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Abstract— We characterize the fundamental limits of local-
ization using signal strength in indoor environments. Signal
strength approaches are attractive because they are widely
applicable to wireless sensor networks and do not require
additional localization hardware. We show that although
a broad spectrum of algorithms can trade accuracy for
precision, none has a significant advantage in localizationper-
formance. We found that using commodity 802.11 technology
over a range of algorithms, approaches and environments,
one can expect a median localization error of 10ft and 97th
percentile of 30ft. We present strong evidence that these
limitations are fundamental and that they are unlikely to
be transcended without fundamentally more complex envi-
ronmental models or additional localization infrastructure.

I. I NTRODUCTION

Localizing sensors is necessary for many higher level
sensor network functions such as tracking, monitoring and
geometric-based routing. Recent years have seen intense
research investigating using off-the-shelf radios as a lo-
calization infrastructure for sensor nodes. The motivation
has been a dual use one: using the same radio hardware
for both communication and localization would enable a
tremendous savings over deployment of a specific localiza-
tion infrastructure, such as ones using directional antennas,
very high frequency clocks, ultrasound, and infrared. In
addition, such a system could avoid the high densities
required by sensor aggregation approaches.

In this paper we explore the fundamental limits of
localization using signal strength in indoor environments.
Such environments are challenging because the radio prop-
agation is much more chaotic than outdoor settings, where
signals travel with little obstruction (e.g., GPS).

Exploring the limits of signal strength approaches is im-
portant because it tells us the localization performance we
can expect without additional hardware in the sensor nodes
and base-stations. We will show that a broad spectrum of
signal-strength based algorithms have similar localization
performance. We also present strong evidence that these
limitations are fundamental and that they are unlikely to be
transcended without qualitatively more complex models of
the environment or additional hardware above that required
for communication.

Although we use 802.11 Wireless Local Area Network
(WLAN) technology because of its commodity status,
our results are applicable to any radio technology where
there are considerable environmental effects on the signal

propagation.
In order to better explore the limits of localization

performance, we developed 3 algorithms. These algorithms
are area-basedrather thanpoint-based. That is, the re-
turned localization answer is a possible area (or volume)
that might contain the sensor radio rather than a point.

We focus on area-based algorithms because they have
a critical advantage in their ability to describe localiza-
tion uncertainty. The key property area-based approaches
have is that they can trade accuracy for precision, where
accuracy is the likelihood the object is within the area
andprecisionis the size of the returned area. Point-based
approaches have difficulty describing such probabilistic
trade-offs in a systematic manner. Using accuracy and
precision, we can quantitatively describe the limits of
different localization approaches by observing the impact
of increased precision (i.e. less area) on accuracy.

To generalize our results, we compared our area-based
approaches with several variants of well known existing
algorithms. We ran our comparisons using measured data
from two distinct buildings. We found that although area-
based approaches are better at describing uncertainty, their
absolute performance is similar to existing point-based
approaches. In addition, our data combined with others
shows that no existing WLAN based indoor localization
approach has a substantial advantage in localization per-
formance. A general rule of thumb we found is that
using 802.11 technology, with much sampling and a good
algorithm one can expect a median error of roughly 10ft
and a 97th percentile of roughly 30ft.

A corollary of this result is that computationally simple
algorithms that do not require many training samples
are preferable because the performance of more complex
algorithms is unlikely to be justified.

However, a promising result of our study is that we
found with relatively sparse sampling, every 20 ft, or 400
ft2/sample, one can still get median errors of 15ft and 95th

percentiles at 40ft. This is a promising result, because
hand-sampling or deploying automatic sniffers is much
more tractable at such densities.

Although examining the accuracy vs. precision tradeoff
gives insight into performance limits, such an approach
does not help us reason if the observed limitations are
fundamental to the algorithm or inherent in the data. Using
a Bayesian network, we express the uncertainties arising



Algorithm Abbreviation Description
Area-Based

Simple Point Matching SPM Matches the RSS to a tile set using thresholds.
Area Based Probability ABP-α Matches the RSS to a tile set probabilistically with confidence boundα%.
Bayesian Network BN Returns the most likely tiles using a Bayesian network.

Point-Based
Bayesian Point B1 Returns the most likely point using a Bayesian network.
Averaged Bayesian B2 Returns the mid-point of the top 2 most likely points.
RADAR R1 Finds the closest training point based on distance in signalspace.
Averaged RADAR R2 Returns the midpoint of the closest 2 training points in signal space.
Gridded RADAR GR Applies RADAR using an interpolated grid.
Highest Probability P1 Applies likelihood estimation to the received signal.
Averaged Highest Probability P2 Returns the midpoint of the top 2 likelihoods.
Gridded Highest Probability GP Applies likelihoods to an interpolated grid.

TABLE I

All algorithms and variants.

from these effects in terms of probability density functions
(PDFs) that describe the likely position as a function of the
observed data and a widely used propagation model. Our
results show that there is significant uncertainty arising
from the data given the model.

The rest of this paper is organized as follows. In
Section II we provide a description of related work.
Section III sketches both the area-based and point-based
approaches used in the work. Next, Section IV introduces
area-based performance metrics. In Section V we present
the performance of the algorithms. Finally, in Section VI
we conclude.

II. RELATED WORK

Recent years have seen tremendous efforts at building
small and medium scale localization systems for sensor
networks. The underlying principles vary from trilatera-
tion, triangulation, scene matching (e.g., fingerprinting),
and combinations of these approaches. When aggregates
of sensors are available, a wider set of mathematical
foundations are possible, including multidimensional scal-
ing [1], optimization[2], and ad-hoc approaches [3], [4].
The technologies used have also exhibited a wide range:
ultrasound [5], [6], [7], infrared [8], 802.11, and custom
radios [9].

Within this wide variance, the works using 802.11 and
signal strength are closely related to ours [10], [11],
[12], [13], [14], [15], [16], [17]. The two fundamental
building blocks of all these are: (1) a classifier to relate an
observed set of signal strengths to ones at known locations,
and (2) a function of distance to signal strength. A full
treatment of the myriad of techniques for estimating signal
strength at locations, classifiers, and distance functionsis
beyond the scope of this work. We instead show they
perform similarly. While our results show that absolute
performance depends on the environment, our absolute
results are still consistent with the above works.

The work most closely related to ours is [11]. Their
data shows that a host of matching and classification
algorithms, ranging from maximum-likelihood analysis to
neural networks, has similar performance. They did not
speculate on the resulting similarity, however.

III. L OCALIZATION ALGORITHMS

In this section we give a broad overview of our algorithm
menagerie, summarized in Table I. Because our purpose
is to explore similarities in algorithmic performance our
descriptions focus on each algorithm’s broad strategy. The
reader is encouraged to pursue the references for details.

Before describing the algorithms, we first define terms
and then describe how we interpolate a topological grid
used by many of the algorithms. We then describe 3
area-based algorithms: Simple Point Matching (SPM),
Area-Based Probability (ABP), and Bayesian (BN). We
then describe the point-based algorithms: Bayesian Point
(B1), Averaged Bayesian (B2), RADAR, (R1), Averaged
RADAR (R2), Gridded RADAR (GR), Highest Probabil-
ity (P1), Averaged Highest Probability (P2) and Gridded
Highest Probability (GP).

We use the following definitions and terms. Then access
points areAP1, . . . , APn. The training data,To, is used as
offline input. It consists of a set of empirically measured
signal fingerprints, S̄ along with them locations,(x, y)
where they were collected. I.e.,To = {[(xi, yi), S̄i]}, i =
1 . . .m, thus there arem fingerprints. The fingerprint at a
location,i, consists of the set of expected average received
signal strength,sij , for eachAPj . A default value forsij

is assigned in a fingerprint if no signal is received from
APj at a location.

The object to be localized collects a set ofreceived
signal strengths(RSS) when it is at a location. An RSS is
similar to a fingerprint in that it contains a set of APs, and
a mean for eachAPj . An RSS also maintains a standard
deviation of the sample set at each locationi and APj ,
σij .

A. Interpolating Fingerprints

Many of the algorithms require a method of building a
regular grid of tiles that describe the expected fingerprint
for the area described by each tile. The tiles are a simple
way to map the expected signal strength to locations, as
opposed to field vectors or more complex shapes. Because
direct measurement of the fingerprint for each tile is
expensive, we use an interpolation approach to build an
Interpolated Map Grid (IMG). Building an IMG is similar
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Fig. 1. Area returned by the different algorithms for the CoRE building. The area is circumscribed by the smallest convexpolygon. The true location
is shown as a point.

to “surface fitting”; the goal is to derive an expected
fingerprint for each tile from the training set that would
be similar to an observed one.

We build an IMG for a floor using the training fin-
gerprints for eachAPj independently on a grid of 30in
square tiles. Although there are several approaches in the
literature for interpolating surfaces, e.g, splines, we used
triangle-based linear interpolation. We divide the floor into
triangular regions using a Delaunay triangulation where
the location of theTo samples serve as anchor points. In
a few cases, we had to add anchor points at the corners of
the floor. We then linearly interpolate the expected signal
strength using the “height” of the triangle at the center of
the tile.

We found our approach desirable because: (1) it is
simple and fast, (2) the derivative of the RSS as a function
of location does not vary widely, so simple interpolation
performed adequately, (3) it is insensitive to the size of
the underlying tiles (we tried tiny 10×5in tiles, observing
almost no effect) and (4) the sample spacing need only to
follow a uniform distribution, rather than have “precise”
spacing.

B. Area-Based Algorithms

Figure 1 shows a sample of the area-based algorithms’
results for the CoRE building. The actual point is shown
by a “*” and the convex hulls of the returned areas are
outlined. The SPM and ABP algorithms perform similarly,
but the BN algorithm has a much different profile.

1) Simple Point Matching:The strategy behind SPM is
to find a set of tiles that fall within a threshold of the RSS
for each AP independently, then return the tiles that form
the intersection of each AP’s set.

More formally, SPM first findsn sets of tiles, one for
eachAPj , j = 1 . . . n, that “match” all fingerprintsS̄l =
(sl1, . . . , sln), for the object to be localized. The matching
tiles for eachAPj are found by adding an expected “noise”
level,q to slj , and then returning all the floor tiles that fall
within the expected threshold,slj ± q (We substituted a
value of -92 dBm for missing signals). SPM then returns
the area formed by intersecting all matched tiles from the
different AP tile sets.

For the algorithm to be eager, i.e., to find the fewest
high probability tiles, it starts from a very lowq. However,
it then runs the risk of returning no tiles when the
intersection among the APs is empty. Thus, on an empty

intersection, the algorithm additively increasesq i.e., it
first tries q, 2q . . . until a non-zero set of tiles results. In
the worst case, a non-empty intersection will result, even
if q expands to the dynamic range of signal readings.

An important issue is how to pickq for each APj .
We experimented with the value ofq to observe how
sensitive the algorithm is to this parameter and found that
the algorithm is quite insensitive toq when it is close to
the maximum{σij}. We thus used the maximum{σij}
over all fingerprints forq. Although choosingq in this
manner makes our algorithm more ad-hoc, it also makes
SPM simpler, scalable, and faster.

Although SPM is ad-hoc, it is quite similar to a more
formal approach using Maximum Likelihood Estimation
(MLE) [18]. The SPM noise level corresponds quite
closely to the confidencez α

2
×σlj of that algorithm,σlj is

the standard deviation at the object’s location. SPM is in
effect an approximation of the MLE method, where SPM
eagerly searches for the lowest confidence that yields a
non-empty area.

2) Area Based Probability:The strategy used by ABP-
α is to return a set of tiles bounded by a probability that the
object is within the returned set. We call the probability,
α, theconfidence, and it is an adjustable parameter. ABP’s
approach to finding a tile set is to compute the likelihood
of an RSS matching a fingerprint for each tile, and then
normalize these likelihoods given the priors: (1) object
must be on floor, and (2) all tiles are equally likely. ABP
then returns the top probability tiles whose sum matches
the desired confidence. ABP thus stands on a more formal
mathematical foundation than SPM.

In order to find the likelihood of the RSS matching
each tile in isolation, ABP assumes the distribution of both
the received signal strengths for each AP in a fingerprint
and RSS follows a Gaussian distribution with meansij .
Although this assumption is often not true, it significantly
simplifies the computations with little performance loss.
We model the standard deviation for eachAPj separately,
using maximum deviation observed in any fingerprint for
the AP.

Using Bayes’ rule, ABP computes the probability of
being at each tileLi on the floor given the fingerprint
of the localized object,̄Sl = (slj):

P
(

Li|S̄l

)

=
P

(

S̄l|Li

)

× P (Li)

P
(

S̄l

) (1)
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Fig. 2. The Bayesian network used in our experiments.

However,P
(

S̄l

)

is a constantc. With no prior information
about the exact object’s location, ABP assumes that the
object to be localized is equally likely to be at any location
on the floor, i.e.,P (Li) = P (Lj) , ∀i, j. Thus, Equation 1
can be rewritten as:

P
(

Li|S̄l

)

= c × P
(

S̄l|Li

)

(2)

Without having to know the valuec, ABP can just return
the tile Lmax, where Lmax = arg max(P

(

S̄l|Li

)

), by
computingP

(

S̄l|Li

)

for every tile i on the floor. Up to
this step ABP is very similar to the traditional Bayesian
approaches [14], [17], with the exception of the Gaussian
and variance assumptions.

ABP extends the referenced approaches by its final step
where it computes the actual probability density of the
object for each tile on the floor, given that the object must
be at exactly one tile, i.e.,

∑L

i=1
P

(

Li|S̄l

)

= 1. Given
the resulting density, ABP returns the top probability tiles
up to its confidence,α. We found that useful values of
α can have a wide dynamic range, between 0.5 and less
than 1. While a confidence of 1 returns all the tiles on the
floor, picking a usefulα is not difficult because in practice,
some tiles have a much higher probability than the others,
while at the same time the difference between these high-
probability tiles is small. Therefore only a sufficiently high
α is needed to return these tiles, while at the same time
making the size of a tile set insensitive to small changes
in α.

3) Bayesian Networks (BN):Bayes nets are graphi-
cal models that encode dependencies and relationships
among a set of random variables. The vertices of the
graph correspond to the variables and the edges represent
dependencies [19]. The Bayes net we use encodes the
relationship between the RSS and the location based on
a signal-versus-distance propagation model. The initial
parameters of the model are unknown, and the training
set is used to adjust the specific parameters of the model
according to the relationships encoded in the network.

Figure 2 shows the simple network we used. Each
random variablesj, j = 1 . . . n denotes the expected
signal strength from the corresponding access pointAPj .
The values of these random variables depend on the
Euclidean distanceDj between the AP’s location,(xj , yj),
and the location where the signalsj is measured(x, y).
The baseline expected value ofsj follows a signal prop-
agation modelsj = b0j + b1j log Dj , where b0j , b1j

are the parameters specific to eachAPj . The distance
Dj =

√

((x − xj)2 + (y − yj)2) in turn “depends” on
the location(x, y) of the measured signal. The network
models noise and outliers by modeling the expected

value,sj , as at-distribution around the above propagation
model, with varianceτj (which has a long tail). I.e.,
sj ∼ t(b0j + b1j log Dj , τj , 2). We specifically used at-
distribution rather than a Gaussian in order to better model
the outliers of real data.

Using the training fingerprintsTo and the fingerprint
vector of the mobile object, the network then learns the
specific values for all the unknown parametersb0j, b1j , τj

and the joint distribution of the(x, y) location of the
object.

In general, there is no closed form solution for the
returned joint distribution of the(x, y) location. Therefore,
we use a Markov Chain Monte Carlo (MCMC) simulation
approach to draw samples from the joint density [20], us-
ing an off-the-shelf statistics package, BUGS (www.mrc-
bsu.cam.ac.uk/bugs/). We then pick the samples that give
a 95% confidence on the density. Finally, we approximate
the returned area by the tiles where those samples fall.

Figure 1(c) shows a substantive drawback of the Bayes
net approach is that it yields a large number of discon-
nected tiles; we call this the “scatter effect”. Although the
tiles are concentrated around the most likely location, the
disconnection is substantial and can interfere with higher-
level functions, such as mapping the object into a room.

We developed two additional point-based versions of our
Bayes net approach. Specifically, after obtaining the joint
density of the(x, y) location of the localized object, we
either return the center point of the highest probability tile
(Bayesian Point,B1), or the midpoint of the top two tiles
(Averaged Bayesian,B2).

C. Point-Based Algorithms

The first point-based algorithm we used is the well
known RADAR [10], which we refer to asR1. Its approach
is to return the location of the closest fingerprint to the
RSS in the training set, using Euclidean distance in “signal
space” as the measurement function (i.e., it views the
fingerprints as points in an N-dimension space, where each
AP forms a dimension).

A second version of the algorithm returns the aver-
age position (centroid) of the topk closest vectors; our
averaged RADAR algorithm,R2, averages the closest 2
fingerprints. A disadvantage of RADAR is that it can
require a large number of training points. Our gridded
RADAR algorithm, GR, uses the IMG as a set of ad-
ditional fingerprints over the basic R1.

Our second point-based approach,P1 uses a typical
probabilistic approach applying Bayes’ rule [15]. We also
evaluate a modified version,P2, that returns the mid-point
of the top 2 training fingerprints. Finally, much like GR,
we evaluate a variant of P1,GP, that uses fingerprints
based on an IMG.

IV. L OCALIZATION METRICS

In this section we describe the performance metrics we
use to evaluate the algorithms. The traditional localization
metric is the distance error between the returned position
and the true position. There are many ways to describe
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Fig. 3. Plan and setup of floors in the CoRE building and Industrial laboratory. Grey spaces are corridors, white spaces are offices or laboratories.
Squares are the APs locations. Small dots show the testing locations, large dots an example random training set.

the distribution of the distance error: the average, the
95th percentile, or even the full CDF. The problem with
this traditional metric is that it does not apply to area-
based approaches. We thus introduce metrics appropriate
for area-based algorithms.

Because many indoor sensor-network applications can
operate at the level of rooms, we also extend the traditional
metric, accuracy and precision to operate at the room-level.
That is, we translate the returned points and areas into
rooms and observe the performance of the algorithms in
units of rooms rather than as raw distances or areas.

A. Area-Based Metrics

a) Tile Accuracy: Tile accuracy refers to the per-
centage of times the algorithm is able to return the true
tile, i.e., the tile containing the object. This metric can be
somewhat misleading because often, the true tile is close
to the returned set, which motivates the next metric.

b) Distance Accuracy:This metric is the distance
between the true tile and tiles in the returned area, as
measured from the tiles’ center.

In order to gauge the distribution of tiles in relation to
the true location, we first sort all the tiles according to
this metric. We can then return the distances of the0th

(minimum), 25th, 50th (median),75th, and 100th (max-
imum) percentiles of the tiles. This metric is somewhat
comparable to the traditional metric, although one should
look at both the minimum and maximum distances.

c) Precision: The overall precision refers to the size
of the returned area, i.e., the sq.ft. To normalize the metric
across systems, it can be expressed as a percentage of the
entire possible space (i.e., the size of the floor).

B. Room-level Metrics

We divide up a floor into a set of rooms, where each
room is a rectangular area or a union of adjacent rectangu-
lar areas. The entire floor is covered by rooms. For point-
based algorithms the mapping of the returned points into
rooms is simple: the returned room is the room containing
the point.

For area-based algorithms, the relationship on how to
map areas into rooms is more complex. Our approach is
to map the area into an ordered set of rooms, where the
ordering tells the user which room order to try to find the
localized object. We chose a simple approach that orders

the rooms by the absolute sizes of the intersection of the
returned areas with room areas. While this favors larger
rooms, how to normalize for room sizes remains unclear.
On one hand, a large fraction of a room returned could
imply the room is likely to contain the object, while on
the other hand a very small room might be fully covered
only due to noise.

d) Room Accuracy:The room accuracy corresponds
to the percentage of times the true room, i.e., the room
where the object is located, is returned in the ordered
set of rooms. An important variation of this metric is the
n−room accuracy, which is the percentage of times the
true room is among the topn−rooms.

e) Room Precision:This metric corresponds to the
average number of rooms on the floor returned by the
algorithm. because this metric can be misleading in cases
where there are a few large rooms on the floor, it can be
expressed as a percentage of the total number of rooms.

V. EXPERIMENTAL STUDY

In this section we describe our experimental study and
results. We characterize the performance of our area-based
localization algorithms and then compare their perfor-
mance with single-location based approaches. We close
with a description of the uncertainty.

A. Experimental Setup

In order to show our results are not an artifact of a
specific floor, we used measured RSS data from 2 sites.
The first site is our Computer Science department CoRE
building (“CoRE”), while the second site is an office build-
ing at an industrial laboratory (“industrial”). Figures 3(a)
and (b) show the layout of these 2 floors, respectively. The
figure shows the position of all the fingerprints as dots and
the locations of the AP’s as larger squares. Hallways are
shaded in grey, offices and laboratories are white. We did
not collect data in all rooms because many of the side
rooms are private offices.

We collected fingerprints at 286 locations on the 3rd
floor of the CoRE building over a period of 2 days. The
floor contains just over 50 rooms in a 200x80ft (16000
ft2) area. To map the data into rooms, we divided the
corridor spaces into 4 “rooms”. A Dell laptop running
Linux equipped with an Orinoco silver card was used to
collect the samples. The sampling procedure was to run the
iwlist scan command once a second for 60 seconds.
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Fig. 4. Comparing accuracy and precision in area-based algorithms over different training data sizes. The first row is for the CoRE floor, and the
second row is for the industrial floor.

A total of 253 fingerprint vectors were collected from
the industrial site. All of them lie along the corridors. The
fingerprints were collected over several days using a Linux
IPAQ. The floor includes about 115 rooms in a 225x144ft
(32400 ft2) area and has many corridors in-between these
rooms. We divided the corridors into 20 rooms

In the CoRE data, we measured a value of -3 dBm for
the SPM and ABP noise levels for 3 APs, and a value of
-5 dBm for the fourth AP. For the industrial data we used
a noise level of -4 dBm for all 5 APs.

To evaluate the algorithms, we divide the data into
training and testing sets. To emulate an actual system,
we assume the training set is collected in some manner,
e.g., by hand sampling or previously deployed sniffers, and
then each algorithm must locate the RSS vectors in the
testing set. Our metrics then summarize these localization
attempts.

B. Impact of the Training Set

Both the number and location of the fingerprints in the
training set impact localization performance. To investigate
the effect of location we experimented with different ways
of picking training sets depending on the fingerprints’
coordinates. We tried random uniform distributions over
x andy, the closest point to a regular grid (using different
grid sizes), and uniformly distributed around each AP. The
stars in Figure 3 show an example training set of about 30
samples picked following a random uniform distribution.
We found that as long as the samples are uniformly-
distributed, but not necessarily uniformly-spaced, the spe-
cific methodology had no measurable effect on our results.

The number of samples has an impact, although it is not
as strong as one might expect. Figure 4 shows the effect of
the training set size on various metrics: (a) tile accuracy,
(b) precision, (c) room accuracy, and (d) room precision.
The figure presents these metrics as averaged values.

The algorithms have substantially different tile-level
accuracies and precisions. The results also clearly show the
fundamental tradeoff for tile accuracy and precision; any
algorithm that improves tile accuracy worsens precision.
Interestingly, for a given algorithm the precision is quite
insensitive to the size of the training set.

Although the accuracy on the industrial data seems more
sensitive to training set size, this is somewhat misleading
because the industrial floor is twice the size of CoRE.
Tile accuracy of the algorithms stabilizes at around 85
and 115 fingerprints for the CoRE and industrial floors,
respectively. Room accuracy stabilizes at about 115 points
for both sets. However, the accuracy is quite robust to
lower samples sizes. Only for very low sample densities,
as can be seen in the 35 fingerprint industrial set, does
accuracy fall off sharply.

Examining the room-level performance, we see that all
the algorithms are quite good at finding the correct room
with a sufficient training set. The room-level precision of
BN is quite poor due to the scatter effect.

C. Accuracy

Although average tile accuracy gives us general trends,
we must peer into the data for a better picture. Figure 5
shows some sample distance accuracy CDFs for different
training sizes. We found that in general, the SPM and
ABP algorithms have comparable distance accuracy in
the intermediate percentiles (25%, median and 75%); the
differences are most pronounced at the edges of the
distribution. Figures 5(a) and (c) show that for SPM and
ABP, the 90th percentile for these intermediate accuracy
percentiles occur around 15ft, 20ft, and 30ft, respectively.
The Bayesian accuracy percentiles are a little larger due
to the scatter effect.

A mathematical way to express this behavior is to
examine what happens as the confidence level of ABP
increases; the minimum distance between the returned
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Fig. 5. Distance Accuracy CDFs for SPM and BN on CoRE (a,b) andABP-75 and BN on the Industrial data (c,d).
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Fig. 6. Sample precision CDFs across area-based algorithmswith different training sizes and floors.

area and the true location decreases while the maximum
distance increases. As the confidence goes up, the added
tiles are either closer to, or farther from, the true location
with almost equal probability.

The percentiles of the distance accuracy tell us that tile-
accuracy can be misleading; the returned areas by the
different algorithms are actually much more similar in
their spatial relationship to the true location than tile-level
accuracy would suggest. As illustrated in Figure 5, what
happens is that the primary difference in the algorithms
is in how much uncertainty they return rather than a
fundamental difference in accuracy.

D. Precision

Turning to precision, Figure 6 shows the CDF of the pre-
cision for the different algorithms. Indeed, the algorithms
have a wide variety of precisions. As expected, SPM tends
to return the lowest precision, performing somewhere
between ABP-50 and ABP-75. BN has a surprisingly
consistent, although somewhat low, precision, as evidenced
by its steep CDF. An interesting phenomena is that in spite
of the scatter effect, the precision of BN is comparable to
the other approaches.

E. Comparing Algorithms

Having shown that a wide range of area-based algo-
rithms have similar fundamental performance, we now
expand our investigation to point-based algorithms.

Figure 7 shows the CDF of the traditional distance error
metric for the point-based algorithms, along with the CDF
of the median percentile for ABP-75 and BN. The other
area-based approaches are not shown because they perform
similarly to ABP-75 in terms of the median error.

The key result of Figure 7 is the striking similarity of
the algorithms. The CDFs have a similar slope, medians
around 10-15ft, and long tails after the 97th percentile.
Indeed, many CDFs differ by less than a few feet, and there
are regions where they cross. The exceptions are Bayesian
approaches, BN, B1 and B2, which have uniformly higher
errors than the rest; this effect is most clearly seen in
Figure 7(b) for the industrial set.

The CDFs of the point-based algorithms also show only
marginal improvements in localization performance as a
function of sample size with a sufficient sample density. As
a general rule of thumb for both data sets, a sample density
of 1/230 ft2 (every 15ft) was sufficient coverage for all
the algorithms. However, as Figure 7(a) shows, reasonable
performance is obtainable with much less sampling at
1/450 ft2 (every 21 ft).

Turning to room-level accuracy, Figure 8 shows the
room accuracy. The point-based algorithms can only return
a single room. For the area-based algorithms, the stacked
bar-graph shows the cumulative percentiles of the top-3
rooms, followed by all other returned rooms as a single
stack.

Figure 8 shows similar accuracies across many of the
algorithms, with the exception of the Bayesian approaches
and at low sampling densities. The lower room precision of
the BN algorithm is due to the “scatter” effect, illustrated
in Figure 1(c). The low room performance for some of
the algorithms in Figure 8(a) is accounted for by the low
number of samples, which make building an accurate IMG
difficult.

F. Fundamental Uncertainty

We now show strong evidence of why the algorithms
deliver similar performance. Our approach begins with
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Fig. 7. Error CDF across all algorithms with different training set sizes.
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Fig. 8. Room accuracy. The stacked bars show the percentage of times the 1st, 2nd, 3rd, and remaining rooms are the correctones.

the Bayesian network because this approach alone gives a
view of the spatial uncertainty PDF given both measure-
ments and a mathematical model of causal relationships.

Figure 9 shows 4 sample uncertainty PDFs along both
the x, y axes generated from the Bayesian network. The
wide distributions, especially in the industrial data set,
show there is a high degree of uncertainty in the positions.
The strong attenuation along thex-axis in the CoRE data,
due to the higher number of walls in that dimension,
greatly reduces the uncertainty along thex-axis.

Given that [11] found a host of learning approaches had
similar performance to maximum likelihood estimation
(similar to P1) with sufficient sampling, and our results
also show similar performance between P1 and a broad
spectrum of approaches, we can speculate using transitive
reasoning that the algorithms in [11] would also have
similar performance to those evaluated here.

The PDFs from the BN algorithm, along with the very
similar performance shown by Figure 7 for the rest of the
algorithms, give very strong evidence that the fundamental
uncertainty of all of the algorithms is not much better
than those shown in Figure 9. Intuitively, the point-based
algorithms find the peaks in the PDFs and return that as
the location. The area-based algorithms can explore more
of the PDF, but cannot narrow it.

VI. CONCLUSIONS

In this work we characterized the limits of a wide variety
of approaches to localization in indoor environments using
signal strength and 802.11 technology. We found that a
median error of 10ft and a 97th percentile of 30ft is an
expected bound for the performance of a good algorithm
and much sampling. However, our results also showed

that a median error of 15ft with a 40ft 97th percentile
is obtainable with much less sampling effort.

Our comparisons and examinations of uncertainty PDFs
suggest that algorithms based on matching and signal-to-
distance functions are unable to capture the myriad of
effects on signal propagation in an indoor environment.
While many of the algorithms can explore the space of this
uncertainty in useful ways, e.g., by returning likely areas
and rooms, they cannot reduce it. Still, the localization
accuracy is significant and useful, as we showed when
mapping the objects into rooms.

Given our large training sets, it is unlikely that addi-
tional sampling will increase accuracy. Adding additional
hardware and altering the model are the only alternatives.
For example, ray-tracing models that account for walls
and other obstacles have been employed [21]. Pursuing
the modeling strategy, however, we are left with a trade-
off in model complexity vs. accuracy, and such questions
are not easily answered. For example, it is unclear if
building models at the level of detail where one must
model all items impacting signal propagation (walls, large
bookshelves, etc.) would be worth the improvements in
localization accuracy.
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