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Abstract
We consider the problem of approximating a family of iso-
contours in a sensor field with a topologically-equivalent
family of simple polygons. Our algorithm is simple and
distributed, it gracefully adapts to any user-specified rep-
resentation size k, and it delivers a worst-case guarantee
for the quality of approximation. In particular, we prove
that the topology-respecting Hausdorff error in our k-vertex
approximation is within a small constant factor of the op-
timal error possible with Θ(k/ log m) vertices, where m is
the number of contours. Evaluation of the algorithm on real
data suggests that the size increase factor in practice is a
constant near 2.6, and shows no error increase. Our simula-
tion results using a variety of synthetic and real data show
that the algorithm smoothly handles complex isocontours,
even for representation sizes as small as 32 or 48. Because
isocontours are widely used to represent and communicate
bi-variate signals, our technique is broadly applicable to in-
network aggregation and summarization of spatial data in
sensor networks.

Categories and Subject Descriptors: G.1.2 [Numerical
Analysis] Approximation of Surfaces and contours. Gen-
eral Terms: Algorithms, Theory. Keywords: Sensor
Networks, Data Aggregation, Approximations.

1. INTRODUCTION
Sensor networks are an attractive architecture for inex-

pensive and scalable instrumentation of our physical envi-
ronment, allowing continuous and real-time monitoring of
large geographical areas. Current research prototypes have
already begun to deliver on the vision of such pervasive sens-
ing: unmanned deployments of sensors providing a contin-
uous or periodic snapshot of a remote environment, includ-
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ing habitat monitoring [20, 27] wildlife dynamics [15], cattle
health [21], aquatic observations [5], and surveillance [1, 29].

Many environmental phenomena are “spatial” by nature,
in that they are best viewed as a signal landscape or surface.
For instance, distributions of temperature, humidity, sound,
light, toxin and pollutant levels naturally fit this viewpoint,
as do many of the intrinsic attributes of the network’s health,
such as energy levels of nodes, traffic congestion, wireless
link quality, etc. An application-level challenge in sensor
networks is to convey a faithful representation of this sig-
nal to the user, while utilizing minimum possible network
resources. Indeed, the functional lifetime of the network is
determined by the energy reserve of its nodes, and wireless
communication is the largest consumer of power. Thus, al-
gorithms that can significantly reduce the data flow in the
network are highly desirable.

Motivated by these considerations, there has been a signif-
icant interest within the sensor network research community
in data aggregation methods, and a variety of techniques
have been proposed for estimating statistical attributes of
sensor data, including min, max, average [19, 31] as well
as robust statistics such as median or quantiles [10, 24].
However, most of these techniques have focused on numer-
ical statistics, not the spatial shape or form of the signal
landscape. Neither average nor median (nor even quantiles)
tells the user the geometric shape of the phenomenon being
observed by the sensor field—is it smooth or does it have
distinct peaks; are the peaks sharp or flat; are they clus-
tered in a small region or scattered widely, etc. A geometric
summary, on the other hand, can help the user reconstruct
an approximation of the remote signal field and gain a much
more detailed insight into its shape and form.

In this paper, we consider a scheme that allows the user
to control the fidelity of his reconstruction through a single
parameter k, denoting the summary size. In particular, sup-
pose the signal landscape in the sensor field is represented as
a family of isocontours. (Isocontours are both a simple and
popular method for discretizing a two-dimensional surface.)
Our goal is to (distributedly) compute an approximation of
this contour family using at most k vertices, while mini-
mizing the error in the approximation. The parameter k
limits the size of the data packets exchanged by the sensor
nodes, hence controlling the total transmission cost. In our
scheme, each node will send at most a constant number of
size-k packets to construct the contour map.
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1.1 Problem Description and Challenges
Formally, we consider the following problem: Given a

family of polygonal isocontours C1, C2, . . . , Cm and a user-
specified parameter k, we want to approximate the isocon-
tours with polygons P1, P2, . . . , Pm using at most k vertices.
Our goal is to minimize the maximum (Hausdorff) error be-
tween our approximation and the original contours, while
preserving the topological structure of the contour family.
That is, our approximate contours maintain the same nest-
ing order as the original, without intersections among dif-
ferent approximations. We assume that the original contour
data is distributed across sensors (each sensor has only some
local portion of the contour family), and a communication
protocol (e.g., a query-aggregation tree) is used to build the
approximate contour map in a distributed fashion. We want
a communication-efficient algorithm that is significantly bet-
ter than each node sending its data to a base station through
multi-hop routing.

The key challenges associated with the problem are:

• The user specifies only the global parameter value k—
the (distributed) algorithm, which does not have all
the data at one node, must decide how to spend this
memory on different contours in the family to achieve
small overall approximation error.

• Given a certain size, we know how to approximate one
contour to get the best error, but the approximation
of one contour can intersect (cross) approximations
of other contours, violating the topological structure.
Thus, we lose the independence of the contour approx-
imations, which in turn complicates the error analysis.
The challenge is to preserve the input contours’ topol-
ogy while computing a bounded-error approximation.

• When measuring the quality of an approximation, the
maximum error is a natural metric—large local errors
can hide important features of the data. However,
since different contours can have widely different sizes,
the user may prefer the error to be measured relative
to the contour size, in which case a suitable normal-
izing factor for the relative error must be introduced.
That is, we need to find a suitable function of the con-
tour area, perimeter, or both to scale each contour’s
approximation error.

1.2 Our Contributions
Our main contribution is a distributed algorithm with

provable error guarantees for approximating a family of con-
tours. In particular, suppose an optimal algorithm can ap-
proximate the contour family within maximum error ε using
k vertices. We propose a two-phase distributed algorithm in
which the first (the main) phase returns an O(k) size poly-
gon family with approximation error O(ε). A second (post-
processing) phase is needed if the polygons in the approx-
imating family intersect each other. Our proposed scheme
performs the untangling with bounded increase in approxi-
mation error, but may introduce additional vertices in the
worst case. We conjecture that the increase in the size of
the approximation is at worst linear, but at present we can
prove only a bound of O(k log m), where m is the number
of contours. Our extensive simulation results support our
conjecture: we observe an increase of less than 10% in the
worst case. To place this result in context, we point out

that even the problem of deciding whether a contour can be
approximated by a simple (non-self-intersecting) polygon of
k vertices for a given error is known to be NP-complete [11].

Given the intractability of the problem, we use a lower
bound based on dynamic programming to argue the near-
optimality of our scheme. The dynamic programming solu-
tion finds a k-segment approximation with minimum error,
but using k segments that are not necessarily linked into a
continuous polygon1. A continuous k-segment approxima-
tion, like the one we produce, clearly can have no better
error than the less-constrained dynamic programming ap-
proximation.

Simulation results using a variety of synthetic and real
data show that our algorithm smoothly handles complex iso-
contours, and even on modest size contour maps (with 2000
to 6000 points), it delivers compression factors of 20 to 100,
without losing any important features. The simulation also
suggests that both the error and the size bounds implied by
our worst-case analysis are extremely pessimistic: in exper-
iments, the algorithm yields error no worse than that of the
best k-vertex approximation using roughly 2.6 × k vertices.
When compared to the rectangle-simplification scheme pro-
posed by Hellerstein et al. [12], our algorithm gives notice-
ably better results both in visual appearance and measured
error.

2. RELATED WORK
Polygon simplification is a fundamental problem in geo-

graphic information systems (GIS), computational geometry
and computer vision. The two main variants of the prob-
lem are the minimum segment approximation (given a fixed
error) and the minimum error approximation (given a fixed
number of segments). A popular approximation scheme for
simplifying a polyline is the Douglas-Peucker algorithm [6,
13], which greedily prunes the input to a subset of the origi-
nal vertices (that is, the approximation is not allowed to use
non-input points, often called Steiner points). The Douglas-
Peucker algorithm lacks good worst-case guarantees, but re-
mains popular due to its simplicity. It was shown in [2]
that a greedy merge scheme yields a better polygon approx-
imation than Douglas-Peucker, providing both a worst-case
guarantee and a distributed implementation better-suited to
sensor networks.

On the other hand, if Steiner points are permitted in the
approximation (as is the case in our setting), then even ap-
proximating a single contour (homotopy type) optimally is
NP-hard [11]. A good survey of various polygon and subdi-
vision approximations can be found in [16]. For isocontours,
Estkowski et al. [7] show that the minimum segment approx-
imation with no Steiner vertices is NP-hard to approximate

within a factor n
1
5−δ of optimal.

In the sensor network community, the contour detection
and simplification problem has received a lot of attention.
Many boundary (physical or data space) detection algo-
rithms [3, 8, 17, 18, 23, 25, 28] have been proposed, in

1Our dynamic program partitions contours into disjoint
fragments and approximates each separately. This poten-
tially gives a less-than-optimal Hausdorff approximation,
because the optimal Hausdorff approximation is not con-
strained to match subcontours with unique approximating
segments. However, since topology preservation is one of our
goals, this pairing of subcontours with their approximating
segments seems desirable.
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which each sensor detects and stores a part of the boundary.
None of the distributed heuristics proposed for compressing
the boundary representation of the contours [12, 26, 32] are
able to provide worst-case approximation guarantees, with
the exception of [2], which is valid only for a single polygon.
There are other schemes [22, 30] that detect and compress
these contours (temporally and/or spatially), but no formal
analysis is available either for their worst-case approxima-
tion performance or their topology preservation.

3. ISOCONTOURS AND SPATIAL
SUMMARIES IN SENSOR NETWORKS

We consider a problem setting in which a network of sen-
sors measures a spatially distributed phenomenon in the
plane. The precise nature of the phenomenon and the de-
tails of the sensing are not relevant to our work, as long as
we can view the sensed data as a bi-variate function S(x, y),
where S(x, y) is the value of the function at location (x, y).
This abstract viewpoint is sufficient for a broad range of
sensing applications, including environmental monitoring of
temperature, humidity, sound, light, toxin levels, etc., as
well as the monitoring of network-centric properties such as
network congestion, wireless link quality, etc.

We assume further that the surface S is available to us as
a set of discrete isocontours—there are several algorithms
available for identifying contour lines in a field (see Sec-
tion 2). The focus of our work is to compute a compact rep-
resentation of these data. We make no assumptions about
the shape of the contour map or the density of the nodes, ex-
cept that the set of isocontours is stored distributed among
the sensor nodes: each node may contain a bounded-size
portion of the (local) contour map.

We assume that the sensor nodes use an underlying com-
munication protocol, perhaps using a data-aggregation tree
to combine these fragments of the contours into a bounded
size approximation of the entire map. We present our al-
gorithm at a high enough level that specific details of this
protocol and the network architecture are not critical. Nev-
ertheless, the algorithm is well-suited to both Berkeley’s
SNA [4] and USC’s Tenet [9] architectures. The only primi-
tive we require is for a node to receive the contour summaries
from other nodes (say, its children) and then merge those
summaries along with its own portion of the contour map
into a new summary, while maintaining local optimality and
topological consistency.

3.1 Problem Statement
The input to our algorithm is a set of m polygonal con-

tours, distributed in a sensor field. We let |Ci| denote the
number of vertices in contour Ci, and N =

P
i |Ci| denote

the total size of the input contour family. (Thus, the in-
put size for our problem is determined by the complexity of
the contours, and not the number of sensors. Typically, we
would expect that the number of sensors involved in contour
approximation is smaller than N .) We make no assumption
about the shape or size of any contour, except that each
Ci is a simple (non-self-intersecting) closed curve, and no
two contours intersect—any two contours either have dis-
joint interiors or one contains the other. Therefore, there is
a unique nesting order among the contours, which we call
the topological structure of the map. Our approximation

must respect this structure: the output is a set of piecewise
linear contours (polygons) P1, P2, . . . , Pm.

We use the Hausdorff error metric to measure the qual-
ity of approximations. The Hausdorff error between two
polylines is the maximum distance of a point on either poly-
line from the other polyline. Let d(p,Q) be the minimum
Euclidean distance of a point p from a polyline Q. Then,
for polylines P = (p1, p2, . . . , pn′) and Q = (q1, q2, . . . , qn′′),
where pi and qi are the vertices defining the segments of P
and Q respectively, the Hausdorff error can be formulated
as

H(P,Q) ≡ max( max
0≤i<n′ d(pi, Q), max

0≤j<n′′ d(qj , P )).

Figure 1: An approximation for the accordion-fold
contour that minimizes the Hausdorff distance does
not preserve the left-to-right linear shape of the con-
tour at all.

An obvious goal for an approximation P of a contour C
is to minimize H(P, C). An unconstrained minimization of
Hausdorff distance, however, does not preserve the shape
well. Figure 1 shows an example where the input contour
is a shaped like a folded accordion. If we were to seek a
k segment approximation to this accordion, minimizing the
Hausdorff error, then we get a k-segment chain crossing the
accordion left-to-right k times. This yields a maximum error
of about d/k, where d is the vertical height of the accordion.
Clearly, however, this is a poor approximation of the input
shape; a natural approximation should traverse the accor-
dion once from left-to-right (yielding maximum error about
d/2). In this work, therefore, we choose an approximation
strategy more suited to shape preservation. In particular,
we partition each contour into a sequence of contour frag-
ments, splitting at the vertices, and associate each segment
of an approximation with a single contour fragment. The
cyclic order of the approximation segments matches that of
the contour fragments. For each approximate segment we
measure its Hausdorff distance to its associated fragment
and vice versa. The maximum over all segments and frag-
ments is the error of the approximation. For the isocontour
approximation, the error is the maximum of all the errors
for individual contours and their approximations; we denote
this error by ε.

4. THE APPROXIMATION ALGORITHM
Our approximation algorithm consists of two phases: the

compression phase, followed by the untangling phase. The
compression phase reduces the total size of all contours to
O(k), but the resulting contour cycles may intersect, thus
violating the desired topological structure. The untangling
phase removes the intersections while keeping the approxi-
mation error within a constant of the optimal.

The compression phase itself has two parts, which we
call stick-fitting and cycle-formation. The first part, stick-
fitting, performs a crude approximation in which each con-
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tour is partitioned into contiguous fragments, and each frag-
ment is approximated by a single line segment (called its
stick). The stick is the midline of a minimum-width rect-
angle that completely contains the contour fragment being
approximated. The union of these rectangles covers all the
contours in the map, and the maximum error in the approx-
imation is half the width of the widest rectangle. The stick-
fitting phase aims to cover the contour map using at most k
rectangles with the minimum width possible. However, the
sticks that form the central axes of these rectangles do not
necessarily meet end-to-end, and so the second phase (cycle
formation) is invoked to add new segments joining consecu-
tive sticks without increasing the approximation error. The
untangling phase resolves intersections between the cycles
thus formed. In the following sections, we discuss each of
these components and present their analysis.

4.1 The Compression Phase
The stick-fitting phase is the only hierarchical, distributed

portion of our algorithm. It produces an approximation con-
taining k possibly-disconnected segments; the subsequent
phases, performed at a single node or base station, form cy-
cles and untangle them. Stick-fitting is performed at a node
when the total size (number of edges) of the approximated
contour map (received at that node) exceeds k. For instance,
during the upward data flow in an aggregation tree, the total
size of all the children’s summaries will typically exceed k
and the parent node will perform stick-fitting. Stick-fitting
makes no assumptions about the input sequence of contours:
each contour could have multiple disjoint pieces, and some
contours may be completely missing. The only requirement
is that each input summary either contains at most k seg-
ments of the original contours, or it contains k fragments
constructed by stick-fitting.

4.1.1 Stick-Fitting
The stick-fitting phase decomposes the contours into k

fragments, and approximates each fragment with a stick
(line segment) so that all points of a fragment are within
distance ε of its associated stick. This is a relaxed version
of our problem since it does not require that the sticks for
each contour form a connected polyline. Clearly, though,
the optimal error achieved using this relaxation is a lower
bound on the error we can obtain in our approximation.

Every node that has a portion of the contour boundaries
reduces the number of fragments in its approximation to
k before sending it to its parent in the aggregation tree.
If the node has k′ fragments that it needs to reduce to k,
it repeats the following step k′ − k times: merge the pair
of adjacent contour fragments whose merged fragment has
minimum width. This extends the scheme of [2] to multiple
contours. The analysis of that paper applies to prove the
following lemma2:

Lemma 1. If the stick-fitting algorithm approximates a
single contour using at least 2ki + 1 sticks, then the error
of the approximation is no larger than the error of an opti-
mal decomposition into ki fragments.

2A slight extension of the analysis is necessary to handle
the case when a set of fewer than k fragments (necessar-
ily all original contour segments) is merged with a set of k
fragments.

4.1.2 Stick-Fitting Analysis for the Contour Family
In the stick-fitting problem, we are not concerned with

the topological constraints of the different contours. Thus,
it is possible to devise an optimal polynomial time algorithm
using dynamic programming. The dynamic programming
algorithm is centralized and computationally inefficient, but
we use it only for error analysis. We will show that the
maximum error of our hierarchical scheme of merging adja-
cent fragments is within a constant factor of this dynamic
program’s solution.

To construct an optimal stick-fitting approximation for a
set of contours, we first use dynamic programming [2] to
compute the optimal approximations for each contour Ci

of all sizes from 1 to k. Taking single-segment approxima-
tions for each Ci gives an m-segment approximation for the
whole set. To increase the approximation size from m to k,
we repeatedly select the contour whose approximation has
maximum error and increase its approximation size by one
(the dynamic programming precomputation tells us the op-
timal approximation error for the increased size). This pro-
cess produces a k-stick approximation with minimum error.
The following lemma bounds the error of the stick-fitting
algorithm.

Lemma 2. If the stick-fitting algorithm approximates all
m isocontours using at least 2k +m sticks, then the error of
the approximation is no more than the error of an optimal
decomposition using k sticks.

Proof. Let us suppose that the dynamic programming
algorithm allots ki sticks to represent contour Ci, withP

1≤i≤m ki = k. The error associated with contour Ci is

εD(ki); the overall dynamic programming error is ε(D, k) =
maxi εD(ki). Similarly, suppose that stick-fitting allots k′

i

sticks to contour Ci, with
P

1≤i≤m k′
i ≥ 2k + m. The stick-

fitting error for Ci is εS(k′
i), with overall stick-fitting error

ε(S, 2k + m) = maxi εS(k′
i).

We need to show that ε(S, 2k +m) ≤ ε(D, k). We assume

ε(S, 2k + m) > ε(D, k) (1)

and prove the result by contradiction. For Equation 1 to
hold, Lemma 1 implies that there must be at least one con-
tour, say Cu, for which the number of segments k′

u is strictly
less than 2ku + 1. Without loss of generality, let us assume
that this corresponds to the maximum error in the approx-
imation, that is,

ε(S, 2k + m) = εS(k′
u) (2)

Consider the point in the merging process when Cu had
exactly k′

u + 1 fragments and the stick-fitting algorithm
picked two of the fragments from Cu to merge and left it
with k′

u fragments. By the pigeonhole principle, there must
have been at least one contour at that point, say v, that
had strictly more than 2kv + 1 fragments. Let the number
of fragments in v at that time be k′′

v , where k′′
v > 2kv + 1.

Since these fragments are formed using the merge operation,

εS(k′′
v − 1) ≤ εD(kv) ≤ ε(D, k) (3)

For the stick-fitting algorithm to pick Cu for merging ahead
of Cv, we must have

εS(k′′
v − 1) ≥ εS(k′

u) (4)

This equation comes from the fact that merging two frag-
ments of contour Cv leads to more error than merging two
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fragments of Cu (when they have k′′
v and k′

u +1 segments re-
spectively), hence two fragments of Cu are merged, leaving
it with k′

u fragments.
From equations 3 and 4 and the fact that ε(S, 2k + m) =

εS(k′
u) (Equation 2), we get

ε(D, k) ≥ ε(S, 2k + m) (5)

This contradicts the assumption made in Equation 1 and
therefore proves our result.

4.1.3 Cycle-Forming
After the stick-fitting phase is done, we are left with a set

of k sticks that approximate the given set of contours with
maximum error ε. We now show how to form closed cycles
using these sticks while increasing the error by at most a
factor of two.

εj

ε ′− εj

A

B

D

C

E

F
G

H
P Q

R

S

T

P

R

S

T

Figure 2: Cycle-forming (left) and simple closed
curves (right)

Let the set of errors associated with the approximation
segments (sticks) of some contour Ci be ε1, ε2, . . . , εki , where
ki is the number of sticks. Let the maximum of these indi-
vidual fragment error values be ε′ ≤ ε.

While forming a connected chain we exploit the fact that
not every stick has ε′ error associated with it. As an ex-
ample, consider a stick EF of the approximation as shown
in Figure 2 and let the error associated with it be εj . Let
the bounding rectangle corresponding to EF be ABCD as
shown in the figure; hence the length of AB and CD is 2εj .
It is not difficult to see that any point E′ that is within
distance ε′ − εj of E can be used to replace E without in-
creasing the overall error of the approximation. The loci of
all such points form disks around end vertices. If the disks
corresponding to two consecutive sticks intersect, then any
intersection point can be used to replace the two end points
without increasing the error to more than ε′

In the left part of Figure 2, GH is the next stick. The
disks corresponding to F and G intersect, and hence any
point in the intersection region can be used to replace both
F and G. However, if these circles do not intersect, we add
two segments from F and G to the common vertex of the
fragments corresponding to EF and GH . These segments lie
inside the bounding rectangles of the fragments, and hence
each lies within distance 2ε of its corresponding fragment.

The polygons produced by stick-fitting and cycle-forming
are not necessarily simple: that is, they may self-intersect.
To resolve these self-intersections while preserving the er-
ror guarantee, we break crossing segments at their inter-

sections and reconnect them into a simple, Eulerian tour.
Figure 2 (right) shows a simple case. In general we remove
self-intersections as follows: embed the polygon in the plane;
break every segment of the polygon at all its crossings; create
a simple polygon by traversing the outer face of the embed-
ded polygon; erase all the (sub)segments of this outer poly-
gon; recursively compute a simple polygon for each compo-
nent of edges that remains (erasing the outer polygon leaves
all vertex degrees even, so the recursion is possible); and
finally hook each inner polygon to the outer one by per-
forming an edge reconnection as in the figure. This process
enforces simplicity and preserves the error guarantee, but
it increases the number of segments in the approximation.
However, as our experiments show (Section 5), this proce-
dure, while theoretically required, is rarely if ever needed in
practice.

4.2 Untangling Phase
After the compression phase each contour is approximated

by a simple closed polygon. These approximating polygons,
however, might intersect each other, violating the topolog-
ical structure of the original contours. Therefore, we now
show how to resolve these intersections, with only a con-
stant factor error increase in the worst case. In particular,
we argue that when two approximate contours intersect, we
can use part of one to approximate a portion of the other,
resolving the intersection while maintaining a guaranteed
worst-case error.

4.2.1 Untangling Phase Analysis
Recall that every contour is partitioned into fragments

by the stick-fitting algorithm. Every fragment is associated
with a minimum-width rectangle that encloses the whole
fragment. We call such a rectangle an MBR, short for Mini-
mum Bounding Rectangle. The following lemma character-
izes the relationships between the MBRs and the original
contour.

Lemma 3. Any input contour Ci lies completely inside
the set of MBRs associated with its approximation, and every
MBR intersects at least two other MBRs.

Proof. The MBR corresponding to a fragment contains
all the fragment’s vertices. Hence every segment of Ci lies in-
side some MBR. Every pair of consecutive fragments shares
a common vertex. The common vertex must be inside or on
the boundary of the two corresponding MBRs, so those two
MBRs must intersect. There are two such common vertices
associated with every MBR, establishing the second part of
the lemma.

Consider two intersecting contour approximations P and
Q, and let the contours associated with them be C(P ) and
C(Q) respectively. We assume for simplicity that the ap-
proximations intersect with each other at two points; mul-
tiple intersections can be handled by repeatedly applying
the procedure described below. If there are multiple inter-
sections, one can show by induction that there must be a
lens—two intersections that are consecutive along both P
and Q. Untangling the lens reduces the number of crossings
by two, so we can remove all the intersections recursively.

Suppose that the input contours are nested, with C(P )
enclosing C(Q). (Similar arguments work if C(Q) encloses
C(P ), or neither encloses the other.) Let the two intersec-
tion points be pa and pb. Let the portion of P between
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pa and pb be P ′ and let the corresponding part of Q be Q′.
The Jordan curve theorem [14] states that any simple closed
curve in the plane separates the plane into two disjoint re-
gions, the inside and the outside. Using this we can define
Q′ as the part of Q outside P and P ′ as the part of P inside
Q. We use this notion of inside and outside throughout the
analysis.

Let us define H ′(U,V ) to be the one-sided Hausdorff dis-
tance between the two polylines U and V . That is,

H ′(U, V ) ≡ max
p∈U

d(p, V ),

where U and V include the segments of the two polylines,
not just their vertices, and d(p, V ) is the minimum distance
from the point p to the polyline V .

We now prove a key lemma concerning the distance be-
tween improperly nested approximations and the contours
they represent.

Q′

Q
P

C(P )

C(Q)

p

q

r
s

t

u

Figure 3: Illustration for Lemma 4 showing Q′, C(Q),
and parts of P and C(P ).

Lemma 4. Let P and Q be two intersecting approxima-
tions, with P ′ and Q′ as defined above. Then

H ′(Q′, C(P )) ≤ 4ε.

Proof. Because both the contours and their approxima-
tions lie completely inside the MBRs associated with the ap-
proximations, by Lemma 3, we have the following inequality:

H ′(P, C(P )) ≤ 2ε. (6)

The same argument also implies that H ′(C(P ), P ) ≤ 2ε.
Let us denote the set of minimum bounding rectangles of

P by MBR(P ). The main part of the lemma is to prove
that no point on Q′ is more than a constant times ε away
from the MBR(P ). For illustration, Figure 3 shows an in-
tersection between P and Q, with Q′ being represented by
(p, q, r, s, t, u).

We need to bound the distance from C(P ) of all those
points of Q′ that are outside MBR(P ) (those inside are cer-
tainly within 2ε of C(P )). A portion of Q′ can be outside
MBR(P ) only when it is also outside P (otherwise, by defi-
nition it is not part of Q′). In Figure 3, this corresponds to
polyline qrs; let us denote this portion by Q′

out. We know
that C(P ) lies inside MBR(P ) (from Lemma 3), and C(Q)
lies inside C(P ). Hence, no portion of C(Q) goes outside
both P and MBR(P ). No point on Q′

out is farther than 2ε
from C(Q). Every point on Q′

out is closer to MBR(P ) than
it is to C(Q). So we have

H ′(Q′,MBR(P )) ≤ 2ε. (7)

But every point on MBR(P ) is within 2ε of C(P ) (Lemma 3).
Hence

H ′(MBR(P ), C(P )) ≤ 2ε. (8)

Applying the triangle inequality to Equations 7 and 8 gives
the desired result.

This lemma shows that the portion of one approxima-
tion between two intersection points can be approximated
by some portion of the contour corresponding to the other
approximation. Let us define C(Q′) to be the portion of
C(Q) being approximated by Q′. Any fragment of C(Q)
whose stick is fully contained in Q′ belongs to C(Q′); seg-
ments of Q that are only partially in Q′ may lead to par-
tial fragments in C(Q′). That is, if nn(p, U) is the nearest
neighbor of a point p in the set U , F is a fragment of C(Q)
whose stick is only partially in Q′, and QF is the set of up
to three segments of Q that approximate F , then we add to
C(Q′) the partial fragment {q ∈ F | nn(q, QF ) ∈ Q′}. Note
that C(Q′) may be discontinuous in the first and last MBRs
associated with Q′. We would like to be able to claim that

H(P ′, C(Q′)) ≤ cε

for some constant c, but counterexamples show that this
is false. We need something more than P ′ to approximate
C(Q′). The fact that H ′(Q′, C(P )) ≤ 4ε suggests that part
of P might be used to approximate C(Q′).

We now explain the procedure used to determine P (Q′),
the part of P that is used to approximate C(Q′) (it includes
P ′, if nothing else). Recall that all contours and approxi-
mations are provided to us in cyclic order. Extending the
nearest neighbor function to sets, we define nn(Q′, P ) ≡
∪q∈Q′nn(q, P ) as the portion of P closest to Q′. This is
a possibly disconnected subset of P . Suppose it consists
of j disconnected pieces. We form a connected polyline by
adding into nn(Q′, P ) the j − 1 fragments of P \ nn(Q′, P )
closest to P ′ in cyclic order. This connected polyline is
P (Q′).

In the following two lemmas we show that the Hausdorff
distance (two-sided) between P (Q′) and C(Q′) is at most a
constant times ε.

Lemma 5. If C(Q′) is the portion of C(Q) approximated
by Q′, and P (Q′) is the polyline defined above, then

H ′(C(Q′), P (Q′)) ≤ cε

for some constant c.

Proof. From Lemma 4, we know that H ′(Q′, C(P )) ≤
4ε. Since H ′(C(P ), P ) ≤ ε, the triangle inequality implies
H ′(Q′, P ) ≤ 5ε. But P (Q′) is defined by proximity to
Q′, so H ′(Q′, P (Q′)) ≤ 5ε. By definition H ′(C(Q′), Q′) ≤
ε, so one more application of the triangle inequality gives
H ′(C(Q′), P (Q′)) ≤ 6ε.

Lemma 6. If C(Q′) is the portion of C(Q) approximated
by Q′, and P (Q′) is the polyline defined above, then

H ′(P (Q′), C(Q′)) ≤ cε

for some constant c.

Proof. Consider the four polylines shown in Figure 4.
The figure shows parts of P (it is showing P (Q′)), Q (show-
ing Q′), C(P ) (shows the part of C(P ) approximated by
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Figure 4: P (Q′) shown with Q′ , C(Q′) and part of
C(P )

P (Q′)) and C(Q) (showing C(Q′)). The figure also shows
the intersection points pa and pb; these are the beginning
and end points of Q′ respectively. Let I(P ) denote the in-
terior of the polygon P . C(Q′) can be divided into portions
inside and outside P . In the figure C(Q′) ∩ I(P ) consists
of the portions of C(Q′) between q0-q1, q2-q3 and q4-q5, and
C(Q′)\I(P ) consists of the portions of C(Q) between q1-q2,
q3-q4 and q5-q6.

Consider the parts of P (Q′) that join the endpoints of
individual fragments of C(Q′) ∩ I(P ); clearly these parts
of P (Q′) are closer to C(Q′) ∩ I(P ) than those parts of Q′

that are actually approximating it. Hence this portion of
P (Q′) is within c1ε of C(Q′), for some constant c1. Now
consider C(Q′) \ I(P ) and the corresponding parts of P (Q′)
that approximate it. Every point on such a part of P (Q′)
is closer to C(Q′) \ I(P ) than to any point on C(P ) (which
P (Q′) is approximating). Hence these parts of P (Q′) are
also within a distance of c2ε of C(Q′) \ I(P ), where c2 is
another constant. Hence every part of P (Q′) is within a
distance of cε of C(Q′).

The scheme outlined above uses a part of the outer poly-
gon P to approximate the inner polygon Q while resolv-
ing the intersections. The same guarantees can be obtained
while resolving the intersections the other way, i.e., using a
part of Q to approximate the improperly nested part of P .

The analysis of how much the untangling phase increases
the size of the approximation is complicated. If P is treated
as fixed, and portions of P are used to replace improperly
nested parts of Q, then the size of Q may increase by O(|P |).
Untangling a set of m contours in worst-case order may in-
crease the total approximation size to O(mk). However, by
careful choice of the untangling order (first fix the smallest
contour in the middle third of the nesting hierarchy, then
recurse), we can reduce the worst-case cost of untangling
to O(k log m). We conjecture that a more careful untan-
gling increases the size by at most constant factor, and are
currently working to prove that.

Thus, for the compression phase of our algorithm, we have
a worst-case guarantee of O(k) space and O(ε) error. For
the untangling phase, however, we currently have only the
O(k log m) size bound and O(ε) error. Our simulation re-
sults (next section) show the worst-case analysis is highly
pessimistic, and the untangling algorithm performs much
better in practice, never increasing the size by more than
10%.

Due to lack of space, we omit further details of this anal-
ysis and summarize our main theoretical result.

Theorem 1. Given a family of m contours and a size
parameter k, our algorithm produces a set of approximate
(possibly intersecting) contours of total size O(k), whose
maximum error is within a constant factor of the k-segment
optimal dynamic program approximation. If the approxi-
mate polygons intersect each other, an untangling algorithm
is used to remove any intersections and restore topological
consistency. We prove that the worst-case increase in the
size of the approximation due to untangling is O(k log m),
but conjecture that it is only O(k).

5. EXPERIMENTAL EVALUATION
In this section, we report on simulation results for our new

algorithm, which we call Topology-Sensitive-Compress.
We use various digitized contour boundary datasets in our
experiments, as well as synthesized residual energy datasets.
The datasets vary in size from 2000 points to 6000 points.
All simulations are done in C++.

The stick-fitting algorithm is implemented exactly as de-
scribed in Section 4.1.1, and the cycle-formation scheme
(Section 4.1.3) is used to form simple closed chains. The
(possibly) intersecting chains are then resolved using the
untangling algorithm; the approximations for inner contours
are used to replace improperly nested portions of outer ap-
proximations. All k values shown in the experiments are the
final sizes produced, unless specified otherwise.

5.1 Approximation Quality
We first discuss the quality of approximations produced

by our algorithm for various datasets, and its dependence
on the size parameter k. We also discuss the empirical ef-
fectiveness of the untangling phase.

5.1.1 Adaptation to Features
We begin with an experiment to illustrate the general ef-

fectiveness of the algorithm in approximating a wide and
complex range of contour shapes. Due to limited space,
we show only three representative pictures in Figure 5. We
chose these examples because of their rich contour structures
as well as the appropriateness of their data to potential sen-
sornet applications. The leftmost figure (labeled windspeed)
shows a contour map of windspeed values over the southeast-
ern United States (the input uses 3500 contour segments).
The middle figure (labeled noise) shows the noise contours
around the Cleveland Hopkins International Airport using
5000 segments. The rightmost (labeled eScan) is a syn-
thetic data set generated to mimic the energy depletion in
sensor networks, using the eScan model proposed by [32].
In particular, the eScan dataset was synthesized using three
hotspots in a network of 1500 sensor nodes. This dataset
has 6000 segments defining its boundary (after smoothing
the contours using anti-aliasing).

In all three figures, the size parameter for the approxi-
mation map is k = 64, resulting in a compression factor
of between 50 and 100. Still, as can be easily seen, the
algorithm nicely adapts to the complex features and distri-
butions of the contours, with very little loss in geometric
information. These results (both in compression factors and
visual quality) are typical of the experiments we ran.

5.1.2 Size-Quality Tradeoff
This section considers the size-quality tradeoff, measuring

the improvement in approximation quality as the approxi-
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Windspeed dataset Noise dataset eScan dataset

Figure 5: Approximations produced by Topology-Sensitive-Compress with k = 64.

mation size increases. See Figure 6. The figure shows the
plots for the same three datasets: noise (5000 segments),
an Australian rainfall dataset (3000 segments), and an Aus-
tralian temperature dataset (4200 segments). These datasets
were chosen because they exhibit increasing geometric com-
plexity in terms of the contour boundaries (noise being the
simplest and the temperature being the most complex). The
datasets and their approximations appear in Figure 5 (noise),
Figure 10 (rainfall), and Figure 9 (temperature). The error
shown in Figure 6 uses the absolute error, normalized by the
total perimeter of all contours in the dataset.
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Figure 6: Size-quality tradeoff

The figure shows that for all datasets, the error initially
decreases rapidly as memory increases, and then levels off.
For an approximation size of k = 90 or more, the error
is already below 0.2% of the total perimeter. The error
decrease is slower after k = 90. Despite a broad range of
shape complexity in these contours, our algorithm performs
equally well on all datasets—as expected, it only takes a
little bit more memory for the more complex datasets to
reach the low error value.

5.1.3 Discussion of the Untangling Phase
In this section we demonstrate a few important aspects

of the untangling phase of the algorithm. Figure 7 shows
an example of contour simplification for the noise data set,
with approximation size k = 32. The approximate contours
cross in the figure on the left; the result of untangling is
shown on the right. In this case, untangling does not in-
crease the maximum approximation error. In fact, this was
the case in all of our experiments—untangling corrected the
topological violation but did not increase the error. This can
be attributed to the fact that the Hausdorff is a maximum
error metric, and so for the error to increase, the maximum

Unresolved approximations Resolved approximations

Figure 7: Untangling phase

error segment must be intersected and replaced in a manner
that increases the error, which appears to be rare.

When multiple contours share common boundaries, we
can use an implicit method of representation to avoid dupli-
cation of data: in particular, we use pointers from the mod-
ified chain to its replacing subchain, and so the untangling
does not increase the number of vertices in the approxima-
tion.

Even without using an implicit representation, the mem-
ory impact of untangling is small. Figure 8 shows the im-
pact of cycle formation and untangling on the number of
segments in the approximations for the noise and rainfall
datasets. Starting from a stick-fitting approximation with
k segments (and nominally 2k vertices), cycle formation in-
creases the number of segments by up to 30% (but reduces
the number of vertices to 1.3×k), and untangling adds up to
another 10%. As k increases, the approximate contours are
closer to the input contours, and less untangling is necessary.
For these examples, no untangling is needed for k ≥ 70.

5.2 Comparison with the Rectangle-Refinement
Heuristic

The problem of contour-map approximation was discussed
by Hellerstein et al. [12] as a natural setting for in-network
aggregation of spatial data. Their proposed algorithm for
simplifying a single contour uses a simple refinement heuris-
tic: start with a rectangular bounding box of the contour,
and then repeatedly subtract the largest area rectangle from
the bounding box that does not include any point of the
contour. Each such subtraction increases the approxima-
tion size by at most four new vertices. This step is repeated
until the approximation has k vertices.

We refer to the rectangle refinement heuristic of Heller-
stein et al. [12] as RR, and show below a comparison be-
tween that heuristic and our scheme. We also compared our
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k=32 k=64 k=128

Figure 9: Comparative evaluation: First row shows approximations for RR and second row for Topology-
Sensitive-Compress

algorithm against approximation schemes based on wavelets
and the Douglas-Peucker algorithm [2]. Our new algorithm
outperforms them all, but due to space constraints we in-
clude the details only for RR.

The RR heuristic computes connected approximations for
individual contours without respecting the topological struc-
ture of the different contours. We resolve the intersections
among different contour approximations in exactly the same
way as in Topology-Sensitive-Compress.

Figure 9 shows the approximations produced by RR
and Topology-Sensitive-Compress for the temperature
dataset with k = 32, 64, and 128 segments. Note that in this
case, k is the number of segments after the cycle-formation
stage, in order to compare the memory allocation schemes
of the two algorithms (also, the RR algorithm does not pro-
pose any scheme to resolve the intersections).

For k = 32 both the approximations are quite coarse. For
k = 64, Topology-Sensitive-Compress approximates the
original contours quite closely, while RR is hampered by the
rectilinear style of approximation. At k = 128, Topology-
Sensitive-Compress represents the dataset well, while the
approximation by RR still has large local deviations.

5.3 Quantitative Performance
In this section we compare the error in the approximations

produced by our algorithm, RR, and the dynamic program
3. that uses disconnected segments. Clearly, the dynamic
program gives smaller error than any algorithm that pro-
duces connected approximations with the same number of
segments.

Table 1 compares the three schemes quantitatively. For
all memory sizes our algorithm clearly outperforms RR.
The approximations generated by Topology-Sensitive-
Compress using k segments have smaller error than the

3Due to lack of space, we do not describe the dynamic pro-
gram algorithm, but it is quite straightforward and will be
presented in the full version of the paper.

# segments RR TSC DP
32 66.00 16.24 8.18
64 51.78 7.96 4.55
128 49.76 3.14 1.60

Table 1: Error comparison between RR, Topology-
Sensitive-Compress, and dynamic programming.

dynamic program approximations using k/2 segments, sug-
gesting that our worst-case analysis is highly pessimistic.
This performance was observed for all of our datasets.

5.4 Error Metrics
The stick-fitting algorithm uses absolute error when de-

ciding which fragments to merge. This means that it always
merges the two fragments whose merge leads to smallest in-
crease in the error. This implicitly favors larger contours
and causes more merges to occur among the smaller con-
tours. If there is a large variance among the contour sizes,
the absolute-error-based merging will allocate a bigger share
of the memory k to larger-size contours.

An alternative would be to use relative error, scaling the
absolute error by the size (say, some function of the perime-
ter) of the contour. All of our theoretical results carry over
to the relative error as well, with the caveat that untangling
must proceed from the smallest-error to largest-error con-
tours to guarantee that no contour’s error grows too much.
Figure 10 illustrates the difference in empirical results one
gets from these two error measures on the Australian rain-
fall dataset. In this case also, k is the number of segments
after the cycle formation phase, so as to compare the dis-
tribution of memory by the two error schemes. It shows a
contour map in which the innermost contour is significantly
smaller than the outermost one. When the approximation
size is small (k = 32), the figure on the top-left shows that
the absolute error does a very poor job of approximating
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Figure 8: The effect of cycle formation and untan-
gling on representation size in the noise (top) and
rainfall (bottom) datasets.

the innermost contour, reducing it to a single segment. By
comparison, the (perimeter-weighted) relative error does a
much better job. As k grows to 64, both the absolute and
relative errors give reasonable approximations.

In our experiments, we found that in general the absolute
error produces more pleasing and predictable approxima-
tions, with the relative error mostly outperforming when k
is small and there is a large variance in contour sizes. Our
general recommendation is to use absolute error by default.
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