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Abstract— We characterize the fundamental limits of local- ~ propagation.
ization using signal strength in indoor environments. Sigal In order to better explore the limits of localization
strength approaches are atiractive because they are widely arformance, we developed 3 algorithms. These algorithms
applicable to wireless sensor networks and do not require . .
additional localization hardware. We show that although are area—ba;edr_ather thanpplnt-base_d That is, the re-
a broad Spectrum of a|gorithms can trade accuracy for turned |Oca|I2atI0n answer Is a pOSSIb|e area (Or V0|ume)
precision, none has a significant advantage in localizatioper- ~ that might contain the sensor radio rather than a point.
formance. We found thgt using commodity 802.11 t.echnology We focus on area-based a|gorithm5 because they have
over a range of algorithms, approaches and environments, 5 ¢yitica| advantage in their ability to describe localiza-
one can expect a median localization error of 10ft and 97th . -
percentile of 30ft. We present strong evidence that these tion u_ncertalnty. The key property area—based- gpproaches
limitations are fundamental and that they are unlikely to ~ have is that they can trade accuracy for precision, where
be transcended without fundamentally more complex envi- accuracyis the likelihood the object is within the area
ronmental models or additional localization infrastructure. and precisionis the size of the returned area. Point-based
approaches have difficulty describing such probabilistic
trade-offs in a systematic manner. Using accuracy and
Localizing sensors is necessary for many higher levgdrecision, we can quantitatively describe the limits of
sensor network functions such as tracking, monitoring andifferent localization approaches by observing the impact
geometric-based routing. Recent years have seen intendeincreased precision (i.e. less area) on accuracy.
research investigating using off-the-shelf radios as a lo- To generalize our results, we compared our area-based
calization infrastructure for sensor nodes. The motivatioapproaches with several variants of well known existing
has been a dual use one: using the same radio hardwalgorithms. We ran our comparisons using measured data
for both communication and localization would enable &rom two distinct buildings. We found that although area-
tremendous savings over deployment of a specific localizdvased approaches are better at describing uncertainity, the
tion infrastructure, such as ones using directional argenn absolute performance is similar to existing point-based
very high frequency clocks, ultrasound, and infrared. Irapproaches. In addition, our data combined with others
addition, such a system could avoid the high densitieshows that no existing WLAN based indoor localization
required by sensor aggregation approaches. approach has a substantial advantage in localization per-
In this paper we explore the fundamental limits offormance. A general rule of thumb we found is that
localization using signal strength in indoor environmentsusing 802.11 technology, with much sampling and a good
Such environments are challenging because the radio proglgorithm one can expect a median error of roughly 10ft
agation is much more chaotic than outdoor settings, wheend a 97" percentile of roughly 30ft.
signals travel with little obstruction (e.g., GPS). A corollary of this result is that computationally simple
Exploring the limits of signal strength approaches is imalgorithms that do not require many training samples
portant because it tells us the localization performance ware preferable because the performance of more complex
can expect without additional hardware in the sensor nodedgorithms is unlikely to be justified.
and base-stations. We will show that a broad spectrum of However, a promising result of our study is that we
signal-strength based algorithms have similar locakwati found with relatively sparse sampling, every 20 ft, or 400
performance. We also present strong evidence that the&&/sample, one can still get median errors of 15ft anth 95
limitations are fundamental and that they are unlikely to b@ercentiles at 40ft. This is a promising result, because
transcended without qualitatively more complex models ofiand-sampling or deploying automatic sniffers is much
the environment or additional hardware above that requiretiore tractable at such densities.
for communication. Although examining the accuracy vs. precision tradeoff
Although we use 802.11 Wireless Local Area Networkgives insight into performance limits, such an approach
(WLAN) technology because of its commodity statusdoes not help us reason if the observed limitations are
our results are applicable to any radio technology wherindamental to the algorithm or inherent in the data. Using
there are considerable environmental effects on the signalBayesian network, we express the uncertainties arising

|I. INTRODUCTION



Algorithm | Abbreviation | Description |

Area-Based
Simple Point Matching SPM Matches the RSS to a tile set using thresholds.
Area Based Probability ABP-a Matches the RSS to a tile set probabilistically with confiskeivounda%.
Bayesian Network BN Returns the most likely tiles using a Bayesian network.
Point-Based
Bayesian Point Bl Returns the most likely point using a Bayesian network.
Averaged Bayesian B2 Returns the mid-point of the top 2 most likely points.
RADAR R1 Finds the closest training point based on distance in sigpate.
Averaged RADAR R2 Returns the midpoint of the closest 2 training points in aigpace.
Gridded RADAR GR Applies RADAR using an interpolated grid.
Highest Probability P1 Applies likelihood estimation to the received signal.
Averaged Highest Probability P2 Returns the midpoint of the top 2 likelihoods.
Gridded Highest Probability GP Applies likelihoods to an interpolated grid.
TABLE |

All algorithms and variants.

from these effects in terms of probability density functon [1l. L OCALIZATION ALGORITHMS

(PDFs) that describe the likely position as a function of the |, thjs section we give a broad overview of our algorithm
observed data and a widely used propagation model. Olfenagerie, summarized in Table I. Because our purpose

results show th_at there is significant uncertainty arisings . explore similarities in algorithmic performance our
from the data given the model. . descriptions focus on each algorithm’s broad strategy. The
The rest of this paper is organized as follows. INeaqer is encouraged to pursue the references for details.
Section Il we provide a description of related work. pefore describing the algorithms, we first define terms
Section Il sketches both the area-based and point-basgy then describe how we interpolate a topological grid
approaches used in the work. Next, Section IV introducegsgq by many of the algorithms. We then describe 3
area-based performance metrics. In Section V we presege-pased algorithms: Simple Point Matching (SPM),
the performance of the algorithms. Finally, in Section Viare5-Based Probability (ABP), and Bayesian (BN). We
we conclude. then describe the point-based algorithms: Bayesian Point
(B1), Averaged Bayesian (B2), RADAR, (R1), Averaged
RADAR (R2), Gridded RADAR (GR), Highest Probabil-
Recent years have seen tremendous efforts at building (P1), Averaged Highest Probability (P2) and Gridded
small and medium scale localization systems for sens®ighest Probability (GP).
networks. The underlying principles vary from trilatera- \We use the following definitions and terms. Tiaccess
tion, triangulation, scene matching (e.g., fingerprinting points areAP;, ..., AP,. The training data7’,, is used as
and combinations of these approaches. When aggregatsifline input. It consists of a set of empirically measured
of sensors are available, a wider set of mathematicgignal fingerprints S along with them locations, (z, )
foundations are possible, including multidimensional-scawhere they were collected. L.€l}, = {[(x;,y:), Si]},i =
ing [1], optimization[2], and ad-hoc approaches [3], [4].1...m, thus there aren fingerprints. The fingerprint at a
The technologies used have also exhibited a wide ranggication;, consists of the set of expected average received
ultrasound [5], [6], [7], infrared [8], 802.11, and customsignal strengths;;, for eachAP;. A default value fors;;
radios [9]. is assigned in a fingerprint if no signal is received from
Within this wide variance, the works using 802.11 and4 p; at a location.
signal strength are closely related to ours [10], [11], The object to be localized collects a set received
[12], [13], [14], [15], [16], [17]. The two fundamental signal strength§RSS) when it is at a location. An RSS is
building blocks of all these are: (1) a classifier to relate agimilar to a fingerprint in that it contains a set of APs, and
observed set of signal strengths to ones at known locationg,mean for eachtiP;. An RSS also maintains a standard

and (2) a function of distance to signal strength. A fulldeviation of the sample set at each locatioand AP;,
treatment of the myriad of techniques for estimating signay; ;.

strength at locations, classifiers, and distance functi®ns _ ) )

beyond the scope of this work. We instead show thef\ Interpolating Fingerprints

perform similarly. While our results show that absolute Many of the algorithms require a method of building a

performance depends on the environment, our absolutegular grid of tiles that describe the expected fingerprint

results are still consistent with the above works. for the area described by each tile. The tiles are a simple
The work most closely related to ours is [11]. Theirway to map the expected signal strength to locations, as

data shows that a host of matching and classificatioapposed to field vectors or more complex shapes. Because

algorithms, ranging from maximum-likelihood analysis todirect measurement of the fingerprint for each tile is

neural networks, has similar performance. They did noéxpensive, we use an interpolation approach to build an

speculate on the resulting similarity, however. Interpolated Map Grid (IMG). Building an IMG is similar

Il. RELATED WORK
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Fig. 1. Area returned by the different algorithms for the €oBuilding. The area is circumscribed by the smallest copalygon. The true location
is shown as a point.

to “surface fitting”; the goal is to derive an expectedintersection, the algorithm additively increases.e., it

fingerprint for each tile from the training set that wouldfirst tries ¢, 2¢q . .. until a non-zero set of tiles results. In

be similar to an observed one. the worst case, a non-empty intersection will result, even
We build an IMG for a floor using the training fin- if ¢ expands to the dynamic range of signal readings.

gerprints for eachAP; independently on a grid of 30in  An important issue is how to pick for each AP;.

square tiles. Although there are several approaches in thée experimented with the value of to observe how

literature for interpolating surfaces, e.g, splines, wedus sensitive the algorithm is to this parameter and found that

triangle-based linear interpolation. We divide the flodoin the algorithm is quite insensitive ip when it is close to

triangular regions using a Delaunay triangulation wher¢he maximum{o;;}. We thus used the maximudv;; }

the location of thel,, samples serve as anchor points. Inover all fingerprints forq. Although choosingg in this

a few cases, we had to add anchor points at the cornersmfanner makes our algorithm more ad-hoc, it also makes

the floor. We then linearly interpolate the expected signgbPM simpler, scalable, and faster.

strength using the “height” of the triangle at the center of Although SPM is ad-hoc, it is quite similar to a more

the tile. formal approach using Maximum Likelihood Estimation
We found our approach desirable because: (1) it iMLE) [18]. The SPM noise level corresponds quite

simple and fast, (2) the derivative of the RSS as a functiodlosely to the confidences x oy; of that algorithmo; is

of location does not vary widely, so simple interpolationthe standard deviation at the object’s location. SPM is in

performed adequately, (3) it is insensitive to the size oéffect an approximation of the MLE method, where SPM

the underlying tiles (we tried tiny 205in tiles, observing eagerly searches for the lowest confidence that yields a

almost no effect) and (4) the sample spacing need only toon-empty area.

follow a uniform distribution, rather than have “precise” 2) Area Based ProbabilityThe strategy used by ABP-

spacing. ais toreturn a set of tiles bounded by a probability that the
object is within the returned set. We call the probability,
B. Area-Based Algorithms «, theconfidenceand it is an adjustable parameter. ABP’s

Figure 1 shows a sample of the area-based aIgorithm@pproaCh to findin_g a tile_ set is _to compute t_he likelihood
results for the CoRE building. The actual point is showrP! @1 RSS matching a fingerprint for each tile, and then
by a “*” and the convex hulls of the returned areas ardormalize these likelihoods given the priors: (1) object

outlined. The SPM and ABP algorithms perform similarly,ust be on floor, and (2) all tiles are equally likely. ABP
but the BN algorithm has a much different profile. then ret.urns the_ top probability tiles whose sum matches
1) Simple Point MatchingThe strategy behind SPM is the desired confidence. ABP thus stands on a more formal

to find a set of tiles that fall within a threshold of the RSSmathematicaI foundation than SPM.

for each AP independently, then return the tiles that form M order to find the likelihood of the RSS matching
the intersection of each AP’s set. each tile in isolation, ABP assumes the distribution of both

More formally, SPM first finds: sets of tiles, one for the received signal strengths for each AP in a fingerprint
eachAP;,j — 1...n, that “match” all fingerprintss; — and RSS follows a Gaussian distribution with megn
(51, .. ;ng_'n)i for the 'object to be localized. The matchingA_lthoy_gh this assumption is often not true, it significantly
tiles for eachA P; are found by adding an expected “noise”s'mp“f'es the computat|0ns_ wlth little performance loss.
level, ¢ to 57, and then returning all the floor tiles that fall W& model the standard deviation for eadl; separately,
within the expected threshold;; = ¢ (We substituted a using maximum deviation observed in any fingerprint for
value of -92 dBm for missing signals). SPM then returnéhe AP.

the area formed by intersecting all matched tiles from the L_Jsing Bayes' _rule, ABP computgs the P“?babi“tl( of
different AP tile sets. being at each tileL; on the floor given the fingerprint

For the algorithm to be eager, i.e., to find the fewesP! the localized objects; = (s7;):

high probability tiles, it starts from a very loj However,
it then runs the risk of returning no tiles when the
intersection among the APs is empty. Thus, on an empty

P (S)

P (Li|S)) = 1)



value,s;, as at-distribution around the above propagation
model, with variancer; (which has a long tail). le.,
sj ~ t(bo; + b1;log D;, 7;,2). We specifically used &
distribution rather than a Gaussian in order to better model
the outliers of real data.
Using the training fingerprintd, and the fingerprint
Fig. 2. The Bayesian network used in our experiments. vector of the mobile object, the network then learns the
o _ o _ specific values for all the unknown parametgss b1, 7;
However,P (S;) is a constant. With no prior information  and the joint distribution of thez,y) location of the
about the exact object's location, ABP assumes that thgpject.
object to be localized is equally likely to be at any location |n general, there is no closed form solution for the
on the floor, i.e.P (L;) = P (L;), Vi, j. Thus, Equation 1 returned joint distribution of théz, ) location. Therefore,
can be rewritten as: we use a Markov Chain Monte Carlo (MCMC) simulation
P (Li|§l) —¢x P (S_llLi) ) approach to draw samp_le_s from the joint density [20], us-
ing an off-the-shelf statistics package, BUGS (www.mrc-
Without having to know the value, ABP can just return psu.cam.ac.uk/bugs/). We then pick the samples that give
the tile Lynq;, Where L., = argmax(P (S;|L;)), by  a 95% confidence on the density. Finally, we approximate
computingP (S| L;) for every tilei on the floor. Up to  the returned area by the tiles where those samples fall.
this step ABP is very similar to the traditional Bayesian Figure 1(c) shows a substantive drawback of the Bayes
approaches [14], [17], with the exception of the Gaussiafet approach is that it yields a large number of discon-
and variance assumptions. nected tiles; we call this the “scatter effect”. Althougle th
ABP extends the referenced approaches by its final stefles are concentrated around the most likely location, the
where it computes the actual probability density of thejisconnection is substantial and can interfere with higher
object for each tile on the floor, given tl’lat the object Musfaye| functions, such as mappmg the object into a room.
be at exactly one tile, i.ey 7, P (L;|S) = 1. Given e developed two additional point-based versions of our
the resulting density, ABP returns the top probabilitysile Bayes net approach. Specifically, after obtaining the joint
up to its confidenceq. We found that useful values of density of the(z,y) location of the localized object, we
a can have a wide dynamic range, between 0.5 and leggher return the center point of the highest probabiliy ti

than 1. While a confidence of 1 returns all the tiles on thgBayesian PointB1), or the midpoint of the top two tiles
floor, picking a useful is not difficult because in practice, (Averaged BayesiarB2).

some tiles have a much higher probability than the others,

while at the same time the difference between these higl- Point-Based Algorithms

probability tiles is small. Therefore only a sufficientlyghi The first point-based algorithm we used is the well
o is needed to return these tiles, while at the same timenown RADAR [10], which we refer to aR1. Its approach
making the size of a tile set insensitive to small changes to return the location of the closest fingerprint to the
in a. RSS in the training set, using Euclidean distance in “signal

3) Bayesian Networks (BN)Bayes nets are graphi- space” as the measurement function (i.e., it views the
cal models that encode dependencies and relationshifisgerprints as points in an N-dimension space, where each
among a set of random variables. The vertices of thAP forms a dimension).
graph correspond to the variables and the edges represen second version of the algorithm returns the aver-
dependencies [19]. The Bayes net we use encodes thge position (centroid) of the top closest vectors; our
relationship between the RSS and the location based @veraged RADAR algorithmRR2, averages the closest 2
a signal-versus-distance propagation model. The initiglngerprints. A disadvantage of RADAR is that it can
parameters of the model are unknown, and the trainingequire a large number of training points. Our gridded
set is used to adjust the specific parameters of the modRADAR algorithm, GR, uses the IMG as a set of ad-
according to the relationships encoded in the network. ditional fingerprints over the basic R1.

Figure 2 shows the simple network we used. Each Our second point-based approadl uses a typical
random variables;,j = 1...n denotes the expected probabilistic approach applying Bayes’ rule [15]. We also
signal strength from the corresponding access pdiff.  evaluate a modified versioR2, that returns the mid-point
The values of these random variables depend on thsf the top 2 training fingerprints. Finally, much like GR,
Euclidean distanc®; between the AP’s locationiz;,y;), we evaluate a variant of PIGP, that uses fingerprints
and the location where the signg) is measuredz,y). based on an IMG.

The baseline expected value ©f follows a signal prop-

agation models; = bo; + bijlog D;, where by;,bi; IV. L OCALIZATION METRICS

are the parameters specific to eadl’;. The distance In this section we describe the performance metrics we
D; = \/((x —zj)*>+ (y — y;)?) in turn “depends” on use to evaluate the algorithms. The traditional localirati
the location(z,y) of the measured signal. The networkmetric is the distance error between the returned position
models noise and outliers by modeling the expectednd the true position. There are many ways to describe
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the distribution of the distance error: the average, théhe rooms by the absolute sizes of the intersection of the
95" percentile, or even the full CDF. The problem withreturned areas with room areas. While this favors larger
this traditional metric is that it does not apply to area+tooms, how to normalize for room sizes remains unclear.
based approaches. We thus introduce metrics approprid@® one hand, a large fraction of a room returned could
for area-based algorithms. imply the room is likely to contain the object, while on
Because many indoor sensor-network applications cahe other hand a very small room might be fully covered
operate at the level of rooms, we also extend the traditionahly due to noise.
metric, accuracy and precision to operate at the room-level d) Room AccuracyThe room accuracy corresponds
That is, we translate the returned points and areas into the percentage of times the true room, i.e., the room
rooms and observe the performance of the algorithms iwhere the object is located, is returned in the ordered
units of rooms rather than as raw distances or areas. set of rooms. An important variation of this metric is the
n—room accuracy, which is the percentage of times the
A. Area-Based Metrics true room is among the top—rooms.

a) Tile Accuracy: Tile accuracy refers to the per- e) Room Precision:This metric Corresponds to the
centage of times the algorithm is able to return the tru@verage number of rooms on the floor returned by the
tile, i.e., the tile containing the object. This metric cam b algorithm. because this metric can be misleading in cases
somewhat misleading because often, the true tile is clogighere there are a few large rooms on the floor, it can be
to the returned set, which motivates the next metric. ~ €xpressed as a percentage of the total number of rooms.

b) Distance Accuracy:This metric is the distance V. EXPERIMENTAL STUDY

between the true tile and tiles in the returned area, as, . . . .
measured from the tiles’ center. n this section we (_jescrlbe our experimental study and
o, S . results. We characterize the performance of our area-based
In order to gauge the distribution of tiles in relation toI lization algorithms and then compare their perfor-
the true location, we first sort all the tiles according tooCa . 9 : b P
) . . mance with single-location based approaches. We close
this metric. We can then return the distances of @He ith a description of the uncertaint
(minimum), 25", 50t* (median),75"", and 100*" (max- w P Y-
imum) percentiles of the tiles. This metric is somewhatf\. Experimental Setup
comparable to the traditional metric, although one should |n order to show our results are not an artifact of a
look at both the minimum and maximum distances. specific floor, we used measured RSS data from 2 sites.
c) Precision: The overall precision refers to the size The first site is our Computer Science department CoRE
of the returned area, i.e., the sq.ft. To normalize the metribuilding (“CoRE”), while the second site is an office build-
across systems, it can be expressed as a percentage ofifitgat an industrial laboratory (“industrial”). Figuresa3(
entire possible space (i.e., the size of the floor). and (b) show the layout of these 2 floors, respectively. The
figure shows the position of all the fingerprints as dots and
the locations of the AP’s as larger squares. Hallways are
We divide up a floor into a set of rooms, where eaclshaded in grey, offices and laboratories are white. We did
room is a rectangular area or a union of adjacent rectangnet collect data in all rooms because many of the side
lar areas. The entire floor is covered by rooms. For pointrooms are private offices.
based algorithms the mapping of the returned points into We collected fingerprints at 286 locations on the 3rd
rooms is simple: the returned room is the room containinfoor of the CoRE building over a period of 2 days. The
the point. floor contains just over 50 rooms in a 200x80ft (16000
For area-based algorithms, the relationship on how tfi2) area. To map the data into rooms, we divided the
map areas into rooms is more complex. Our approach mrridor spaces into 4 “rooms”. A Dell laptop running
to map the area into an ordered set of rooms, where thénux equipped with an Orinoco silver card was used to
ordering tells the user which room order to try to find thecollect the samples. The sampling procedure was to run the
localized object. We chose a simple approach that ordeirsM i st scan command once a second for 60 seconds.

B. Room-level Metrics
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Fig. 4. Comparing accuracy and precision in area-basedithiges over different training data sizes. The first row is filee CoRE floor, and the
second row is for the industrial floor.

A total of 253 fingerprint vectors were collected from The algorithms have substantially different tile-level
the industrial site. All of them lie along the corridors. Theaccuracies and precisions. The results also clearly shew th
fingerprints were collected over several days using a Linusundamental tradeoff for tile accuracy and precision; any
IPAQ. The floor includes about 115 rooms in a 225x144falgorithm that improves tile accuracy worsens precision.
(32400 f2) area and has many corridors in-between theskaterestingly, for a given algorithm the precision is quite
rooms. We divided the corridors into 20 rooms insensitive to the size of the training set.

In the CoRE data, we measured a value of -3 dBm for Although the accuracy on the industrial data seems more
the SPM and ABP noise levels for 3 APs, and a value ofensitive to training set size, this is somewhat misleading
-5 dBm for the fourth AP. For the industrial data we usedecause the industrial floor is twice the size of CoRE.
a noise level of -4 dBm for all 5 APs. Tile accuracy of the algorithms stabilizes at around 85

To evaluate the algorithms, we divide the data intaand 115 fingerprints for the CoRE and industrial floors,
training and testing sets. To emulate an actual systemgspectively. Room accuracy stabilizes at about 115 points
we assume the training set is collected in some manndor both sets. However, the accuracy is quite robust to
e.g., by hand sampling or previously deployed sniffers, anlbwer samples sizes. Only for very low sample densities,
then each algorithm must locate the RSS vectors in th&s can be seen in the 35 fingerprint industrial set, does
testing set. Our metrics then summarize these localizatiaccuracy fall off sharply.

attempts. Examining the room-level performance, we see that all
the algorithms are quite good at finding the correct room
B. Impact of the Training Set with a sufficient training set. The room-level precision of

. i o BN is quite poor due to the scatter effect.
Both the number and location of the fingerprints in the

training set impact localization performance. To inveatig C- Accuracy
the effect of location we experimented with different ways Although average tile accuracy gives us general trends,
of picking training sets depending on the fingerprintswe must peer into the data for a better picture. Figure 5
coordinates. We tried random uniform distributions oveshows some sample distance accuracy CDFs for different
x andy, the closest point to a regular grid (using differenttraining sizes. We found that in general, the SPM and
grid sizes), and uniformly distributed around each AP. Th&BP algorithms have comparable distance accuracy in
stars in Figure 3 show an example training set of about 3the intermediate percentiles (25%, median and 75%); the
samples picked following a random uniform distribution.differences are most pronounced at the edges of the
We found that as long as the samples are uniformlydistribution. Figures 5(a) and (c) show that for SPM and
distributed, but not necessarily uniformly-spaced, the-sp ABP, the 90" percentile for these intermediate accuracy
cific methodology had no measurable effect on our resultpercentiles occur around 15ft, 20ft, and 30ft, respedtivel
The number of samples has an impact, although it is ndthe Bayesian accuracy percentiles are a little larger due
as strong as one might expect. Figure 4 shows the effect td the scatter effect.
the training set size on various metrics: (a) tile accuracy, A mathematical way to express this behavior is to
(b) precision, (c) room accuracy, and (d) room precisionexamine what happens as the confidence level of ABP
The figure presents these metrics as averaged values. increases; the minimum distance between the returned
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Fig. 6. Sample precision CDFs across area-based algoritvithsdifferent training sizes and floors.

area and the true location decreases while the maximumThe key result of Figure 7 is the striking similarity of
distance increases. As the confidence goes up, the addbé algorithms. The CDFs have a similar slope, medians
tiles are either closer to, or farther from, the true loaatio around 10-15ft, and long tails after the ‘97percentile.
with almost equal probability. Indeed, many CDFs differ by less than a few feet, and there
The percentiles of the distance accuracy tell us that tileare regions where they cross. The exceptions are Bayesian
accuracy can be misleading; the returned areas by tlapproaches, BN, B1 and B2, which have uniformly higher
different algorithms are actually much more similar inerrors than the rest; this effect is most clearly seen in
their spatial relationship to the true location than téedl  Figure 7(b) for the industrial set.
accuracy would suggest. As illustrated in Figure 5, what The CDFs of the point-based algorithms also show only
happens is that the primary difference in the algorithmsnarginal improvements in localization performance as a
is in how much uncertainty they return rather than gunction of sample size with a sufficient sample density. As

fundamental difference in accuracy. a general rule of thumb for both data sets, a sample density
of 1/230 f€ (every 15ft) was sufficient coverage for all
D. Precision the algorithms. However, as Figure 7(a) shows, reasonable

Turning to precision, Figure 6 shows the CDF of the preperformance is obtainable with much less sampling at

cision for the different algorithms. Indeed, the algorithm 1/13?;;5] (exjerzjgr%nflt()e.vel accuracy. Figure 8 shows the
have a wide variety of precisions. As expected, SPM tends 9 Y. 9

o . room accuracy. The point-based algorithms can only return
to return the lowest precision, performing somewhere

between ABP-50 and ABP-75 BN has a surprisinglyg single room. For the area-based algorithms, the stacked

) . . ar-graph shows the cumulative percentiles of the top-3
consistent, although somewhat low, precision, as evidknce )

. . . , . -fooms, followed by all other returned rooms as a single
by its steep CDF. An interesting phenomena is that in spite

of the scatter effect, the precision of BN is comparable tgtagk. - .
Figure 8 shows similar accuracies across many of the
the other approaches.

algorithms, with the exception of the Bayesian approaches

and at low sampling densities. The lower room precision of

the BN algorithm is due to the “scatter” effect, illustrated
Having shown that a wide range of area-based algdn Figure 1(c). The low room performance for some of

rithms have similar fundamental performance, we nowhe algorithms in Figure 8(a) is accounted for by the low

expand our investigation to point-based algorithms. number of samples, which make building an accurate IMG
Figure 7 shows the CDF of the traditional distance errodifficult.

metric for the point-based algorithms, along with the CDF )

of the median percentile for ABP-75 and BN. The othef Fundamental Uncertainty

area-based approaches are not shown because they perforiwe now show strong evidence of why the algorithms

similarly to ABP-75 in terms of the median error. deliver similar performance. Our approach begins with

E. Comparing Algorithms
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Fig. 8. Room accuracy. The stacked bars show the percentafjees the 1st, 2nd, 3rd, and remaining rooms are the cooees.

the Bayesian network because this approach alone giveshmt a median error of 15ft with a 40ft 97 percentile
view of the spatial uncertainty PDF given both measureis obtainable with much less sampling effort.
ments and a mathematical model of causal relationships. Our comparisons and examinations of uncertainty PDFs
Figure 9 shows 4 sample uncertainty PDFs along botbuggest that algorithms based on matching and signal-to-
the =,y axes generated from the Bayesian network. Thdistance functions are unable to capture the myriad of
wide distributions, especially in the industrial data seteffects on signal propagation in an indoor environment.
show there is a high degree of uncertainty in the position&Vhile many of the algorithms can explore the space of this
The strong attenuation along theaxis in the CoRE data, uncertainty in useful ways, e.g., by returning likely areas
due to the higher number of walls in that dimensionand rooms, they cannot reduce it. Still, the localization
greatly reduces the uncertainty along thaxis. accuracy is significant and useful, as we showed when
Given that [11] found a host of learning approaches hacthapping the objects into rooms.
similar performance to maximum likelihood estimation Given our large training sets, it is unlikely that addi-
(similar to P1) with sufficient sampling, and our resultstional sampling will increase accuracy. Adding additional
also show similar performance between P1 and a brodwhrdware and altering the model are the only alternatives.
spectrum of approaches, we can speculate using transitiger example, ray-tracing models that account for walls
reasoning that the algorithms in [11] would also haveand other obstacles have been employed [21]. Pursuing
similar performance to those evaluated here. the modeling strategy, however, we are left with a trade-
The PDFs from the BN algorithm, along with the veryoff in model complexity vs. accuracy, and such questions
similar performance shown by Figure 7 for the rest of thare not easily answered. For example, it is unclear if
algorithms, give very strong evidence that the fundamentaluilding models at the level of detail where one must
uncertainty of all of the algorithms is not much bettermodel all items impacting signal propagation (walls, large
than those shown in Figure 9. Intuitively, the point-basedookshelves, etc.) would be worth the improvements in
algorithms find the peaks in the PDFs and return that dscalization accuracy.
the location. The area-based algorithms can explore more
of the PDF, but cannot narrow it. REFERENCES
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