, decentralized

approach to RF-based localization, called MoteTrack.

MoteTrack uses a network of battery-operated wireless

nodes to measure, store, and compute location infor-

mation. Location tracking is based on empirical mea-

surements of radio signals from multiple transmitters,

using an algorithm similar to RADAR [1]. To achieve

robustness, MoteTrack extends this approach in three

significant ways:

• First, MoteTrack uses a decentralized approach to

computing locations that runs on the programmable

beacon nodes, rather than a back-end server.

• Second, the location signature database is repli-

cated across the beacon nodes themselves in a

fashion that minimizes per-node storage overhead

and achieves high robustness to failure.

• Third, MoteTrack employs a dynamic radio signa-

ture distance metric that adapts to loss of informa-

tion, partial failures of the beacon infrastructure,

and perturbations in the RF signal.

In our deployment of MoteTrack, consisting of 23

beacon nodes distributed over one floor of our Com-

puter Science building, we achieve a 50th percentile

and 80th percentile location-tracking accuracy of 0.9

and 1.6 m respectively, which is similar to or better

than other RF-based location tracking systems. Our

approach to decentralization allows MoteTrack to

tolerate the failure of up to 60% of the beacon nodes

without severely degrading accuracy, making the sys-

tem suitable for deployment in highly volatile condi-

tions. We present a detailed analysis of MoteTrack’s

performance under a wide range of conditions,

including variance in the number of obstructions,

beacon node failure, radio signature perturbations,

receiver sensitivity, and beacon node density.

2 Background and related work

A number of indoor location tracking systems have

been proposed in the literature, based on RF signals,

ultrasound, infrared, or some combination of

modalities. Our goal is to develop a system that

operates in a decentralized, robust fashion, despite

the failure of individual beacon nodes. This robust-

ness is essential in order for the system to be used in

disaster response, firefighting, or other critical appli-

cations in which a centralized approach is inappro-

priate.

As mentioned previously, RF-based location track-

ing has been widely studied [1, 2, 5, 6, 8, 9–12]. Given a

model of radio signal propagation in a building or

other environment, received signal strength can be

used to estimate the distance from a transmitter to a

receiver, and thereby triangulate the position of a

mobile node [13]. However, this approach requires

detailed models of RF propagation and does not ac-

count for variations in receiver sensitivity and orien-

tation.

An alternative approach is to use empirical mea-

surements of received radio signals to estimate loca-

tion. By recording a database of radio ‘‘signatures’’

along with their known locations, a mobile node can

estimate its position by acquiring a signature and

comparing it to the known signatures in the database.

A weighting scheme can be used to estimate location

when multiple signatures are close to the acquired

signature. All of these systems require that the signa-

ture database be collected manually prior to system

installation, and rely on a central server (or the user’s

mobile node) to perform the location calculation.

Several systems have demonstrated the viability of

this approach. RADAR [1] obtains a 75th percentile

location error of just under 5 m, while DALS [12]

obtains an 87th percentile location error of about 9 m.

These basic schemes have also been extended to

improve accuracy for tracking moving targets [9].

MoteTrack’s basic location estimation uses a signature-

based approach that is largely similar to RADAR. Our

goal is not to improve upon the accuracy of the basic

signature-based localization scheme, but rather to

improve the robustness of the system through a

decentralized approach.

Pers Ubiquit Comput

123

Ultrasound-based systems, such as Cricket [14, 15]

and the Active Bat [16], can achieve much higher

accuracies using time-of-flight ranging. However, these

systems require line-of-sight exposure of receiver

to ultrasound beacons in the infrastructure, and may

require careful orientation of the receiver. Such an

approach is acceptable for infrequent use by unen-

cumbered users in an office environment, but less

practical for rescue workers. A multimodal system

would be able to achieve high accuracy when ultra-

sound is available and well-positioned, and fall back on

less-accurate RF signal strength otherwise. Infrared-

based systems, including the Active Badge [17], can

localize a user to a specific area with direct line-of-sight

exposure to the IR beacon, but suffer errors in the

presence of obstructions and differing light and ambi-

ent IR levels (as in a fire).

2.1 MoteTrack goals and challenges

We first define what we mean by robustness with re-

spect to location tracking. Signature-based localization

schemes require a set of base stations, generally at

fixed locations, to either transmit periodic beacon

messages or receive signals from mobile nodes. One

form of robustness, then, is graceful degradation in

location accuracy as base stations fail (say, due to fire,

electrical outage, or other causes).

Another form of robustness is resiliency to infor-

mation loss. For example, a mobile node may be un-

able to communicate with an otherwise active base

station, due to poor antenna orientation, multipath

fading, interference, or other (perhaps transient) ef-

fects. If the tracking system assumes complete infor-

mation when comparing RF signatures, this partial

information loss may lead to large errors.

A third type of robustness has to do with perturba-

tions in RF signals between the time that the signature

database was collected and the time that the mobile

node is using this information to estimate location. Due

to the movement of base stations, furniture, opening or

closing of doors, and other environmental conditions,

an RF signature may no longer be valid after it has

been initially acquired. The tracking system should

work well even in the presence of this kind of variance

in the received RF signals.

The final type of robustness has to do with the

location estimation computation itself. As mentioned

before, most of the previous work in this area has

employed a central server to collect RF signatures and

compute a mobile node’s location. This approach is

clearly undesirable since this server is a single point of

failure. Traditional fault-tolerance schemes, such as

server failover, are still susceptible to large-scale out-

ages of electrical power or the wired network infra-

structure.

Given these goals, a number of challenges arise that

we wish to address through MoteTrack. First, the col-

lection of RF signatures and location calculation must

be resilient to loss of information and signal pertur-

bation. This requires a signature distance metric that

takes loss into account, avoiding explosion of error

when one or more base stations cannot be contacted.

Another set of challenges has to do with decentral-

izing the location tracking system. One approach is to

allow the base station nodes themselves to perform

location estimation, rather than relying on a central

server. This leads to questions about the required re-

sources and cost of the base stations, and whether they

can be readily programmed to provide this function-

ality. An alternative is to allow the mobile device to

perform location estimation directly. In its simplest

form, the entire RF signature database could be stored

on the mobile node. In cases where a mobile user only

carries a small RF beacon or listener (e.g., embedded

into a firefighter’s equipment), this may not be feasible.

3 MoteTrack overview

In this section we give an overview of the MoteTrack

system, shown in Fig. 1. MoteTrack is based on low-

power, embedded wireless devices, such as the

Berkeley Mica2, MicaZ, and TelosSky sensor ‘‘motes’’

(our latest deployment is based on the MicaZs). The

advantages of this platform over traditional 802.11 base

stations are the motes are inexpensive, small, low-

power, and (most importantly) programmable—we can

easily push new programs and data to each device via

their radio. However, the MoteTrack approach could

be readily applied to other wireless networks based on

802.11, or Bluetooth given the ability to program base

stations appropriately.

In MoteTrack, a building or other area is populated

with a number of MicaZ motes acting as beacon nodes.

Beacon nodes broadcast periodic beacon messages,

which consist of a tuple of the format {sourceID, fre-

quencyChannel, powerLevel}. sourceID is the unique

identifier of the beacon node, frequencyChannel is the

frequency channel over which the beacon was trans-

mitted, and powerLevel is the transmission power level

used to broadcast the message. Each mobile node that

wishes to use MoteTrack to determine its location lis-

tens for some period of time to acquire a signature,

consisting of the set of beacon messages received over

some time interval. Finally, we define a reference

Pers Ubiquit Comput

123

signature as a signature combined with a known three-

dimensional location (x, y, z).

The location estimation problem consists of a two-

phase process: an offline collection of reference signa-

tures followed by online location estimation. As in

other signature-based systems, the reference signature

database is acquired manually by a user with a laptop

and a radio receiver. Each reference signature, shown

as gray dots in Fig. 1, consists of a set of signature tu-

ples of the form {sourceID, frequencyChannel, power-

Level, meanRSSI, meanLQI}. sourceID is the beacon

node ID, frequencyChannel is the frequency channel

over which the beacon was transmitted, powerLevel is

the transmit power level of the beacon message, and

meanRSSI and meanLQI are the mean received signal

strength indication (RSSI) and mean link quality

indication (LQI) of a set of beacon messages received

over some time interval. Each signature is mapped to a

known location by the user acquiring the signature

database.

In MoteTrack, beacon nodes broadcast beacon

messages at a range of frequency channels and

transmission power levels. Using multiple frequency

channels and transmission power levels will cause a

signal to propagate at various levels in its medium

and therefore exhibit different characteristics at the

receiver. In the most extreme case, a different fre-

quency channel and/or a slight increase in the

transmission power may make the difference be-

tween whether or not a signal is heard by a receiver.

Varying frequency channels and transmission power

therefore diversifies the set of measurements ob-

tained by receiving nodes and in fact increases the

accuracy of tracking by several meters in our

experiments (see Sect. 6.5).

3.1 Location estimation

Given a mobile node’s received signature s and the

reference signature set R, the mobile node’s location

can be estimated as follows. (In this section, we discuss

the approach as though it were centralized; in Sect. 4

we present our decentralized design. For simplicity, the

next two sections show the formulas only for RSSI and

with only one frequency channel. For LQI and with

multiple frequencies the formulas are analogous.) The

first step is to compute the signature distances, from s to

each reference signature ri 2R. We employ the Man-

hattan distance metric,

Mðr; sÞ ¼
X

t2T

jmeanRSSIðtÞr �meanRSSIðtÞsj

where T is the set of signature tuples represented in

both signatures, and meanRSSI(t)r is the mean RSSI

value in the signature tuple t appearing in signature r.

Other distance metrics, such as Euclidean distance, can

be used as well. In our experiments, the Manhattan and

Euclidean distance metrics both produced very similar

results, and the Manhattan distance is very efficient to

compute on nodes with low computational capabilities.

Given the set of signature distances, the location of a

mobile node can be calculated in several ways. The

simplest approach is to take the centroid of the geo-

graphic location of the k nearest (in terms of signature

space) reference signatures. By weighting each reference

M

B2

B1

B3

coordinates
(x, y, z)

reference signature

signature
<B1, RSSIf1p1

, … ,RSSIfi pj
>

<B2, RSSIf1p1
, … ,RSSIfi pj

>
<B3, RSSIf1p1

, … ,RSSIfi pj
>

mobile node

mobile node’s
current signature

<reference-signature1>
<reference-signature2>

…

reference signature
database

beacon node

beacon node’s
local reference

signature database

signature
<B1, RSSIf1p1

, … ,RSSIfi pj
>

<B3, RSSIf1p1
, … ,RSSIfi pj

>

Fig. 1 The MoteTrack
location system. B1, B2, and
B3 are beacon nodes, which
broadcast beacon messages at
various frequency channels
(f1,... fi) and transmission
powers (p1,... pj). Each
beacon node stores a subset
of all reference signatures (for
simplicity, the figure does not
show the LQI entries, which
are similar to the RSSI ones).
M is a mobile node that can
hear from all three beacon
nodes. It aggregates beacon
messages received over some
time period into a signature.
The areas marked by red
perimeters indicate the
reachability of beacon
messages from the
corresponding beacon node

Pers Ubiquit Comput

123

signature’s location with the signature distance, we

bias the location estimate towards ‘‘nearby’’ reference

signatures. While this method is simple, using a fixed

value for k does not account for cases where the

density of reference signatures is not uniform. For

example, in a physical location where few reference

signatures have been taken, using the k nearest refer-

ence signatures may lead to comparison with signa-

tures that are very distant.

Instead, we consider the centroid of the set of sig-

natures within some ratio of the nearest reference

signature. Given a signature s, a set of reference sig-

natures R, and the nearest signature r* = argminr 2R

M(r, s), we select all reference signatures r 2R that

satisfy

Mðr; sÞ
Mðr�; sÞ\c

for some constant c. The geographic centroid of the

locations of this subset of reference signatures is then

taken as the mobile node’s position. We find that small

values of c work well, generally between 1.1 and 1.2

(see Sect. 6.11). In this paper, we choose a specific,

empirically-determined value for c. An interesting fu-

ture research question is how this parameter can be

determined automatically.

4 Making RF-based localization robust

In this section, we describe our approach to making RF

location tracking robust to beacon node failure and

signal perturbations. MoteTrack must ensure that

there are no single points of failure and that the loca-

tion estimation algorithm can gracefully handle

incomplete data and failed nodes.

We address the first requirement by making our

system completely decentralized. The location estima-

tion protocol relies only on local data, local commu-

nication between nodes, and involves only currently

operational nodes. The reference signature database is

carefully replicated across beacon nodes, such that

each beacon node stores a subset of the reference

signatures that is carefully chosen to maximize location

tracking accuracy.

We address the second requirement by using an

adaptive algorithm for the signature distance metric

that accounts for partial failures of the beacon node

infrastructure. Each beacon node dynamically esti-

mates the current fraction of locally failed beacon

nodes and switches to a different distance metric to

mitigate location errors caused by these failures.

4.1 Decentralized location estimation protocol

Given a mobile node’s signature s and a set of nearby

beacon nodes contained in s, the first question is how to

compute the mobile node’s location in a way that only

relies upon local communication. We assume that each

beacon node stores a slice of the reference signature

database (which may be partially or wholly replicated

on other nodes). Using MicaZ motes as the beacons,

the limited storage capacity (128 KB ROM and 4 KB

of RAM) implies that the entire database will not

generally be replicated across all beacon nodes.

In MoteTrack, a mobile node first acquires its sig-

nature s by listening to beacon messages, and then

broadcasts s, requesting that the infrastructure send it

information on the mobile node’s location. One or

more of the beacon nodes then compute the signature

distance between s and their slice of the reference

signature database, and report either a set of reference

signatures to the mobile node, or directly compute the

mobile node’s location. Each of these designs is dis-

cussed in turn below.

4.1.1 k beacon nodes send their reference signature slice

In this first design, the mobile node broadcasts a re-

quest for reference signatures and gathers the slices of

the reference database from k nearby beacon nodes.

The mobile node then computes its location using the

received reference signatures. While this approach can

be very accurate, it requires a great deal of communi-

cation overhead. An alternative is to limit the amount

of data that is transferred by contacting only n < k

nearby beacon nodes, requesting that each one only

send the m reference signatures that are closest (in

terms of signature distance) to s. For example, the

mobile node can query the n beacon nodes with the

largest RSSI value in s.

4.1.2 k beacon nodes send their location estimate

An alternative to the previous design allows each of

the k beacon nodes to compute its estimate of the

mobile node’s location using its own slice of the ref-

erence signature database. These k location estimates

are then reported to the mobile node, which can

compute the ‘‘centroid of the centroids’’ according to

its RSSI to each beacon. The mobile node simply

transmits its signature s and receives k location esti-

mates.

While this version has reasonable communication

overheads, our initial evaluations indicated that it does

Pers Ubiquit Comput

123

not produce very accurate location estimates. The

problem is that for k greater than one or two, some of

the beacon nodes are too far from the mobile node and

therefore do not store a very relevant set of reference

signatures. Since this design does not seem to perform

well, we abandoned it for the design described in the

next section.

4.1.3 Max-RSSI beacon node sends its location estimate

Our third and final design combines the advantages

from the first two to obtain both low communication

overhead and accurate location estimates. In this de-

sign, we assume that the most relevant (closest in sig-

nature space) reference signatures are stored on the

beacon node with the strongest signal. The mobile

node sends a request to the beacon node from which it

received the strongest RSSI, and only that beacon node

estimates the mobile node’s location. As long as this

beacon node stores an appropriate slice of the refer-

ence signature database, this should produce very

accurate results. The communication cost is very low

because only one reply is sent to the mobile node

containing its location coordinates.

4.2 Distributing the reference signature database

to beacon nodes

Using the decentralized protocol described above,

beacon nodes estimate locations based on a partial

slice of the entire reference signature database.

Therefore it is crucial that the reference signatures are

distributed in an ‘‘optimal’’ fashion. In addition, we

wish to ensure that each reference signature is repli-

cated across several beacon nodes in case of beacon

node failures. We use two algorithms for database

distribution, which we refer to as greedy and balanced.

4.2.1 Greedy distribution algorithm

The greedy algorithm has one parameter: maxRefSigs,

which specifies the maximum number of reference

signatures that each beacon node is willing to store

locally. The algorithm operates by iteratively assigning

reference signatures to beacon nodes as follows. For

each signature, a given beacon node accepts and stores

the signature if (1) it is currently storing fewer than

maxRefSigs or if (2) the new reference signature

contains a stronger RSSI value for the beacon node in

question.

The advantages of the greedy approach are sim-

plicity and no requirement for global knowledge or

coordination between nodes. For example, beacon

nodes can be updated individually without affecting

the signatures stored on other beacon nodes.

4.2.2 Balanced distribution algorithm

One of the problems with the greedy algorithm is that

some reference signatures may never get assigned to a

beacon node, while others may be replicated many

times. The balanced algorithm tries to strike a balance

Fig. 2 Data collection user
interface. This is an actual
screenshot of the data
collection GUI. The user has
to supply a map of the area
and the map scale. To collect
a signature, the user walks to
the desired location and just
click on the map

Pers Ubiquit Comput

123

between pairing each beacon node with its closest

reference signature, while evenly distributing reference

signatures across beacons. This is a variant of a stable

marriage algorithm. To ensure that no reference sig-

nature is paired with too many beacon nodes, the

algorithm prevents the match if either the current

reference signature or beacon node have been assigned

two more times than any other reference signature or

beacon node.

The advantage of the balanced algorithm is that it

can ensure balanced distribution of reference signa-

tures while attempting to assign reference signatures

to their closest beacon nodes. The disadvantage is

that it requires global knowledge of all reference

signature and beacon node pairings, and is therefore

only appropriate for an offline, centralized initiali-

zation phase. If one wishes to update a small set of

the beacon nodes, a complete reassignment involving

all nodes and reference signatures may have to take

place. The pseudocode for both algorithms can be

found in the technical report [18].

4.3 Adaptive signature distance metric

Given that we do not expect the set of signature

tuples represented in the reference signature r and

mobile node’s signature s to be identical, there is a

question about how to account for missing data in

one signature or the other. If r contains a signature

tuple not found in s, this can be due to s being taken

at a different location in the building, or the failure

of a beacon node. Taking the intersection of the

beacon set in r and s is not appropriate, because we

wish to capture the low intersection in cases where

one signature is largely dissimilar to another.

First, we consider the case with no beacon node

failures. In this instance, missing tuples between two

signatures indicates that they are at different locations.

We define the bidirectional signature distance metric

as:

Mbidirectionalðr; sÞ ¼Mðr; sÞ þ b
X

t2ðs�rÞ
meanRSSIðtÞs

þ b
X

t2ðr�sÞ
meanRSSIðtÞr

That is, each RSSI tuple not found in (r [s) adds a

penalty to the distance that is proportional to that

signature’s RSSI value. We determined empirically

that value between 0.95 and 1.0 work well for b.

This distance metric is appropriate when few beacon

nodes have failed, since it penalizes for all RSSI tuples

not found in common between r and s. In case of

beacon node failures, however, a larger number of

RSSI tuples will appear in the set (r – s), leading to an

explosion of error. To minimize the errors introduced

from failed nodes, we define the unidirectional distance

metric:

Munidirectionalðr; sÞ ¼Mðr; sÞ þ b
X

t2ðs�rÞ
meanRSSIðtÞs

which only penalizes tuples found in s (the mobile

node’s signature) and not in r (a reference signature).

Assuming that the reference signatures were acquired

while all beacon nodes are operational, the unidirec-

tional metric only compares signatures between oper-

ational nodes.

As an example, consider the following signatures:

For simplicity, we do not show multiple power levels

in this example. As we will see in Sect. 6.11, when few

beacon nodes have failed, the bidirectional distance

metric achieves greater accuracy than the unidirec-

tional metric, because its comparison space is larger.

With the unidirectional metric, only operational bea-

cons are considered, but overall accuracy is diminished

when few beacon nodes have failed.

Therefore, we employ an adaptive scheme that

dynamically switches between the unidirectional and

bidirectional metrics based on the fraction of local

beacon nodes that have failed. Beacon nodes periodi-

cally measure their local neighborhood, defined as the

set of other beacon nodes that they can hear. This

neighborhood is compared to the original neighbor-

hood (measured shortly after the system has been in-

stalled or reconfigured). If the intersection between the

current and original neighborhoods is large, the bidi-

rectional distance metric is used, achieving higher

accuracy. If the fraction of failed nodes exceeds some

threshold, the unidirectional distance metric is used

instead.

This approach makes two assumptions. The first

assumption is that the connectivity between beacon

nodes does not change substantially over time. To

mitigate this problem, we only include a beacon node

in the original neighborhood if its RSSI is above some

threshold. However, for the current neighborhood we

include all beacon nodes regardless of RSSI, and that

exist in the original neighborhood. Note that we only

include a beacon node if it exists in the original

Pers Ubiquit Comput

123

neighborhood. This will eliminate cases when a beacon

node’s signal temporarily reaches more nodes. The

second assumption is that there are no beacon node

failures between the time that the reference signature

database is collected and the system is deployed for

normal operation. We believe this is a valid assumption

for most installations and can be readily addressed by

reinitializing the original neighborhood set of each

node.

5 Implementation and Data Collection

MoteTrack is implemented on the Mica2, MicaZ, and

TmoteSky mote platform using the TinyOS operating

system [19]. The original implementation and deploy-

ment is described in our LoCA 2005 paper [20], which

used the Mica2 mote equipped with a 433/916 mHz

FSK radio chip. This paper describes the latest imple-

mentation and deployment using the MicaZ mote

which has a 2.4 GHz 802.15.4 radio chip.

We chose the mote platform because it is designed

for low-power operation, is relatively small, and can be

deployed unobtrusively in an indoor environment.

Both radio chips are low-power and provides pro-

grammable frequency channels and transmission pow-

er levels and direct sampling of received signal

strength. In addition the 802.15.4 version also provides

the link quality indication (LQI).

We note that MoteTrack runs entirely on the mote

devices themselves and does not require a supporting

infrastructure, such as back-end servers or PCs, in or-

der to operate. A laptop connected to a mote is used to

build the reference signature database, but thereafter

the system is self-contained.

The total code size for the beacon and mobile

node software is about 3,000 lines of NesC code. In

our implementation, the reference signatures for

each beacon node are loaded into program memory

on the mote storing that segment of the database.

This could be readily modified to use a combination

of RAM and serial flash or EEPROM. Recall that

each beacon node stores a different set of reference

signatures depending on the distribution mechanism

used.

1

34

2

30
31

7

33
5

12
10

9

29

34 27 15
25

23
22

20
19

17

6

16

4

36

28

14
13

11

8

32
35

68

67

63

24
21

18

75

57

55
54

52
50

61

59

88

60

58
56

53

51

62

87

73
80

78
74

71
70

64

79
77

76
72

66 65
69

83
82

81
84

86
85

L
eg

en
d

 i
f

(o
n

h
a

ll
w

a
y

)
1

sa
m

p
le

-
d

a
yt

im
e

:
(m

o
te

 1
0

0
)

 e
ls

e
if

 (
in

si
d

e
ro

o
m

)

1

 s
a

m
p

le
 -

 d
a

yt
im

e
,

d
o

o
r

o
p

e
n

e
d

:
(m

o
te

 1
0

0
)

 1
 s

a
m

p
le

 -
 d

a
yt

im
e

,
d

o
o

r
cl

o
se

d
:

(m
o

te
1

0
0

)

if
 (

o
n

 h
a

ll
w

a
y

)

3
 s

a
m

p
le

s
-

d
a

yt
im

e
:

(m
o

te
s

1
0

0
,

2
0

1
,

2
0

2
)

1

sa
m

p
le

 -
 n

ig
h

tt
im

e
:

(m
o

te
 1

0
0

)
el

se
 if

 (
in

si
d

e
ro

o
m

)
 3

 s
a

m
p

le
s

-
d

a
yt

im
e

,
d

o
o

r
o

p
e

n
e

d
:

 (

m
o

te
s

1
0

0
,

2
0

1
,

2
0

2
)

 1
 s

a
m

p
le

 -
 d

a
yt

im
e

,
d

o
o

r
cl

o
se

d
:

(m
o

te
1

0
0

)

 1
 s

a
m

p
le

 -
 n

ig
h

tt
im

e
, d

o
o

r
o

p
e

n
e

d:
 (

m
o

te
 1

0
0

)

1 2

Fig. 3 Signature locations in the testing data set. The blue dots
represent the fixed beacon nodes. The red squares represent
acquired signature locations; those with a green triangle were
tested with three different motes in our earlier deployment [20]

b

Pers Ubiquit Comput

123

5.1 Deployment

We have deployed MoteTrack over one floor of our

Computer Science building, measuring roughly 1,742 m2,

with 412 m2 of hallway area and 1,330 m2 of in-room

area. Our current installation consists of 23 beacon

motes (Fig. 3).

In this latest deployment we collected a total of 470

reference signatures with the GUI shown in Fig. 2.

Each signature was collected for 30 s, during which

time every beacon node transmitted over 16 frequency

channels. (In our earlier deployment we also varied the

transmission power [20].)

We note that in a normal deployment, a much

smaller dataset is required and the amount of time

spent collecting a signature can be on the order of

several seconds rather than 30 s. The large number of

reference signatures was gathered in order to evaluate

the system under various conditions and parameters.

Likewise, we collected many samples for each beacon

message frequency channel, because we suspected the

RSSI and LQI to vary across samples; however, we

discovered that there is very little variation between

samples and therefore we only need on the order of

2–3 samples.

A beacon message consists of a 3-byte payload:

2 bytes for the source node ID and 1 byte representing

the RSSI and another byte for the LQI at each fre-

quency channel used. Therefore, all beacon messages

from a source node ID require 2 + 2F bytes: 2 bytes for

the ID and F * 2 bytes for the RSSI and LQI at each

frequency channel, i.e. {sourceID, RSSIf=1,..., RSSIf=F,

LQIf=1,..., LQIf=F}. A complete reference signature

consists of 6 bytes for the location size (3 coordinates

time 2 bytes per coordinate), 2 bytes for the ID, and up

to N beacon nodes with F frequencies each. The stor-

age overhead for one reference signature is therefor

6 + 2 + 2N + 2FN = 8 + 2N + 2FN bytes. In our

deployment, N = 23, F = 16, for a total of 790 bytes

per reference signature. The code size for MoteTrack is

about 20 KB, leaving 108 KB of read-only SRAM on

each beacon node for storing a partition of the refer-

ence signature database. Therefore each beacon node

can store up to 136 reference signatures. In Sect. 6.4 we

discuss the impact of limiting the amount of per-bea-

con storage to estimate the effect of much larger ref-

erence signature databases.

We divided the collected signatures into two groups:

the training data set (used to construct the reference

signature database) and the testing data (used only for

testing the accuracy of location tracking). Our analysis

investigates effects of a range of parameters, including

whether signatures are collected in a hallway or in a

room, whether the room’s door is open or closed. In

our earlier deployment we also looked at, the time of

day (to account for solar radiation and building occu-

pancy) and the use of different mobile nodes (to

account for manufacturing differences) [20]. We col-

lected at least 30 signatures for each of the various

parameters to ensure that results are statistically sig-

nificant. Figure 3 shows a map of the testing data sets,

and Fig. 4 summarizes the data.

6 Evaluation

In this section we present a detailed evaluation of the

performance of MoteTrack along a number of axes.

First, we look at the overall accuracy of MoteTrack.

Although accuracy is not our focus, we do need to

understand how the system performs under various

parameters. We evaluate the accuracy on our entire

floor which includes hallways and rooms, the location

estimation protocols, algorithms for selecting reference

signatures, type of database distribution, number of

frequency channels and transmission powers used, and

the density of beacon nodes and reference signatures.

Second, we look at robustness with no beacon node

failures. Here we investigate the effects of radio sig-

nature perturbations, using different motes, time of

day, and obstacles such as doors.

Finally, we look at robustness with beacon node

failures. Here, we examine how MoteTrack performs

under extreme failures of the beacon infrastructure and

evaluate our adaptive signature distance metric.

These results were obtained using an offline simu-

lation of the MoteTrack protocol in order to give us the

maximum flexibility in varying experimental parame-

ters. In all cases the real reference signature database

acquired in our building from our latest deployment

was used to drive the simulation. The simulator cap-

tures the effect of beacon node failure, RF perturba-

tions, distribution of the reference signature database,

and the different algorithms for signal distance and

centroid calculation. The system is fully implemented

on real motes and we have demonstrated a full

deployment of MoteTrack in our building along with a

real-time display of multiple user locations superim-

posed on a map.

3

Fig. 4 Summary of the number of samples for each scenario of
the training and testing data

Pers Ubiquit Comput

123

6.1 Overall accuracy

We first look the accuracy of our system as deployed

over the entire floor. This is what a user of the system

should expect to see. Figure 5 shows the cumulative

distribution function (CDF) of the location error for

signatures obtained at 75 unique locations including

hallways and inside rooms with doors opened and

doors closed. As we can see, 80 and 50% of the loca-

tion estimates are within 1.6 and 0.9 m respectively

from their true location. This is more than adequate for

applications that require locating a person such as in

emergency personell or patient tracking.

6.2 Selection of reference signatures

The next parameter of interest is the algorithm used to

select reference signatures that are close (in terms of

signal space) to the mobile node’s signature. Figure 6

compares the k-nearest selection approach to the rel-

ative signature distance threshold technique. The k-

nearest algorithm computes the centroid location of

the k closest reference signatures. The relative

threshold scheme limits the set of reference signatures

based on a threshold that is proportional to the sig-

nature distance to the nearest reference signature. For

k-nearest, small values of k are appropriate for com-

puting the location centroid, but values above this

introduce significant errors. The relative thresholding

scheme is more accurate as it limits the set of locations

considered according to the signature distance metric.

The optimal distance threshold is around 30% of the

closest reference signature.

6.3 Location estimation protocols

Next we evaluate the accuracy of the system over the

entire floor in the context of three location estimation

protocols. Two decentralized location estimation pro-

tocols and a centralized one: having a closest (in terms

of RSSI) beacon node compute the location, receiving

reference signatures from several (k = 3) nearby bea-

con nodes, and computing the location based on all of

the received signatures. The centralized version is used

as a benchmark for comparison purposes.

Figure 7 shows the cumulative distribution function

(CDF) for the protocols. As we can see, the accuracy of

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

 o
f e

st
im

at
ed

 lo
ca

tio
ns

 (
%

)

Error distance (meters)

Overall Accuracy of MoteTrack

estimated location error distance

Fig. 5 Overall accuracy of MoteTrack as deployed on our floor.
The data is for 74 location estimates collected over one floor of
the Computer Science building at Harvard, measuring roughly
1,742 m2 (18,751 ft2). A total of 23 beacon nodes were used

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

1 1.5 2 2.5 3 3.5 4 4.5

1 2 3 4 5 6 7 8

80
th
 %

-t
ile

E
rr

or
 d

is
ta

nc
e

(m
et

er
s)

relative threshold - Ratio of ref. signature distances

Selection of Reference Signatures

k nearest - Nbr. of ref. signatures

relative threshold
k nearest

Fig. 6 Two reference signature selection algorithms. The rela-
tive threshold algorithm performs better than the k-nearest one

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

 o
f e

st
im

at
ed

 lo
ca

tio
ns

 (
%

)

Error distance (meters)

Location Estimation Protocols

centralized - MN has all ref. sigs.
decentralized - 1 BN sends ref. sigs.
decentralized - k BNs send ref. sigs.

Fig. 7 Location estimation protocols. Under normal circum-
stances both decentralized protocols perform nearly identical to
the centralized one

Pers Ubiquit Comput

123

the three versions is nearly identical suggesting that the

closest beacon node does in fact store most of the

relevant reference signatures for accurately estimating

the mobile node’s location. Likewise, the additional

overhead of receiving reference signatures from k

beacon nodes is unjustified.

Our deployment uses the first decentralized protocol

(i.e., closest or maxRSSI beacon node sends the loca-

tion estimate), and it’s the accuracy a user of the sys-

tem should expect to get. For the rest of this section we

consider only the decentralized version where the

closest beacon node computes the location.

6.4 Distribution of the reference signature database

Next we look at the different techniques for replicating

reference signatures across beacon nodes. This aspect

of the design is crucial because each beacon node

stores only a subset of the full signature database. We

look at two algorithms: greedy and balance reference

signature distribution. To estimate the effect of grow-

ing the reference signature database beyond its current

size (256 signatures), we artificially limited the maxi-

mum number of reference signatures that each beacon

node could store.

Figure 8 shows the results of this experiment. As the

maximum storage capacity of each beacon node is

decreased, the balanced distribution achieves the best

results.

When the memory capacity of the beacon nodes is

not limited, there is less noticeable difference between

the approaches as it is more likely that any given

beacon node has the relevant set of signatures.

6.5 Transmission of beacons at multiple

frequencies and power levels

In a previous paper [20] we showed that for the Mica2

motes equipped with the CC1000 radios, transmitting

beacons at multiple power levels increases accuracy

considerably. This suggests that one way to increase

accuracy is to diversify the signal as much as possible.

This lead us to experiment with multiple frequency

channels for the MicaZ motes equipped with 802.15.4

radios. We discovered that for the new motes using

multiple frequency channels has an even more pro-

found effect on accuracy than using multiple trans-

mission powers. Furthermore, we experimented with a

combination of multiple frequencies and transmission

powers and found that the best combination is to use

all 16 frequency channels with the maximum trans-

mission power of 0 dBm. Although multiple transmis-

sion powers increase accuracy they do so less than

multiple frequencies and combining the two results is

an overall lower accuracy.

Figure 9 shows the benefits of diversifying the signal

over multiple frequencies for our latest deployment. It

shows the 80th percentile error distance as the number

of frequency channels used to transmit beacons is

varied. The error is averaged across all combinations of

N frequency channels, with N ranging from 1 to 16,

i.e.
16
N

� �
. As the figure indicates, using more fre-

quency channels increases the 80th percentile accuracy

by nearly 2 m. However, increasing the number of

frequency channels involves a trade-off in terms of

higher storage for reference signatures.

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60 70 80 90 100

80
th
 %

-t
ile

E
rr

or
 d

is
ta

nc
e

(m
et

er
s)

Maximum nbr. of reference signatures per beacon node

Distribution of Reference Signatures to Beacon Nodes

greedy
balanced

Fig. 8 Greedy vs. balanced distribution of the reference signa-
ture database. When the memory size of beacon nodes is limited,
the balanced algorithm outperforms the greedy one

Fig. 9 The effect of varying the number of frequency channels
used to transmit beacons. Increasing the diversity over multiple
frequencies increases accuracy considerably

Pers Ubiquit Comput

123

6.6 Radio signal indicators: RSSI vs. LQI

In this section we compare the RSSI to the LQI. The

RSSI measures the signal strength while the LQI is a

measure of the error rate. In general, the LQI is a

better characterization of the radio link because it is

less susceptible to interference. However, as we can see

in Fig. 10, RSSI produces more accurate results. We

believe that this is partially due to the fact that the LQI

has a lower resolution (7-bits) than the RSSI (8-bits).

6.7 Density of beacon nodes and reference

signatures

Of particular interest to someone deploying Mote-

Track is the number of beacon nodes and reference

signatures needed to achieve a certain accuracy. For

this experiment we artificially restricted the set of

beacon nodes represented in the reference signature

database. For each number of beacon nodes we hand-

selected the appropriate number of nodes that were

approximately uniformly distributed throughout the

building, avoiding any ‘‘clusters’’ of beacon nodes.

Figure 11 shows how location error varies with the

number of beacon nodes deployed in the building,

which also represents the overall density of nodes. It

appears that there is a critical number of beacon nodes

required after which the accuracy of the system in-

creases marginally. In this case the critical density is

around seven nodes which is about 0:004 beacon

nodes=m2:

Likewise, varying the number of reference signa-

tures has a strong effect on location tracking accuracy.

Figure 12 shows that the error distance decreases

quickly up to the first 25 reference signatures and

begins to stabilize after 75 reference signatures, rep-

resenting a signature density of 0:043 reference

signatures=m2:

6.8 Robustness to perturbed signatures

We now turn our attention to the robustness of the

system under no beacon failures. We begin by looking

at the effects of radio signature perturbations.

The RF propagation in a building may change

slightly over time or more drastically in a disaster,

when the building’s characteristics may alter from

events such as walls collapsing. To understand these

implications, we evaluate how the accuracy of Mote-

Track changes for various perturbation levels of a

signature’s RSSI measurements.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

 o
f e

st
im

at
ed

 lo
ca

tio
ns

 (
%

)

Error distance (meters)

RSSI vs. LQI

RSSI
LQI

RSSI and LQI

Fig. 10 RSSI vs. LQI. The RSSI procures more accurate results
then the LQI, partially because the LQI reading contains less bits
of information

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

2 4 6 8 10 12 14 16 18 20 22 24

E
rr

or
 d

is
ta

nc
e

(m
et

er
s)

Nbr. of beacon nodes

Density of Beacon Nodes

80th %-tile
50th %-tile
25th %-tile

Fig. 11 Density of beacon nodes. After about seven beacon
nodesð0:004 beacon nodes=m2Þ additional beacon nodes provide
diminishing returns

 0

 5

 10

 15

 20

 25

 30

0 25 50 75 100 125 150 175 200 225

E
rr

or
 d

is
ta

nc
e

(m
et

er
s)

Nbr. of reference signatures used

Density of Reference Signatures

80th %-tile
50th %-tile
25th %-tile

Fig. 12 Density of reference signatures. The accuracy begins
to stabilize after 75 reference signaturesð0:043 reference
signatures=m2Þ

Pers Ubiquit Comput

123

For each percentage, we perturbed the RSSI mea-

surements of all signatures (i.e. the testing data) by up

to a maximum percentage of the entire RSSI range.

The perturbation amount for each RSSI is taken from

a uniform distribution between zero and maximum

percentage. As we can see in Fig. 13, MoteTrack is

quite robust to RSSI perturbations. For a maximum

perturbation of 40%, the 80th percentile has an accu-

racy of 3.3 m and, for the 50th and 25th percentiles it

has an accuracy of 1.6 m and under 0.8 m respectively.

6.9 Time of day and different motes

In an earlier deployment [20], we look at the effects of

two other parameters: the time of day and manufac-

turing differences between motes. Time of day exam-

ines how the system reacts to changes in building

occupancy and movement; the use of different motes

accounts for the overall effect on the system from

variation between motes.

We discovered that the accuracy is largely unaf-

fected by these parameters. For this reason, we did not

repeat this experiment in our latest deployment.

6.10 Effect of hallways, rooms, and door position

Hallways tend to act as waveguides while walls and

doors contribute to signal attenuation. Next we looked

at how the accuracy of a mobile user is effected by its

location in the building. We compared the location

error for signatures obtained in the hallway and inside

rooms, with doors opened and closed. Our results

indicate that the accuracy in the hallway is slightly

higher than inside rooms, and that the position of the

doors don’t make a significant difference.

6.11 Robustness to beacon node failure

Finally, we evaluate MoteTrack’s ability to continue

providing accurate location estimates even when a

large number of beacon nodes have failed. We

consider this aspect of MoteTrack to be essential for

its potential use in disaster response scenarios. Here,

we simulate the effect of failed beacon nodes by

selectively eliminating beacon nodes from mobile

node signatures, as well as preventing those beacon

nodes from participating in the decentralized location

calculations.

We evaluated robustness to failure using both the

unidirectional and bidirectional algorithms for calcu-

lating signature differences. Beyond a certain failure

threshold, we expect the unidirectional version to

perform better than the bidirectional version, since it

only considers RSSI values from beacon nodes that are

present at the time the signature is constructed. As we

can see in Fig. 14, after about 6% of the beacon nodes

have failed, the unidirectional version indeed produces

more accurate results.

For comparison purposes, we also show the ideal

case. The ideal case is when we have perfect knowl-

edge of which nodes failed. This is the best case sce-

nario and although under normal circumstances it’s

unachievable in a completely decentralized system, it

shows the lower bound. In this case the bidirectional

algorithm is used but only over RSSI measurements

from nodes that did not fail.

 0

 1

 2

 3

 4

 5

 6

 7

0 10 20 30 40 50 60 70 80 90 100

E
rr

or
 d

is
ta

nc
e

(m
et

er
s)

Maximum perturbation (%)

Robustness to Signature Perturbation

80th %-tile
50th %-tile
25th %-tile

Fig. 13 Robustness to the perturbation of signatures’ RSSI
measurements. The accuracy of MoteTrack degrades linearly
with increased perturbation levels. All results are averaged over
30 trials

 0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100

80
th
 %

-t
ile

E
rr

or
 d

is
ta

nc
e

(m
et

er
s)

Percent of failed beacon nodes (%)

Robustness to Beacon Node Failure

unidirectional
bidirectional

ideal

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10 12 14

Fig. 14 Robustness to beacon node failure. The unidirectional
algorithm is more robust to large beacon node failures, but yields
poorer accuracy when there are fewer failures. All results are
averaged over 30 trials. The vertical bars represent the standard
deviation

Pers Ubiquit Comput

123

Although unidirectional signal distance is more ro-

bust, it is less accurate when there are few failed nodes.

As mentioned in Sect. 4.3, MoteTrack decides

dynamically which algorithm to use based on the local

failure percentage that it last computed. MoteTrack

starts out using the bidirectional algorithm and after it

estimates that the beacon failure is greater than 6%, it

switches to the unidirectional algorithm.

7 Future work

The current system as described in the paper, re-

quires an offline installation and calibration prior to

use. In many cases, such as responding to a mass

casualty incidents in an arbitrary area (e.g. a train

wreck or a multi-car highway accident), pre-installa-

tion and calibration of a beacon node infrastructure

is clearly not feasible. For these scenarios, we need

an ad hoc mechanism for rapidly deploying the

location tracking system and populating the beacon

nodes with reference signatures.

In an outdoor environment, one approach is to

leverage GPS to automatically populate the signature

database. For example, medics responding to the

scene of a disaster can place beacon nodes at well-

spaced (and arbitrary) points around the site. Rather

than require every patient or medic to carry a GPS

receiver (which are often higher power and bulkier

than sensor motes), several medics can carry a PDA

equipped with a GPS receiver and MoteTrack

transceiver. The PDA can automatically record ref-

erence signatures as the medics move around the

site, populating the reference signature database on

the fly using the greedy distribution, which does not

require global knowledge of the beacon nodes and

reference signatures. Signature acquisition can be

performed rapidly, since each signature requires only

a few beacon messages from each node and trans-

mission power, which can be acquired in a very short

period of time [21]. In our experiments we obtained

good results in about 1 s. Location tracking accuracy

will improve over time as more reference signatures

are acquired.

One of the challenges faced is how to deal with

the additional error introduced by the GPS location

estimate. While in North America, GPS devices

using the Wide Area Augmentation System (WAAS)

can yield location estimates to within 3 m 95% of the

time [22], it is not clear how much this will impact

the overall accuracy of the system.

8 Conclusions

In this paper, we describe how to extend the basic RF

approach for localization in order to make it highly

robust and decentralized. We achieve this through a

decentralized location estimation protocol that relies

only on local data, local communication, and opera-

tional nodes; by replicating the reference signature

database across beacon nodes in a fashion that mini-

mizes per-node storage but achieves high level of

robustness to failure; and by using a dynamic signature

distance metric that handles incomplete data and

adapts to the locally failed beacon nodes.

We implemented, deployed, and extensively evalu-

ated our approach through a system called MoteTrack,

based on the Berkeley Mica2, MicaZ, and TmoteSky

motes. We choose this platform because we believe

that many of the applications where robustness is

important will want to use small, inexpensive devices

that can be embedded in the environment such as

walls, in the equipment of rescue personnel, or inte-

grated with vital-sign sensors placed on patients [23].

MoteTrack achieves a 50th and 80th percentile of

0.9 and 1.6 m, respectively, and can tolerate a failure of

up to 60% of the beacon nodes and signature pertur-

bations of up to 50%, with negligible increase in error.

References

1. Bahl P, Padmanabhan VN (2000) RADAR: an in-building
RF-based user location and tracking system. In: INFOCOM,
pp 775–784

2. Youssef M, Agrawala A, Shankar AU (2003) WLAN loca-
tion determination via clustering and probability distribu-
tions. In: IEEE PerCom 2003

3. Slack G (2003) Smart helmets could bring firefighters back
alive. FOREFRONT (2003) Engineering Public Affairs Of-
fice, Berkeley

4. McKinsey & Company: Increasing fdny’s preparedness.
http://www.nyc.gov/html/fdny/html/mck_report/index.shtml
(2002)

5. Myllymaki P, Roos T, Tirri H, Misikangas P, Sievanen J
(2001) A probabilistic approach to WLAN user location
estimation. In: Proceedings of the 3rd IEEE Workshop on
Wireless LANs

6. Smailagic A, Small J, Siewiorek DP (2000) Determining user
location for context aware computing through the use of a
wireless LAN infrastructure

7. Ray S, Starobinski D, Trachtenberg A, Ungrangsi R (2004)
Robust location detection with sensor networks. IEEE JSAC
22

8. Krumm J, Williams L, Smith G (2002) SmartMoveX on a
graph—an inexpensive Active Badge Tracker. In: UbiComp
2002

9. Bahl P, Balachandran A, Padmanabhan V (2000) Enhance-
ments to the RADAR user location and tracking system.
Technical Report 2000-12, MSR

Pers Ubiquit Comput

123

10. Castro P, Chiu P, Kremenek T, Muntz RR (2001) A prob-
abilistic room location service for wireless networked envi-
ronments. In: UbiComp

11. Pandya D, Jain R, Lupu E (2003) Indoor location estimation
using multiple wireless technologies. In: IEEE PIMRC

12. Christ T, Godwin P (1993) A prison guard duress alarm
location system. In: IEEE ICCST

13. Hightower J, Want R, Borriello G (2000) SpotON: an indoor
3D location sensing technology based on RF signal strength.
Technical Report UW CSE 00-02-02, University of Wash-
ington

14. Priyantha NB, Chakraborty A, Balakrishnan H (2000) The
cricket location-support system. In: MobiCom

15. Priyantha NB, Miu A, Balakrishnan H, Teller S (2001) The
cricket compass for context-aware mobile applications. In:
Proceedings of the 7th ACM MobiCom

16. Ward A, Jones A, Hopper A (1997) A new location tech-
nique for the active office. IEEE Personal Commun 4

17. Want R, Hopper A, Falcao V, Gibbons J (1992) The Active
Badge location system. Technical Report 92.1, Olivetti Re-
search Ltd. (ORL)

18. Lorincz K, Welsh M (2004) A robust, decentralized approach
to RF-based location tracking. Technical Report TR-19-04,
Harvard University

19. Hill J, Szewczyk R, Woo A, Hollar S, Culler DE, Pister KSJ
(2000) System architecture directions for networked sensors.
In: ASPLOS 2000, pp 93–104

20. Lorincz K, Welsh M (2005) MoteTrack: a robust, decen-
tralized approach to RF-based location tracking. In: Pro-
ceedings of the International Workshop on Location- and
Context-Awareness (LoCA 2005) at Pervasive 2005, Obe-
rpfaffenhofen, Germany

21. Krumm J, Platt J (2003) Minimizing calibration effort for an
indoor 802.11 device location measurement system. Techni-
cal Report MSR-TR-2003-82, Microsoft Research

22. WAAS: what is WAAS? (2005) http://www.garmin.com/
aboutGPS/waas.html

23. Lorincz K, Malan DJ, Fulford-Jones TRF, Nawoj A, Clavel
A, Shnayder V, Mainland G, Moulton S, Welsh M (2004)
Sensor networks for emergency response: challenges and
opportunities. IEEE Pervasive Comput

Pers Ubiquit Comput

123

	MoteTrack: a robust, decentralized approach to RF-based location tracking
	Abstract
	Introduction
	Background and related work
	MoteTrack goals and challenges

	MoteTrack overview
	Location estimation

	Making RF-based localization robust
	Decentralized location estimation protocol
	k beacon nodes send their reference signature slice
	k beacon nodes send their location estimate
	Max-RSSI beacon node sends its location estimate

	Distributing the reference signature database �to beacon nodes
	Greedy distribution algorithm
	Balanced distribution algorithm

	Adaptive signature distance metric

	Implementation and Data Collection
	Deployment

	Evaluation
	Overall accuracy
	Selection of reference signatures
	Location estimation protocols
	Distribution of the reference signature database
	Transmission of beacons at multiple frequencies and power levels
	Radio signal indicators: RSSI vs. LQI
	Density of beacon nodes and reference signatures
	Robustness to perturbed signatures
	Time of day and different motes
	Effect of hallways, rooms, and door position
	Robustness to beacon node failure

	Future work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

