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ABSTRACT

Monitoring extreme values (MAX or MIN) is a fundamental prob-
lem in wireless sensor networks (and in general, complex dynamic
systems). This problem presents very different algorithmic chal-
lenges from aggregate and selection queries, in the sense that an
individual node cannot by itself determine its inclusion in the query
result. We present novel query processing algorithms for this prob-
lem, with the goal of minimizing message traffic in the network.
These algorithms employ a hierarchy of local constraints, or thresh-
olds, to leverage network topology such that message-passing is lo-
calized. We evaluate all algorithms using simulated and real-world
data to study various trade-offs.

1 Introduction

The nodes in a wireless sensor network generate vast amounts of
data that must be communicated to the network root (also known
as the base station) using radio transmission. Nodes are battery-
powered, and radio usage dominates their energy consumption.
Therefore, while any query can be answered by continuously stream-
ing all data to the root and processing it there, we can greatly extend
the lifetime of the network by developing query-specific plans that
limit the amount of data transmitted by the nodes.

One of the queries that greatly benefits from such optimization is
the continuous MAX (or MIN) query, which returns the node with
the current maximum (or minimum) value along with the value it-
self. This query is a typical example of a more general exemplary

aggregate. An exemplary aggregate [9] is one where the solution
consists of one or more representative values from the network, as
opposed to a summary, where the solution is computed over all the
values. We focus on exact query answering in this paper. The tech-
niques we develop also extend to approximate answers, where the
precision is traded off with the communication cost. We focus on
the MAX problem; the discussion for MIN is identical. We also
show that the one-sided quantile query (e.g., one that finds the top
10% values) is a straightforward extension of MAX, and can be
supported with the same techniques.
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Our aim in focusing on the MAX query is twofold. First, in de-
veloping a solution to MAX, we hope to gain insight into optimiz-
ing this general class of monitoring queries. Secondly, in practice,
continuous MAX is useful for detecting abnormal or extreme be-
havior. This type of behavior is not captured by summary aggre-
gates such as mean or sum, establishing a fundamental difference
between the applications of these two query types.

The continuous MAX query is useful in several scenarios like
maintaining maximum temperature in a factory, or tracking the lo-
cations and amounts of highest rainfall across geographic regions.
In both cases, part of the challenge in answering the query is that it
is not known a priori what constitutes high values.

Our basic insight into MAX optimization is to use the history of
values recorded, combined with suitable constraint settings, to pre-
vent nodes unlikely to have the maximum value from transmitting.
Though this intuition is straightforward, designing algorithms with
good performance guarantees based on this premise is tricky—even
quantifying “good performance” is challenging in itself.

It is important to note the distinction between MAX/quantiles
and selection queries: Unlike selection queries, in MAX/quantile
queries, nodes cannot decide their inclusion in the query result
themselves. Making this decision correctly naturally implies ad-
ditional communication. Our challenge is to build plans that mini-
mize this communication.

We illustrate the challenges of the continuous MAX query through
a study of two basic approaches and their shortcomings.

Prior Approaches

Temporal Suppression A first strategy (which is standard in con-
tinuous query processing) is to apply a temporal suppression policy
at all nodes. A node transmits its value if it has changed since the
last transmission. This policy keeps nodes from repeatedly sending
identical data and has great benefit in a mostly unchanging environ-
ment. Nevertheless, it does not differentiate between important and

unimportant nodes. Suppose in one timestep we have a maximum
value of 100, and a large number of nodes with value around 10.
Even if those nodes all double in value to 20 in the next timestep,
they are not in contention for the maximum value. Under temporal
suppression, however, they would report their new value.

Range Caching The problem of differentiating important and unim-
portant nodes is similar to the problem of balancing the precision
of cached values [11]. In their case, the root caches a range for each
value at a remote node. The remote node synchronously maintains
the same range stored at the root. The node only reports its value
if it violates the range. The length of the range naturally provides
a mechanism for controlling the trade-off between accuracy of the
response to a query on the value, and the amount of communication
between the root and the remote node.



a

b c d

v=10 v=50 v=90

[–80,100] [0,100] [80,100]

max=100a

b c d

v=10 v=50 v=90

[0,20] [40,60] [80,100]

max=100

Figure 1: Range caching.

In our setting, a natural extension of the range caching frame-
work assigns ranges with similar lengths, but such an approach
would just be a minor improvement over temporal suppression.
Making the ranges unequal in length can yield much better results.
Returning to our example where the max value is 100, a node with
a value of 90 should have a smaller range than a node with a value
of 10 for us to infer the correct max without additional remote ac-
cesses. In Figure 1, we compare tight equal-length ranges against
varied-length ranges, where the lower values are allowed greater
slack. Later in Section 3.1.2, we will see that a generic, adaptive
range adjustment policy can automatically tune range lengths to
match the perceived importance of values. This approach, how-
ever, still has a number of shortcomings:

• The basic range adjustment policy makes independent decisions
for each monitored value according to accesses to this value by
the overall continuous query. While this approach is very gen-
eral, it is also oblivious to potential optimization opportunities
that arise from knowing the semantics of the overall query. For
selection and summary queries, this generic approach works ex-
tremely well, but the MAX problem has special characteristics
that make this approach less effective. For example, unlike se-
lection and summary, a node cannot independently determine its
contribution to the MAX solution. Also, the semantics of MAX

imply we need not maintain lower bounds for values that are
currently not max, because only rising values can affect max.

• The range caching approach assumes separate, independent con-
nections between each node and the root. In a sensor network,
nodes are often organized into a tree for communication effi-
ciency. We need to exploit this hierarchy, especially since val-
ues may be spatially correlated. If a group of nearby nodes all
become max candidates due to other values falling, we should
not have to pay to access each of these nodes independently.

Contributions and Outline

In this paper we thoroughly investigate applying existing approaches
to the MAX query, illustrating their pitfalls. We then introduce
three novel algorithms, the most advanced of which is HAT. We
identify and employ the use of constraint localization as a funda-
mental method for reducing message traffic and, therefore, energy
consumption. For MAX, this technique involves setting threshold
values at nodes to suppress their reporting. We cover these contri-
butions in detail in Section 3. Section 4 analyzes various policies
for setting the threshold values. We present policies with worst-
case performance guarantees, as well as efficient practical policies.
Section 5 provides additional enhancements and extensions of our
approach. Finally, in Section 6, we compare the performance of
various algorithms and policies on both simulated and real data.

2 Related Work

Considine et al. [4] study the problem of accurately calculating
duplicate-sensitive aggregate queries such as sum and mean when

multiple copies of sensor readings are sent along separate paths to
the root to improve robustness. In contrast, MAX is not affected by
duplicates. Shrivastava et al. introduce the q-digest structure [14] to
approximately answer queries such as histograms using compres-
sion techniques. MAX, being a single value, does not benefit from
compression.

Madden et al. [10] suggest strategies for running ad hoc queries.
Even while operating in a “one-shot” setting they recognize the ad-
vantages of pushing threshold-based filters into the network. For
example, while running a pipelined MIN query, they suggest abort-
ing the query after some amount of time, determining the minimum
value so far, and running a new query requiring nodes to only re-
spond if they have an even smaller value.

As mentioned in Section 1, Olston et al. [11] present the problem
of caching value ranges of remote data sources to support queries
at a server. Their techniques can be applied to the sensor setting,
which we do for MAX in Section 3.

Deligiannakis et al. [6] address the problem introduced by nodes
being organized in a network hierarchy. Their algorithm is a direct
adaptation of the algorithm in [11]. It is designed for summary ag-
gregates such as sum, where nodes cache ranges covering the sub-
solutions for their subtrees. Because MAX is exemplary, it requires
a different translation of [11].

The algorithm in [8] can be adapted for continuous MAX moni-
toring. The basic strategy, similar to [11], is to install a value range
at each node, and store that range at the root. Nodes send data to the
root only if their values leave their ranges. When an ad hoc MAX

query is received, the root sorts nodes by range upper bounds. The
root queries each node in order one-by-one, while maintaining a
running maximum value. If enough nodes have been searched such
that all unsearched nodes have upper bounds below the running
maximum, the running maximum is the solution. This one-by-one
approach is costly since it ignores network topology. Consider two
nodes adjacent in sort order (and partially overlapping in ranges)
that are far away from the root and share a common parent in the
network. We should clearly query both nodes simultaneously so the
transmission cost of the queries and replies can be shared. While
this example is extreme, most realistic situations would also benefit
from more carefully designed data acquisition plans.

Cheng et al. [2] apply adaptive threshold setting to the process-
ing of entity-based queries in a stream in a distributed environment.
MAX can be seen an example of an entity-based query. They install
identical thresholds at every node to detect when its value either en-
ters or leaves a specified range. If the set of nodes within the range
shrinks too much, their approach is forced to potentially query
the entire network to build a new range. Our algorithm for set-
ting thresholds is more powerful because we permit non-identical

thresholds at nodes that can adapt locally. As we will show, this
flexibility brings superior performance.

As discussed in [12] and [13], there is a trade-off between send-
ing correlated data promptly to the root via shortest paths or to a
common meeting point where such data can be compressed. This
issue arises in our context as well. There is a benefit in assign-
ing nodes with similar values to the same parent, and we try exploit
this benefit when possible by allowing nodes to change parent-child
relationships dynamically and opportunistically to improve perfor-
mance (Section 5).

Finally, our work on monitoring extreme values complements
earlier work we have done on processing ad hoc top-k queries in
sensor networks [15]. The continuous monitoring aspect we now
address requires we constantly and thoroughly leverage previous
state to avoid querying the entire network.



3 Algorithms for MAX

Our network consists of n fixed-location nodes, u1 . . . un. Each
node, ui, measures some feature, such as temperature, obtaining a
value, vi. The network is rooted at a base station node with full
computing capabilities. All nodes either contact the root directly or
indirectly through a routing protocol installed in the network.

Our goal is to minimize energy consumed by the network. We
primarily focus on radio communication, the dominant consumer
of node energy. We aim to minimize the number and size of mes-
sages sent and received in the network. The MAX problem is to
maintains, continuously, the (node id , value) pair for the node
with the maximum value in the network. We assume the query
is processed repeatedly over a series of rounds, where each node
generates a value in each round. Each round is long enough for
all necessary messaging to occur in order to complete the query.
This generally consists of no more than a few sets of exchanges be-
tween the root and nodes. We use rounds for two reasons. First, it
simplifies the notion of a continuous query by avoiding synchrony
issues. Second, although we ideally want the query to be contin-
uous, we realistically need to discretize the nodes’ measurement
activity since truly continuous sampling of the environment is ei-
ther impossible or too expensive to implement.

The routing tree evolves over time to cope with failure and opti-
mize performance. A node, uc, must be registered at all times with
some parent node, up, although that node can change. Any mes-
sages at uc headed for the root are sent through up. Messages travel
throughout the network stored in packets. We define the following
packet types for use in our algorithms, and explore their uses in
detail shortly.

Type Description

Boot Initial application installation and query
Trigger Node sending own value
Query Root initiating fetching of values
Reply Response to Query

ThresholdUpdate Update to node constraints
MaxDesignate Designate node as current max

MaxOff Notify node that it is no longer max

Of the five algorithms discussed in this section, the latter four are
illustrated comparatively for the same scenario in Figure 2. The
accompanying text is at the end of this section. These may prove
helpful for tracking the algorithms during discussion of each.

3.1 Topology­Oblivious Algorithms

We begin by ignoring network topology and pretend all nodes are
connected directly to the root in a one-level tree (for the purpose of
algorithm design).1 With this simplification, we present three algo-
rithms. Two of these were introduced in Section 1. The goal of this
subsection is to progress from generic policies to a query-specific
policy for reducing messaging (while still confined to the simplifi-
cation that each node’s communication with the root is optimized
in isolation).

3.1.1 Temporal Suppression (TS)

We introduced this policy in Section 1; we formally define it here.
The root disseminates a Boot packet to all nodes. In response, each
node ui initially sends its value, vi, to the root, and locally stores
vi in the field vold

i as its last value sent. The root stores all received
values. In each subsequent round, if vi 6= vold

i , ui transmits vi

1In practice, it can still take multiple hops for a message to the
root. Furthermore, as a routing optimization, messages converging
at the same intermediate node can still be combined into one bigger
message in order to share overhead cost.

in a Trigger packet to the root and updates vold

i to vi. The root
overwrites old saved values with newly received ones. It then cal-
culates the maximum value simply by finding the maximum among
all saved values.

3.1.2 Range Caching (RC)

This policy, also mentioned in Section 1), is a direct application
of [11] to MAX and the sensor network setting. After receiving
Boot packets from the root, each node ui initially transmits to the
root the value vi and a range [lbi, ubi] around vi (in fact, the range

alone is sufficient). The range is set such that vi = (lbi+ubi)
2

(set-
ting of the range length will be discussed shortly). The root main-
tains the maximum value vmax and the corresponding node umax.

In subsequent rounds, if vi falls out of the range [lbi, ubi], ui

transmits a Trigger packet listing vi along with a new range to the
root. Once the root receives all reports in a round, it determines
if it already has the maximum value. First it compares the highest
reported value, v∗, against the highest upper bound of unreported
values, ub

∗. If v∗ > ub∗, vmax is set to v∗. On the other hand, if
ub

∗ > v∗, or if no nodes report in that round, the root identifies the
highest lower bound of unreported values, lb∗. For each unreported
node, ui, with ubi > lb

∗, the root sends a Query packet requesting
vi. Each of these sends back a Reply packet. The solution is the
maximum of v∗ and all values received in Reply packets.

For setting lengths of the ranges, we again directly apply the
adaptive scheme described in [11]. Whenever ui does a value-
based transmission (when vi falls outside its current range), it ex-
pands the length of the range (ubi − lbi) by a factor α > 1. The
new range is again set to be centered at vi. Whenever ui does a
query-based transmission (in response to a Query packet request-
ing vi), with a 50% probability, it contracts the range length by a
factor of α. In both cases, ui transmits lbi and ubi to synchronize
the root. For the node umax with the maximum value, since its
value is needed at all times, range length is always set to 0.

This adaptive scheme has the effect of tuning cache ranges to
match a node’s importance. When a node’s value decreases, it ex-
pands its bounds to lessen the chance of having to transmit in the
future. The nodes competing for the max, however, contract their
bounds as they are queried, to lessen the chance of having to be
queried in the future. In effect, the nodes competing for the max
end up with tighter ranges than nodes not competing for the max.

Note that both TS and RC are query-oblivious. Nodes aside
from the root are not aware they are supporting the MAX query. In
RC, however, the root’s actions can attune the nodes’ ranges to the
MAX query to some extent.

3.1.3 SLAT

Our first new algorithm, SLAT, stands for single-level adaptive

thresholds. It disseminates query-specific instructions, making it
non-oblivious, unlike TS and RC.

Initialization Each node, ui, is assigned a threshold, τi, known
to both ui and the root. Upon receiving a Boot packet, each ui

sends vi to the root, and sets τi = vi. The root determines the
highest returned value, v∗. In the first round, when all nodes reply,
the originator of the value v∗ is the node with the maximum value,
umax. The root sets vmax = v∗.

The root then sends a MaxDesignate packet to umax, instructing
it to do temporal monitoring. Note that all thresholds, except for
the node with the maximum value vmax, are below vmax in this
round. We formally state this property as an invariant that holds
throughout all subsequent rounds.



INVARIANT 1. In a particular round thresholds are set such

that for each node ui, τi ≤ vmax.

Behavior in a Round Each subsequent round proceeds in three
stages:

• Node-initiated reporting. In the first stage, if a node ui is desig-
nated umax and vold

i 6= vi, ui transmits a Trigger packet listing
vi to the root. If not designated umax, ui transmits a Trigger to
the root only if vi > τi.

• Root-initiated querying. Once all nodes have reported, the root
determines v∗ from the set of all returned values and, if umax

did not report, the stored value of umax. Let u∗ be the node with
value v∗. If ∀i : v∗ ≥ τi, we set vmax = v∗, and umax = u∗.
Otherwise, a Query packet is sent to each ui for which τi >
v∗. The Query contains v∗. Each ui receiving a Query sends a
Reply with its value, vi, only if vi > v∗. At the root, vmax is
then set to the maximum value in all Reply packets, and umax is
set accordingly. If no nodes reply, vmax = v∗ and umax = u∗.
If umax designation changes from the previous round, the root
sends a MaxOff packet to the old umax and a MaxDesignate

packet to the new umax.
Note that the queries in this second stage only occurs when the
value at the designated umax falls. If the value stays the same
or rises, but one or more nodes overtake it in value, that change
will be detected in the first stage. Because of Invariant 1, any
node overtaking the designated umax in value must have had
a threshold below vmax from the previous round. Therefore,
a node cannot overtake a non-dropping vmax without breaking
its own threshold and sending a Trigger packet. On the other
hand, a node can become the new umax without breaking its
threshold, if the old maximum falls below it. In this case, it is
possible that the new maximum value can only be discovered
through querying in the second stage.

• Threshold setting. To maintain Invariant 1, each τi must be up-
dated and consistently stored at ui and the root. Whenever ui

breaks its threshold and sends a Trigger to the root (in the first
stage), it awaits a threshold update. Once the root determines
the vmax for the round (in the second stage), it transmits that
vmax to all nodes awaiting updates in ThresholdUpdate pack-
ets. Each such node ui updates its threshold τi to be halfway
between its own value vi and vmax. The root carries out the ex-
act same update to its own copy of τi using vmax and vi, both
of which are known at the root.
Whenever a node ui is queried in a second stage, there are two
cases: if vi exceeds the Query value, then ui has already replied
with vi in the second stage, and τi is set to vi. Otherwise ui

sends a Reply with a new τi, lowered to be between vi and the
Query value. If doing so will not lower τi much below the query
value, ui has the option of setting τi to the Query value and
not replying. The root implicitly assumes this behavior unless
it hears from ui. This optimization saves messaging when the
benefit of further lowering τi is small.
This adjustment policy raises thresholds when node values break
them and lowers thresholds when the root queries nodes, thereby
maintaining Invariant 1. We also see the impact of the choice
of thresholds. The lower a node’s threshold, the more likely
the node breaks it and sends its value to the root. The higher
the threshold, the more likely the root has to query the node
during the second stage. We explore threshold setting more in
Section 4.

We explore the relative performances of TS, RC, and SLAT in
Section 6. There are various trade-offs that benefit or penalize these
algorithms depending on conditions. While without perfect future

knowledge it is difficult to decisively choose one, we continue our
discussion of algorithms building on the use of thresholds, which
we believe can be advanced most naturally and effectively to ex-
ploit topology.

3.2 Topology­Aware Algorithms

We next introduce two novel algorithms that build off of SLAT. The
key difference is we now acknowledge nodes communicate to the
root through each other and share common routes to the root. We
now leverage these characteristics.

3.2.1 SLAT­A

Our next algorithm SLAT-A stands for single-level adaptive thresh-

olds with aggregation. It considers topology by making an incre-
mental improvement over the basic SLAT algorithm. SLAT trans-
mits all Trigger and Reply packets to the root. It is easy to see that
this approach can be improved. Consider nodes ui and uj with val-
ues vi and vj . Both send Trigger packets that converge to the same
ancestor node in the network, where we have the chance to com-
pare their values. If vj > vi, it is impossible for vi to be the max.
In that case, the root need not know about vi. Instead of forwarding
both Trigger packets, we drop vi and only pass on vj . In general,
we enforce the policy that whenever more than one Trigger (or Re-

ply) packet headed for the root meet, we only pass the packet with
the highest value.

The aggregation of messages complicates threshold setting, be-
cause the root cannot tell from a single Trigger message from its
child what other nodes in the subtree may have broken their thresh-
old, and by how much. Effectively, what the root observes at a
child is the behavior of the maximum value in the subtree rooted at
this child. To ensure correctness, SLAT-A does the following: any
node that previously received a Trigger packet from a child remem-
bers the child sent it, even if this packet was dropped in favor of a
higher value. Then, when the root sends a ThresholdUpdate packet
with vmax to a child, this packet is propagated recursively down
the tree to all descendants who previously sent a Trigger. Note in
this case the root no longer knows the exact threshold value at ev-
ery node, but it is still guaranteed that every threshold value is set
below vmax, thereby ensuring correctness of the algorithm.

A more severe consequence of aggregation occurs when the max-
imum value falls. Since the root does not know the individual
threshold values for most nodes, it is now forced to query most
of the network in the second stage, when the current umax falls in
value, incurring significant cost in Query traffic.

Nevertheless, the immense savings in reducing Trigger and Re-

ply traffic trade off well with the increased Query traffic. Consider
the scenario where values at all nodes rise. SLAT is no better than
temporal suppression, where all nodes send Trigger. SLAT-A, how-
ever, is able to aggregate messages significantly. Specifically, if ui

has f children, it sends a message listing only one value, rather
than f .

3.2.2 HAT

We finally present HAT, our most sophisticated algorithm, which
fully leverages network topology. HAT stands for hierarchical adap-

tive thresholds. Its fundamental advance is to empower nodes within
the network to make local decisions, rather than simply act as con-
duits. We call this technique constraint localization, where the
nodes can be seen as supporting a network of continuously mon-
itored and dynamically adjusted constraints in support of a query.
The main improvements of HAT over the other algorithms are that
values are only propagated upward until they reach an ancestor with
threshold higher than it, and that queries do not propagate as far



downward, stopping at nodes with threshold below the fallen max
value. We introduce a stronger invariant to enable constraint local-
ization.

INVARIANT 2. For each node u having threshold τ , with par-

ent up having threshold τp, τ ≤ τp.

With this invariant, HAT captures the advantage of aggregation in
SLAT-A while avoiding its massive querying in the second stage.
A perhaps more subtle point is that HAT can exploit aggregation
along the time dimension as well to further reduce upward message
traffic. We will substantiate these points later in this section.

HAT is built from SLAT with some key changes. HAT performs
hierarchical maintenance of thresholds. Each node tracks the thresh-
olds of each of its child nodes. The root, unlike in SLAT, maintains
just the thresholds of its immediate children. We organize HAT

into two stages, node-initiated reporting and root-initiated query-
ing, with discussion of threshold setting for each.

Node-Initiated Reporting As before, whenever a node ui receives
a Trigger packet from a child node, uc, it sets a flag indicating uc

requires a threshold update. If ui either breaks its threshold τi or
receives from a child a Trigger packet with value vTr , such that
max{vi, vTr} > τi, it sends a Trigger packet to its parent, up. If
ui receives several Trigger packets, it only passes on the highest
value among them and vi itself.

Compared with SLAT-A, which also aggregates Trigger packets,
HAT performs additional local filtering based on τi. Specifically, if
ui receives a Trigger packet from uc such that vTr < τi, ui does
not forward the packet upward to up. Instead, it sends a Thresh-

oldUpdate packet listing its own value, vi, back to uc. It also up-
dates its threshold setting for uc (details to be given later).

When a node ui receives a ThresholdUpdate packet listing value
vTU , it first modifies its threshold value τi to within the range
[max{vi, vTr}, vTU ], i.e. somewhere below the ThresholdUpdate

value and above the value that previously caused it to send a Trig-

ger (we defer the exact choice of threshold within this range to
Section 4). Then, ui sends ThresholdUpdate packet on to all child
nodes it has flagged as needing a threshold update. Notice this
scheme implies that all nodes along the path to umax will have
thresholds equal to vmax.

Root-Initiated Querying The root first determines v∗ from all
values received in Trigger packets and, if umax did not report, the
stored value of umax. The root only sends Query packets with v∗

to those of its child nodes with threshold values greater than v∗.
In turn, each node receiving a Query packet only forwards it to its
children with thresholds greater than v∗. Any nodes with values
greater than v∗ send the their values to the root in Reply packets, as
before. If a Reply is sent, all nodes along the path from the source
of the Reply to the root set their thresholds to the Reply value. Like
Trigger, Reply packets are aggregated and only the maximum of
them is transmitted.

A node has freedom to lower its threshold if no queried nodes in
its subtree exceed v∗. Due to Invariant 2, however, node ui cannot
lower τi below any of its child thresholds. Therefore, τi must be
set in the range [max{vi, τc1 , τc2 , . . . , τcf

}, v∗], i.e., between the
highest among the node’s value and all child thresholds, and the
Query value (again, we defer the exact choice of threshold within
this range to Section 4). The requirement that the new threshold
does not exceed v∗ ensures Invariant 1, because v∗ is a lower bound
on the current maximum value.

Discussions The invariants maintained by HAT together establish
a hierarchy of thresholds in the network and essentially disperse

information about node values that empowers nodes to make de-
cisions to reduce network traffic. A major advantage of HAT is
its ability to “short-circuit” messages headed to the root or leaves,
which was not possible with the other algorithms (with the excep-
tion of SLAT-A in the case of aggregation of messages to the root).
To illustrate, first consider messages passed towards the root. If a
node generates a value that breaks its own threshold, it may only
be forwarded a couple of hops before meeting an ancestor node
with a threshold higher than its value. Meeting such a threshold
guarantees the value is not the maximum, so we need not pass it to
the root. Next, consider messages passed downward from the root.
While sending Query packets, a node avoids forwarding it to any
child with threshold lower than the Query value. This optimization
works because no node in that child subtree can be higher than the
Query value; the child threshold is always no less than the highest
value in the subtree.

The second advantage of HAT is more subtle. Both SLAT-A and
HAT are able to drop values at a node in favor of the highest value
received in a round. This represents sharing of work between multi-
ple nodes, i.e., if many nodes rise in value, the root need not know
about all of them. In the case where nodes are rising in value,
but with only a few rising each round, however, SLAT-A cannot do
much sharing, while HAT still does. Consider two nodes, ui and uj ,
with the same parent, up, where ui rises considerably in one round,
and uj in the next. Suppose ui sends a Trigger that may reach the
root before meeting a threshold higher than it. All nodes along that
path, including up, then receive a ThresholdUpdate, raising their
thresholds considerably. In the next round, uj rises in value such
that vj > τj . It sends a Trigger to up, which already has a higher
threshold such that τp > vj (because of the ThresholdUpdate in the
previous round). Hence, the Trigger packet from uj is not passed
on (in contrast, it would be passed on in SLAT-A); instead, up sends
a ThresholdUpdate back to uj . The savings in the second round is
proportional to the distance from up to the root.

Therefore, HAT is able to exploit aggregation along the time di-
mension, in that nodes benefit from work done on behalf of other

nodes across rounds. Contrast this with SLAT-A where nodes only
share benefit within single rounds. Moreover, we recall the use of
rounds is an approximation for purposes of simplifying discussion
on continuous queries. In some cases, we probably cannot always
depend on all nodes synchronously taking measurements and send-
ing packets. With HAT, this possibility is not as big a concern, be-
cause Trigger packets do not need to act synchronously and meet
up to realize the benefit of aggregation.

Comparative Example We now illustrate the behavior of the al-
gorithms with a concrete example. Figure 2 is divided into four
parts to demonstrate how each of RC, SLAT, SLAT-A, and HAT

function in a common scenario. Each node is labeled with its cur-
rent measured value and state: in the case of RC, the cached ranges,
and in the other cases, thresholds. Each edge is labeled with the
message sent across it, if any. RC, in Figure 2(a), is distinguished
from the others by node d. It is the only algorithm that may trans-
mit a value when it falls. SLAT, in Figure 2(b), and SLAT-A, in
Figure 2(c) are distinguished by the longer message SLAT sends up
from node b. SLAT, recall, appends all Trigger messages together,
while SLAT-A aggregates by dropping all but the highest. HAT, in
Figure 2(d), is distinguished from the others because it leverages b’s
high threshold to short-circuit all messages originating from under
b, and sends nothing to node a.
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4 Policies for Setting Thresholds

Our description of HAT leaves open questions about setting thresh-
olds. The necessity of adjusting thresholds arises in both the up-
ward direction toward the root, when thresholds must be raised, and
the downward direction toward the leaves, when thresholds must
be lowered. A node u’s threshold τ (u) can be legally set anywhere
below the parent threshold, which we denote hτ (u), and above the
maximum of the node’s own value and all of its child thresholds,
which we denote lτ (u).

We term processes for setting thresholds policies, as opposed to
algorithms, simply to distinguish them from the processes in Sec-
tion 3. The policies do not compete with the algorithms, but com-
plement them. We can employ a number of different threshold-
setting policies. Some simple examples include setting the thresh-
old of node u equal to hτ (u), or setting it to the average of hτ (u)
and lτ (u).

Intuitively, the goal when setting threshold τ (u) is to maximize
the time until the next update to this value. This threshold needs to
be updated if hτ (u) falls below τ (u), or lτ (u) rises above τ (u).
Both events cause energy to be spent on communication to adjust
τ (u). Therefore, maximizing the time until the next threshold ad-
justment maximizes energy savings. This goal is shown in Figure 3.
Notice in this example hτ (u) and lτ (u) are always relatively far
apart over time, but the gap between their extremes leaves only a
small space to set a threshold that will not require adjustment.

Theoretical Hurdles We now consider various threshold adjust-
ment policies. The chief difficulty in a clean theoretical analysis
is the observation that the threshold settings processes at various
nodes are not independent. The reason is that a reasonable thresh-
old setting scheme must set monotonically non-decreasing thresh-
olds on any path from a leaf to the root; without this invariant, we
cannot guarantee correctness of the MAX-monitoring algorithm un-
less all nodes are probed. The monotonicity invariant implies that
adjusting the threshold at a node might require adjusting the thresh-
old at many other nodes in order to ensure correctness. This issue
leads to the question of whether to proactively drop the threshold

when lτ (u) falls, or reactively drop it only when hτ (u) drops. The
cost of each approach depends on the pattern of future values.

We illustrate this difficulty with a concrete example. Consider
a subtree T in which all nodes had high values of about v some-
time in the recent past. The thresholds of all nodes in this tree are
close to v. Suppose these values now drop, but there is a node u
in a different subtree still at value v. If the threshold setting is re-
active, when u drops, the thresholds for nodes in T , in response to
a series of Query packets (with dropping values), gradually drop.
Suppose u drops slowly. The following would occur incremen-
tally in response to the Query packets. First, the threshold at the
root of T drops. Then, when its value reaches the thresholds of its
children, they start dropping and so on. This incurs huge communi-
cation cost. The alternative is for the nodes in T to proactively drop
their threshold when the values in T drop. This proactive approach
would result in lower communication costs when u does start drop-
ping. Choosing the better alternative, however, requires predicting
whether u drops before the values in T rise again—had the values
in T risen before, being reactive in dropping thresholds would be
better. The subtree would not have been queried in this case. No
thresholds would be lowered, so being reactive would cost nothing.

4.1 Policy and Analysis for the Worst Case

We first design a threshold-setting policy in the framework of com-
petitive analysis. In this framework, there is no model of future
values; they are chosen by an adversary and are therefore worst
case. The performance of the policy is measured against the cost
of the best admissible policy with knowledge of the entire future.
Any admissible policy should observe the following restrictions:

1. It is a threshold-setting policy, meaning there is a threshold
value at every node which is also known to the parent of the
node. The thresholds are monotonically non-decreasing on any
path from a leaf to the root.

2. The threshold at a node is at least the current largest value in the
subtree rooted at that node.

3. The threshold at a node is at most the current largest value in
the entire tree.

4. Whenever the threshold at a node changes, the node incurs one
unit of communication cost.

One-Level Tree Assume each communication between the root
and a node incurs unit cost. Further assume the node values are
drawn from the range of integers {1, 2, . . . , K}. In general, the val-
ues can come from any finite, ordered domain, as long as they can
be discretized and mapped to K distinct values. To facilitate analy-
sis of the continuous query, we partition the course of its execution
into phases, each containing a number of consecutive rounds.

For umax, which is the node currently responsible for the maxi-



mum value vmax, the root is notified whenever this value changes;
this cost in unavoidable by any policy that ensures correctness of
the algorithm. From this point on, we focus on a node u that is not
currently umax and consider its behavior in each phase.

In each phase, u maintains two values L(u) and H(u), which
are, respectively, the largest value at u since the beginning of the
phase, and (u’s belief of) the smallest value of vmax since the begin-
ning of the phase. Note u can accurately track L(u) at no additional
cost. The node also maintains a threshold value τ (u) which is al-

ways set to
H(u)+L(u)

2
. The root always knows the correct value of

τ (u) for all u.
Our one-level threshold-setting policy designed for the worse

case can be summarized as follows.

1. If the maximum value vmax (known at the root) falls below
τ (u), the root contacts u. The node sets H(u) = vmax and
updates τ (u) accordingly.

2. If L(u) becomes equal to τ (u), the node contacts the root and
gets the current value of vmax. It sets H(u) = min{H(u), vmax}
and updates τ (u) accordingly.

3. The phase ends if H(u) = L(u). In this case, H(u) is reset
to the current value of vmax, the overall maximum value at the
root, and L(u) is reset to the current value at the node u. The
threshold τ (u) is set accordingly.

The analysis below compares this policy against the optimal pol-
icy that “magically” knows the future sequence of value changes.

THEOREM 1. The cost incurred by the threshold-setting policy

is at most log K times the cost of the optimal policy for the same

sequence of node values.

PROOF. Under our policy, in each phase, the maximum num-
ber of times a node u contacts the root is log K. The reason is
that every time a contact is made, the gap H(u) − L(u) shrinks
by a factor of 2, and the initial gap is at most K. On the other
hand, we claim that the optimal policy must have incurred one unit
of communication cost as well. The reason is that when the gap
H(u) − L(u) shrinks to zero, the smallest value of vmax during
that phase becomes at most the highest maximum value at the node
during the same phase. For any fixed setting of threshold at u in
that phase, either vmax would fall below the threshold, or the node’s
value would rise above the threshold. Therefore, any setting of the
threshold at the beginning of the phase has to be updated during the
phase, incurring at least one unit of communication cost. The proof
is complete.

Multi-Level Trees We present a simple policy for multi-level trees
based on the one-level policy discussed above. Without loss of gen-
erality, we assume only the leaf nodes record values. Each leaf runs
the one-level policy, while each intermediate node simply sets its
threshold to be the maximum of its child thresholds. This maxi-
mum can be maintained at an intermediate node with no additional
cost because every message between the root and one of its descen-
dants passes through this node.

We assume that a message incurs a unit of cost for each edge on
which it travels. The performance of the above policy for multi-
level trees is compared with the best possible policy, which is re-
quired to incur at least one unit of communication when the thresh-
old at any node is updated.

THEOREM 2. The cost incurred by the threshold-setting policy

for a multi-level tree of depth D is at most 2D log K times the cost

of the optimal policy for the same sequence of node values.

PROOF. For a one-level tree, the policy incurs at most log K
times the communication cost of the best possible policy. For a

multi-level tree, every communication between the root and a leaf
node now translates into D units of communication down the tree,
and D units up the tree. For each leaf node, the minimum vmax

during each phase is at most the maximum value at that leaf node
during the same phase. Thus, any setting of the threshold value at
that node at the beginning of the phase has to be updated during the
phase, costing one unit of communication. For the same node, the
multi-level policy incurs at most 2D log K units of communication
during this phase. Therefore, the overall cost is also within a factor
2D log K of the optimal.

We believe this worst-case bound is the best possible. In other
words, for more sophisticated threshold-setting policies, there ex-
ist input instances on which the performance against the optimal
threshold-setting policy for that sequence will be no better than
the bound indicated in the theorem above. Note these bounds are
“worst-case” in the sense that the input sequence is chosen in an
adversarial fashion.

In practice, the input sequence may have stable characteristics
that can be modeled and exploited by a threshold-setting policy.
We next consider such policies.

4.2 Model­Based Policies

A model that predicts the future behavior of node values can be
exploited in setting thresholds. However, rigorous modeling of
the inputs to a threshold-setting policy at node u is fairly com-
plicated. Recall from the beginning of this section that the lower
bound lτ (u) is roughly based on the maximum value in u’s sub-
tree in each round, while the upper bound hτ (u) from the parent
node is roughly based on the maximum value in other parts of the
network. It is not at all obvious how to model these quantities, let
alone gather all information to construct models and then deliver
them to each node. Instead, we take the simplifying step of mod-
eling each sequence of lτ (u) and hτ (u) values as a random walk.
This simple model is easy to analyze and maintain, and can lead to
practical policies.

For a node u, we assume that lτ (u) (or hτ (u)) follows a random
walk Wl (Wh) where each step is a drawn from a normal distribu-
tion with mean µl (µh) and variance σl (σh).

Setting the Threshold Using a Random-Walk Model The prob-
lem for setting the optimal threshold is to maximize the expected
time until either Wl or Wh generates a value crossing it, i.e., the
hitting time to the threshold value. To simplify calculation (and to
a good approximation), we characterize Wl (and similarly Wh) by
an envelope, so the value produced by Wl at time t (assuming the
walk starts at value 0) is bounded by the range µlt+[−σl

√
t, σl

√
t]

with high probability. The two envelopes are illustrated in Figure 4.
To set the threshold, we find the value τ∗ that maximizes the time
until either envelope contains τ∗. Note that τ∗ approximates the
hitting time if the two random walks are drifting in opposite direc-
tions (e.g., µl ≥ 0 and µh ≤ 0). The approximation may not work
if the walks are drifting in the same direction; even if that is the
case, however, τ∗ is a valid threshold setting.

The calculation for τ∗ requires solving for the time when the two
envelopes first intersect. We omit the equation here, but it can be
derived with standard techniques, given µ and σ values, and the
initial gap between the two walks.

Learning the Random-Walk Model To compute the optimal thresh-
old, we need the values of random-walk parameters σl, σh, µl, and
µh for each node. A simple method for learning the parameters of
random walk Wl (and similarly for Wh) is to use linear regression
to fit a straight line on the set of observed lτ (u) values. Drift µl



Time Time

Value

W
l

W
h

a

T
*

l
T
(u)

h
T
(u)

Figure 4: Finding threshold with envelopes of random walks.

is the slope of this line, calculated as the correlation coefficient be-
tween time and values. Variance σl is the root mean square error of
the fit.

Our use of linear regression assumes that random walks of lτ (u)
and hτ (u) are long-running in their behavior. For example, regres-
sion will be effective in identifying outliers only after enough data
is collected. If node memory is severely constrained, we can use
techniques from [1] to maintain statistics.

Discussions We note that other models can also be plugged into
this framework. For example, temperature is likely to increase in
the first half of a day and decrease in the second half. Nodes can
maintain two models, one for each case. At threshold calculation
time, the node can attempt to fit its recent data to both models, and
use whichever fits better. While a simple example, this approach
has favorable characteristics. Model fitting is done with simple cal-
culations, and no input from the root is needed to tell nodes when
conditions have changed, like that the hottest part of the day is over.

Finally, while model-based policies enable well-informed thresh-
old settings, recall from Section 3 that in HAT a parent node must
maintain its children’s thresholds. When a node adjusts its thresh-
old using a locally maintained model, it must use an additional mes-
sage to transmit the new threshold to its parent. As future work, we
plan to investigate using the model-based policies while avoiding
this overhead. In the next subsection, we investigate simpler poli-
cies that do not carry this overhead by design.

4.3 Adaptive Pressure­Based Policies

Recall in HAT, a node u’s threshold must always be set between
hτ (u) (from its parent) and lτ (u) (from its subtree). The thresh-
old can be broken by either hτ (u) dropping or lτ (u) rising. For
adaptive pressure-based policies, we make a simplifying assump-
tion about the inertia of change: If hτ (u) falls and breaks the
threshold, it will likely continue to fall; likewise, if lτ (u) breaks
the threshold, it will likely continue to rise. Later in this subsection
we will discuss how to handle transient behaviors that temporarily
violate this assumption.

A pressure-based policy sets the threshold to try to avoid the
impending pressure from a particular direction. In its basic form,
such a policy sets the threshold τ (u) of node u to αhτ (u) + (1−
α)lτ (u), where α is an adjustment factor between 0 and 1. The
parent of u tracks not only the current τ (u), but also α (and if α
can change, the policy by which it does). The following discussion,
which supplements the description of HAT in Section 3.2.2, shows
how HAT accomplishes updating of τ (u) at both u and its parent
efficiently.

• In the case that τ (u) is broken by a rising lτ (u) at u, u sends
up a Trigger packet listing the new lτ (u) value to its parent,
which in turn responds with a ThresholdUpdate packet, with the
hτ (u) vale for u. At this point, both u and the parent have all
information needed to synchronously update τ (u)—lτ (u) and
hτ (u) values—without additional communication.

• In the case that τ (u) is broken by a dropping hτ (u) in a Query

packet sent down by u’s parent, assuming u does not send back
a Reply, the parent does not know the current value of lτ (u), and
therefore cannot mirror the calculation of τ (u) at u. Hence, in
response to the Query packet, u must either respond with the
updated τ (u), or simply lower τ (u) to the new hτ (u) in the
Query packet. The latter setting saves a response message to
the parent; the parent, which sent and knows hτ (u), assumes
this setting if it does not receive a response.

Before presenting the adaptive pressure-based policies, we first
describe pressure a few policies with fixed α values: ceiling, mid-

dle and floor. These fix α at, respectively, 1, 0.5, and 0. Middle

is similar in spirit to the policy designed for the worst case in Sec-
tion 4.1. It is something of a misnomer to call these adaptive, since
they actually ignore pressure, but they are useful for comparison.
Ceiling is clearly the optimal policy when node values can only
rise, while floor is optimal when values only fall. Middle is subop-
timal in either of these cases, and motivates dynamically adjusted
α values.

We now introduce two adaptive policies: adaptive-linear and
adaptive-exponential. Both initialize α to 0.5. Adaptive-linear also
employs a constant, c, between 0 and 1. If the threshold is broken
from below by lτ (u), we increment α by c, whereas if the threshold
is broken from above by hτ (u), we decrement α by c (while ob-
serving the constraint 0 ≤ α ≤ 1). For adaptive-exponential, if the
threshold is broken from below, we set α to (α+1)/2; if the thresh-
old is broken from above, we set α to α/2. In scenarios such as
node values always rising or always falling, both adaptive policies
reach the optimal state, with adaptive-exponential reaching sooner.
In less extreme scenarios, though, adaptive-exponential’s more ag-
gressive adjustments arguably make α flip-flop between values and
encourage thresholds to be alternatively broken in opposite direc-
tions when a better threshold choice lies somewhere in between.
Adaptive-linear, with a small enough c value, has a better chance
of avoiding this problem.

Discounting Short-Term Behavior One disadvantage of the pre-
vious threshold setting approaches is that a very short-term change
in a node’s value can modify a significant number of threshold set-
tings (e.g., those on the path from the node to the root). These
threshold settings would not reflect the steady-state values of the
subtrees after the aberration ceases. One approach for rectifying
this problem is to use a simple local model (such as a random walk
from Section 4.2) at each node, not for predicting optimal thresh-
old values, but for identifying short-term aberrations. These aber-
rations are sent toward the root (so that the root still can compute
max with these), but not in Trigger packets. Therefore, they have
no effect on threshold settings. The node transmits its value every
round until the value conforms to the model. Obviously, persisting
aberrations suggests the model should be changed.

5 Enhancements and Extensions

Failure Tolerance Our discussion of HAT so far has assumed fixed
assignments of parent-child relationships. HAT can be made flex-
ible to adjust assignments in response to failures. Suppose node
ui currently has parent up. From the perspective of ui, failure oc-
curs when the connection between ui and up breaks, because either
up or the communication link between ui and up becomes non-
functional. Using a reliable communication protocol where nodes
receive acknowledgment that their messages are delivered, ui can
quickly detect such a failure. If HAT were to do nothing in response
to this failure, we would lose all data generated in the subtree rooted
at ui. Therefore, ui must be able to recover from this failure.



To this end, ui broadcasts a probe message listing its current
threshold τ (ui) to try to identify a new parent among its neigh-
bors. Each node uj checks if it is a descendant of ui in the current
hierarchy. This investigative procedure starts at uj itself and pro-
gresses towards the root, until it reaches a node whose threshold
is higher than τ (ui) (in which case the answer is negative), or the
node ui itself (in which the case the answer is affirmative). This
procedure works because of Invariant 2. A node uj replies to ui’s
probe with τ (uj) only if uj has confirmed it is not a descendant
of ui. The nodes who replied constitute candidates for ui’s new
parent. Assuming all choices have equal link quality, ui chooses
the candidate with the highest current threshold as its new parent,
unew

p . To maintain Invariant 2, any ancestor of unew

p (as well as
unew

p itself) with threshold lower than τ (ui) raises its threshold to
τ (ui).

As a heuristic, ui chooses the candidate with the highest thresh-
old. The intuition behind this heuristic is as follows. In the case that
tnew
p is already higher than τ (ui), choosing the highest threshold

allows τ (ui) to rise in the future (in response to rising values in its
subtree) to as high a value possible before breaking tnew

p ’s thresh-
old; in other words, more Trigger packets from ui can be stopped
by a parent with a higher threshold. In the case that τ (unew

p ) must
be raised to accommodate ui, raising the highest threshold makes
the increase as small as possible. The bigger this increase, the more
vulnerable it is for the parent to be queried in rounds when the max
value falls.

Normally we prohibit ui from choosing a descendant as its new
parent, but in the case that there are no other candidates, this option
can be invoked; the former descendant must in turn chooses a new
parent. In the worst case, as long as ui can still find a path to the
root, we can form a new hierarchy of thresholds that avoids the fail-
ure. We omit the details here. Finally, it is possible that ui cannot
find a path to the root, meaning that the failure has partitioned the
network. This case might happen when failure occurs an area with
low network coverage. In this case, whether running HAT or any
other application, nothing can be done to collect data from the net-
work partition separated from the root. This case argues for having
an adequate node density for a sensor network.

Dynamic Adjustments for Performance While a node must find
a new parent if failure occurs, a node can also opportunistically
change parents for performance reasons. Other factors being equal,
a node is best assigned to the parent with highest threshold. Switch-
ing from a low-threshold parent to a high-threshold one means the
node’s value has to rise higher before Trigger packets can travel
above the parent. Also, grouping subtrees whose maximum val-
ues behave in similar ways is beneficial. Intuitively, imbalance in
child thresholds causes the parent’s threshold to be set unnecessar-
ily high, resulting in extra Query packets being sent down to the
parent. Therefore, a parent may ask a child to switch to another
parent if this child’s threshold is far higher than others. Of course,
as with any dynamic adjustment, we must ensure that the thresh-
olds are relatively show-changing. Otherwise, having paid over-
head cost of adjustment, the new state may quickly be no better or
worse than the old.

As hinted, quality of communication links can also play a role
in parent selection. If a child-parent link has poor (but still func-
tioning) connectivity, the extra transmissions required to establish
communication may easily outweigh the benefit from choosing the
highest threshold parent possible. HAT must compare these relative
benefits in changing parents.

One-Sided Quantiles Continuous MAX is a specific case of the
continuous one-sided quantile query, which returns the nodes rank-

ing at and above the p-th percentile. We can easily extend HAT to
this more general problem. In the first round, the root determines
the nodes in the result set and makes note of the lowest value in
this set, vl, from node ul. All result nodes are designated as such
with ResultDesignate (analogous to MaxDesignate) messages and
instructed to temporally monitor themselves. If a result node falls
below vl, the network is queried to find a potential replacement or
else lower vl to this fallen value. Nodes can also join the result set,
as before, by breaking thresholds and sending Trigger messages. If
a Trigger reaches the root with value greater than vl, the originating
node will displace ul from the result set.

This translation from MAX to one-sided quantile can be further
extended with some energy-saving compromises. First, the user
may not insist on the result set containing exactly (1− p)n nodes.
Hence, we can allow its size to vary within (1− p)n± ǫ. If a node
in the result set falls below vl, and removing it does not violate
the error margin, it is evicted and not replaced. Not replacing the
result node saves the potentially huge cost of querying the entire
network (particularly if the falling value dropped a large amount).
With luck, another node will soon join the result set by exceeding
vl, balancing the effect of nodes leaving the result set. Whenever
the error margin is violated, the result is restored to (1 − p)n by
querying the network.

A second compromise is to not maintain the exact values of each
node in the result set. For example, a user may be interested in a
tight range [vl, vh] for the values in the query quantile. In that case,
temporally monitoring the exact values in the result set is overkill.
Instead, we can apply a specialized version of RC to result set
nodes. Each such node is assigned an upper threshold and lower
threshold. One option is to set all upper and lower thresholds of
result nodes (except the two producing vh and vl) to vh and vl re-
spectively. The problem, however, is if the root receives a Trigger

from a node not currently in the result and this node forces evic-
tion of the lowest-valued result node, the root will have very little
information to narrow down which of the remaining result nodes
may have the current lowest value. The same problem occurs for
determining the new maximum value when the current maximum
drops. The solution is to assign each result node its own thresh-
olds, such that the upper threshold is no greater than vh and the
lower threshold is no less than vl. These thresholds should be set
wide enough apart so that nodes do not repeatedly break them, but
narrow enough so that not all nodes need be queried to find new vh

or vl.

6 Experimental Results

We perform experimental analysis using our own network simula-
tor. Nodes are modeled as Crossbow Mica2 motes [5]. We use a
generic MAC-layer protocol and only account for the energy cost of
communication. The simulated network area is a rectangular grid.
Each grid point represents a square meter, and is assigned some
value at the beginning of each round. Nodes are randomly placed
at grid points and monitor the values assigned there. Node radio
range is fixed at 50 meters. Because we are interested in contin-
uous queries, we assume a long-term benefit for installing a query
plan in the network. Because the cost of installing a query plan into
the network is amortized over many rounds, we ignore this initial
cost and instead evaluate performance over the subsequent rounds.

The goal of our experiments is a thorough comparison of all pre-
sented MAX algorithms: temporal suppression (TS), range caching
(RC), SLAT, SLAT-A, and HAT. We also test HAT using different
threshold setting policies to see their impact. We run a variety of
experiments. Some use very specific conditions to expose particu-
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Figure 5: Random behavior.
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Figure 6: Randomly rising values.
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Figure 7: Uniformly falling values.
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Figure 8: Highest values dropping.
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Figure 9: Factory setting.
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Figure 10: Intel Berkeley Lab data.

lar algorithm strengths and weaknesses. Others are realistic scenar-
ios, using either simulated or real-world data.

All experiments, unless otherwise noted, use the same basic pa-
rameters. The network consists of 200 nodes in a 400 by 400 me-
ter area. Each test is run for 21 rounds, with the first-round results
discarded. Notice we use log-scales on the graphs’ y-axes due to
significant performance disparities between algorithms.

Random Behavior We begin with a simple experiment to gauge
the relative performance of the algorithms. All nodes start with
value equal to one another, and they each have equal chance of be-
coming the maximum. With some fixed probability, varied across
runs, each node changes value in each round, or else remains un-
changed. In the case of a change, a node’s value v is adjusted ran-
domly to a value uniformly chosen from [v − 100, v + 100]. This
behavior corresponds to a random walk whose step is governed by
a bounded uniform distribution. The results are shown in Figure 5.
The three query-aware algorithms, SLAT, SLAT-A, and HAT, out-
perform TS and RC at all change probabilities. We see that en-
ergy spent by TS increases proportionally with change percentage,
which is expected since each changing node triggers a report. RC
also increases quickly at first, but then plateaus. The reason is, as
change probability increases, each node changes more often over
the course of the experiment, widening the cached ranges for most
of them (except those competing for the maximum), to the point
where changes in low values do not necessarily trigger reports.

The three query-aware algorithms considerably outperform the
other two, with SLAT-A and HAT outperforming SLAT. SLAT-A
and HAT perform relatively similar in this experiment (we differ-
entiate them next). Like RC, these three algorithms plateau. The
more nodes change value, the higher the expected overall maxi-
mum after some time (the variance in values increases over the
course of the random walk). When nodes then break their thresh-
olds they receive higher new thresholds, and can suppress most of
their subsequent changes.

Differentiating HAT and SLAT-A The next two experiments are
designed primarily to highlight HAT’s two major advantages over
SLAT-A (although we also show results of other algorithms in fig-
ures for completeness). These advantages, again, are that HAT’s
hierarchical thresholds allow the benefit of aggregation to be real-
ized across query rounds, and that HAT is not forced to query all
nodes when the maximum value drops.

• Randomly Rising Values The first advantage is shown with a
scenario similar to the previous experiment, except that nodes
can only increase in value. We vary the probability that a node
rises across runs. The results are shown in Figure 6. When
the probability is low, HAT significantly outperforms SLAT-A,
while as probability rises, the gap closes. At low probabil-
ity, only a few nodes rise and possibly break their thresholds.
In this case, SLAT-A must transmit these values all the way
to root, to be followed by ThresholdUpdate messages all the
way back down. Because the amount of transmissions is small,
there are not many opportunities for aggregation, so transmis-
sion costs are mostly unshared between nodes. In contrast, HAT

can still achieve sharing across rounds. If a particular node
breaks its threshold and all ancestor thresholds, it will cause
all these thresholds to rise. At this point, the cost is the same as
for SLAT-A. If in the next round, however, another node breaks
its threshold, but then encounters a previously raised ancestor
threshold higher than its value, the Trigger stops there. With
SLAT-A, it does reach the root. When probability of rise is
higher, the amount of traffic increases faster for HAT, lessening
its advantage over SLAT-A. SLAT-A, even at low probabilities,
already has high traffic at the upper level edges, so its increase
is relatively milder. For HAT, the increased probability causes
more nodes to rise, and therefore increases the probability that
a rising node becomes the new maximum, or at least the max-
imum within a large subtree. This effect creates traffic at the
upper level edges, bringing it up to the levels in SLAT-A.



• Uniformly Falling Values The second advantage of HAT over
SLAT-A is demonstrated in a scenario where all nodes start at
random values and drop each round. We vary the percentage by
which nodes drop in value over a series of runs. Within each,
however, all nodes drop by the same percentage. Therefore,
whatever node starts as maximum will remain the maximum
over the entire run. The results are plotted in Figure 7. Perfor-
mance for SLAT-A is constant since, regardless of percentage
drop, all nodes are queried every round using the lowered maxi-
mum node’s value. Since all nodes are still below this value, no
nodes reply to the queries. HAT, on the other hand, exploits the
case where the max value drops only slightly. When the root
sends a Query packet with the lowered maximum value, it may
still be much higher than many nodes’ thresholds and, therefore,
any nodes in their subtrees. The Query packet is then dropped at
these points, saving the cost of propagating it further down. As
the percentage drop increases, more nodes must be queried. In
the worse case, if the maximum value drops below the previous
minimum value, all nodes must be queried, raising HAT’s cost
to that of SLAT-A.

Differentiating RC and SLAT In our initial experiment to es-
tablish a relative ordering of algorithm performance, RC performs
poorly, only beating TS. Compared to query-aware algorithms, how-
ever, RC may have some better sense of second-place (and lower
ranked) values. If the maximum value drops, RC can use its list of
cached ranges to compile a possibly short list of potential new max-
imum nodes. If the maximum value drops enough, the query-aware
algorithms must query the entire network. We pose a scenario to
demonstrate that RC outperforms SLAT when the second-place in-
formation is useful. Nodes start with random values. In each round,
a fixed top percentile of nodes have their values cut in half. We
vary this percentile over the series of runs. The results are shown in
Figure 8. SLAT performs consistently throughout; no matter how
many values are cut, the maximum one always drops enough to
require extensive querying to find the new maximum. RC outper-
forms SLAT throughout, but is itself best when fewer values are
cut. The reason is simply that fewer values changing means fewer
cache ranges are violated, so fewer reports are sent. In all cases,
the new maximum value is found by querying similarly sized sets
of candidate nodes. On the other hand, we see SLAT-A and HAT

still perform well compared with RC, because the benefit of aggre-
gation dominates. Interestingly, like RC, HAT also performs bet-
ter when the percentile is lower. We believe this phenomenon can
be explained by the fact that HAT’s hierarchy of thresholds retains
more information about lower ranked values than the single-level
scheme of SLAT and SLAT-A.

Factory Setting The next experiment simulates the behavior of
heat dispersion on a factory floor. Machines are spaced evenly
throughout the grid space, while sensors are placed randomly as
before. All machines are initially off, so all nodes initially have
value 0. At each time, a machine is powered on with some prob-
ability. If powered on, a machine generates some large amount of
heat, raising the local temperature to a ceiling amount at that point.
Subsequently, heat is dispersed from each grid point to all neigh-
boring grid points. In each time increment, T (i, j), the temperature
at grid point (i, j), is updated using the previous values according
to the following formula from [3]:

T (i, j)←T (i, j) + a
“

T (i + 1, j) + T (i− 1, j)+

T (i, j + 1) + T (i, j − 1)− 4T (i, j)
”

.

Here, a ≤ 0.25 is a dispersion factor. We allows 10 time in-
crements between two consecutive query rounds to ensure more
than a trivial amount of change happens in between. Note MAX

would be trivial if sensors were overlaid with machines. Our ran-
dom placement of sensors and densities of sensors and machines
(1/800m2 and 1/1600m2, respectively) make this occurrence un-
likely. Even then, the machine would need to be on or have been
on very recently to give the sensor a high chance to be the max-
imum. From the simulation traces, we do not find single nodes
dominating the result, confirming MAX is non-trivial in this set-
ting. This setting combines a number of features that influence
algorithm performance. Some nodes are much more likely candi-
dates for maximum; these are the ones closest to machines. Other
nodes can afford to set lower thresholds. Finally, a node that be-
comes the maximum can easily drop in the following round when
its heat disperses.

Figure 9 shows the results obtained by varying the probability
that machines are on across runs. As expected, the higher this prob-
ability, the greater the number of nodes exhibiting change. TS and
RC start out performing worse than the other algorithms, and ex-
pend even more energy as probability increases. Among the others,
HAT outperforms SLAT and SLAT-A. SLAT-A is, of course, a closer
competitor to HAT than in Figures 6 and 7. We also see that SLAT is
considerably more expensive than SLAT-A and HAT. Its handicap
of larger network messages simply does not overcome its advantage
over SLAT-A of limited querying when the maximum falls. The
machine-on probability does not seem to have a major impact on
performance among SLAT, SLAT-A and HAT. It does appear, how-
ever, at the higher probabilities, their performances improve. The
reason is that the set of nodes with significant chance of becoming
the maximum shrinks to those very close to machines. At lower
probabilities, many or all of these “best candidate nodes” may have
had their respective nearby machines off for several rounds, allow-
ing opportunities for nodes more distant from machines (but ma-
chines which have been on recently) to become max. At higher
probabilities, it is very unlikely that all of the machines contribut-
ing heat to the best candidates have been repeatedly off.

Intel Berkeley Lab Data Our next experiment evaluates the al-
gorithms on sensor data collected by the Intel Berkeley Research
Lab [7]. The data consists of environmental readings regularly col-
lected from 54 nodes spread around their lab. We extracted the tem-
perature readings as test data on which to run MAX. We observed
some missing readings for various nodes at various time epochs and
have filled these in with the average of the readings for the partic-
ular node from the previous and subsequent epochs. Finally, the
network area is not large enough to provide an interesting hierar-
chy when node radio range is 50 meters. We have reduced that to 6
meters, the minimum distance that still fully connects the network.
Epochs in this dataset are close together in time and data readings
do not change much from epoch to epoch; therefore, we make each
of our round 100 epochs in length. The results are shown in Fig-
ure 10. The office temperatures are still fairly stable, explaining the
improved relative performance of TS and RC compared to previ-
ous experiments. This stability allows TS to beat SLAT. TS sends
a limited number of Trigger packets such that its total cost is less
than SLAT’s for sending a variety of packet types needed to support
thresholds. SLAT-A and HAT, however, still considerably outper-
form TS. Of these, HAT is still the more efficient.

Threshold Setting We now examine the choice of HAT’s threshold-
setting policy. We compare three adaptive pressure-based policies:
ceiling, floor, and adaptive-linear, with α adjuster c set to 0.1. We
use a scenario where all node values change in each round. The
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Figure 11: HAT threshold adjustment policies.

probability that a value rises is equal to one minus the probability
that it falls. The magnitude of change initially varies in the range
[0, 100], but shrinks linearly with each round, so values eventually
stabilize. By varying probability of rise across runs, we control how
often the maximum value rises and falls. The results are shown in
Figure 11. When probability of rise is low, the maximum value
generally falls, so floor is the best policy. At the opposite end, ceil-

ing is the best policy. In each case, adaptive-linear has cost almost
as low as the best policy. If either floor or ceiling is best suited to
a particular scenario, adaptive-linear only incurs a small penalty
before adjusting to the optimal policy. We believe any reasonable
adaptive policy that does not bog down the algorithm in worst-case
behavior permanently (such as floor when values are only rising)
will allow HAT to outperform other algorithms.

7 Conclusion and Future Work

MAX is a fundamental exemplary aggregate query. Unlike in se-
lection queries, nodes cannot decide for themselves if they are in
the solution. Despite this challenge, for continuous monitoring,
it is crucial for energy conservation that nodes do not send their
data to the root in every round. We have developed techniques
based on constraint localization for efficiently supporting continu-
ous MAX, which also provide general insight for developing sensor
query processing algorithms. We have applied existing algorithms
to the problem and introduced novel ones. This latter group consists
of SLAT, SLAT-A, and HAT. These algorithms introduce localized
constraints into the network in the form of thresholds. In produc-
ing each of these algorithms, we make significant improvements
that culminate in HAT. HAT enforces that thresholds monotoni-
cally increase from leaves toward the network root. Therefore, a
subtree root threshold serves as both an upper bound for values in
its subtree, and as a lower bound for the network maximum value.
Using subtree thresholds as upper bounds may let us prune those
subtrees from querying when the maximum value falls. Using sub-
tree thresholds as lower bounds may let us drop messages from
nodes within those subtrees that have broken their local thresholds.
We have performed analysis of threshold setting to better under-
stand this problem and proposed simple, practical policies. Finally,
we have done experiments to expose the reactions of the algorithms
to certain scenarios, and evaluate their relative performances. We
have also briefly described how to extend our techniques to the one-
sided quantile problem. We believe our idea of constraint localiza-
tion is fundamental and can be applied to other problems such as
general quantile. In general, as networks grow larger, regardless
of the query in discussion, it will become more important to apply
constraint localization to avoid sending messages originating on the
outskirts of the network all the way to the root.
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