
Evolving Triggers for Dynamic Environments

Goce Trajcevski1? Peter Scheuermann1?? Oliviu Ghica1 Annika Hinze2 Agnes
Voisard3

1 Northwestern Univ., Dept. of EECS, {goce,peters,oliviu}@eecs.northwestern.edu
2 Univ. of Waikato, Computer Science Dept., hinze@cs.waikato.ac.nz

3 Fraunhofer ISST and FU, Berlin, Agnes.Voisard@isst.fhg.de

Abstract. In this work we address the problem of managing the reactive
behavior in distributed environments in which data continuously changes
over time, where the users may need to explicitly express how the trig-
gers should be (self) modified. To enable this we propose the (ECA)2 –
Evolving and Context-Aware Event-Condition-Action paradigm for spec-
ifying triggers that capture the desired reactive behavior in databases
which manage distributed and continuously changing data. Since both
the monitored event and the condition part of the trigger may be contin-
uous in nature, we introduce the concept of metatriggers to coordinate
the detection of events and the evaluation of conditions.

1 Introduction and Motivation

Many application domains deal with data that changes very frequently and is
generated by distributed and heterogeneous sources. These data-properties have
spurred extensive research efforts in several fields. In Event-Notification Sys-
tems (ENS), and Publish-Subscribe (P-S) systems [3, 11], typically an instance
user’s profile is matched against the current status of continuously evolving data
sources, and appropriate notifications are sent to the user. The main focus of
Continuous Queries (CQ) processing [6, 12] is on efficient management of user
queries over time, without forcing the users to re-issue their queries. The data
values may arrive as streams which the system has to process on the fly [5, 4, 14]
and, furthermore, the data may be multidimensional in nature, as is the case in
Location-Based Services (LBS) [16] and Moving Objects Databases (MOD) [10].
In some applications, e.g sensor networks, the data management must consider
other constraints such as the limited battery-lifetime of the nodes [22].

One may observe that in the majority of the applications, there is a need for
some form of a reactive behavior. The database community has provided many
results on the topic of Active Databases (ADb), which manage triggers operat-
ing under the Event-Condition-Action (ECA) paradigm [8, 15, 20]. In the recent
years there have been works incorporating ECA-like triggers in novel, highly-
heterogeneous, distributed and dynamic data-driven application domains, e.g.,

? Research supported by the Northrop Grumman Corp., contract: P.O.8200082518
?? Research supported by the NSF grant, contract: IIS-0325144/003

the Web [9], peer-to-peer (P2P) systems and sensor networks [22]. Despite the
co-existence of the large body of works in ENS, CQ, Data Streams, MOD [3, 5, 4,
6, 12, 11, 16, 10], all of which have the common need of dealing with dynamically
changing information, and the rich history of ADb results [8, 15, 20] – there is a
lack of tools that would enable using the ”best of all the worlds”. Namely, there is
no paradigm that allows the users to seamlessly tie: (1) Detection of (composite)
events obtained by monitoring continuously changing data with (2) Evaluation
of conditions that are continuous queries and with (3) Dynamical adjustment of
the triggers themselves – all for the purpose of executing a desired policy in a
constantly evolving domain of interest.

In order to illustrate our motivation better, we present two scenarios and we
analyze the requirements posed by each of them.
I. Rq1: “When a moving object is continuously moving towards the region R
for more than 5 minutes, if there are less than 10 fighter jets in the base B1,
then send alert_b to the armored unit A1. Also send alert_a to the infantry
regiment I1, when that object is closer than 3 miles to R, if all the marine corps
units are further then 5 miles from R”.
Rq1 needs to detect a composite event (moving continuously towards...), using
the individual (location,time) updates as simple events. These can be obtained,
e.g., by tracking sensors [22], and in [18] we provided efficient algorithms for
detecting the continuously moving towards predicate. RQ1 also needs to initiate
a continuous query at a remote system – the one monitoring the status of the
air-base B1. However, Rq1 has some other subtleties:
• It needs the status of the air-base B1 for as long as the original enabling event
moving towards is still valid. After detecting its enabling event, Rq1 requires
that the system “spans” its attention to monitoring one more event (closer
than 3 miles to R) and, upon its detection, request an evaluation of another
remote condition-query, which happens to be instantaneous. Observe that there
is a binding between the new event to the original event – the new one needs
to focus on the distance pertaining to the particular object that satisfied the
original enabling event.
II. Rq2: “When the IBM stock in New York stock exchange has three consecutive
increases of its value within 30 minutes with a total increase of at least 5%, if
there is a stock exchange at which both IBM and Intel stocks within 15 min.
from the originating event have achieved a one hour interval without dropping,
then execute portfolio P1 for purchasing IBM shares at that stock exchange.
Otherwise, if there is a non-decrease of the Google stock for 45 minutes, while the
IBM increase is still valid on any other stock exchange, execute portfolio P2 for
purchasing IBM shares at that other stock exchange. Subsequently, only execute
portfolio B for purchasing Motorola shares, when its stock has two consecutive
increases by a total of at least 8% in London, if its average daily increase on any
other exchange market is non-negative”.
• Unlike Rq1, now the validity of the composite event related to the IBM values,
which is detected based on the primitive events that are updates of the value of
the its stock, is limited by an explicit time-value – 15 min. The system requests

an evaluation at another site of the if condition, however, this condition is pecu-
liar in that it combines a continuous query with the one-hour past history of the
system [5] of the IBM and Intel stocks, but allows for a portion of that history
to be satisfied within the continuous query itself, for as long as it is within 15
minutes after the detection of the IBM-increase event.
• In Rq2 the user has an “alternative plan” of reacting, if the first condition fails.
This alternative depends on the outcome of another continuous query (Google
stock), which is tying the duration of interest for evaluating the continuous query
with the “native” enabling event. Rq1 requires the system to span its attention,
but Rq2 in its last part requires the system to completely shift the focus of its
reactive behavior. After the failure of the respective Intel and Google-related
criteria, the user is no longer interested in reacting to the events related to the
increases of the IBM stock and wants to focus on the Portfolio B for Motorola
shares.

The observations related to Rq1 and Rq2 have motivated our research to-
wards the new paradigm for reactive behavior. Our main contributions are:
• We introduce a paradigm for specifying reactive behavior, called (ECA)2

(Evolving and Context-Aware Event-Condition-Action), that enables the users
to specify triggers that pro-actively evolve so that they can ensure a desired
policy.
• We introduce the concept of a metatrigger for the purpose of minimizing the
communication overhead and ensuring behavioral correctness in distributed set-
ting. We observe that there is a duality in the nature of events and conditions
that can be exploited in the functioning of the the metatriggers.

In the rest of this paper, Section 2 introduces the (ECA)2 paradigm and its
syntactic elements. The concept of the metatriggers is presented in Section 3,
and Section 4 concludes the paper.

2 Evolution of the Triggers

In this section, we explain the main aspects of the specification of the triggers
under the (ECA)2 paradigm. The syntactic components are presented in Figure
1. Firstly, observe that in the events, conditions and actions we allow variables to
be used. Thus, for example, Ep(EVp) denotes that the event of the parent-trigger
Ep has the (vector of) variable(s) EVp in its specification; similarly, Cp1(V Cp1)
denotes the query and the variables used in the first condition of the parent
trigger. We assume that the usual rules for safety [19] of the variables apply, in
the sense that each variable that appears in a negative literal, must also appear in
a positive literal, or have a ground value at the time of the invocation/evaluation
of the corresponding (negated) predicate. Secondly, observe that we allow two
types of children-triggers to be specified within the scope of a given (parent)
trigger. As is commonly done in the programming languages, we use rectangles
to visualize the nesting of the relative scope of children-triggers within the scope
of the parent-trigger. As indicated in Figure 1, the user can specify an arbitrary
level of nesting of descendants within the children-triggers.

ON Ep(VEp) <priority>

IF Cp1(VCp1) within_time(Tc1)/within_event(Ec1(VEc1))

THEN Ap1(VAp1)

ELSE-IF Cp2(VCp2) within_time(Tc2)/within_event(Ec2(VEc2))

THEN Ap2(VAp2)
.....

validity(Tpv /Epv(VEpv))

Consumed-by-Parent=<yes/no>,

 ON Ec1(VEc1) <priority> validity(Tc1v/Ec1v(VEc1v))

 IF Cc11(VCc11)

ELSE-IF ...
.....

Span (child’)

ON ...

Subsequently (child’’)

Consume-Parent=<yes/no>

ON Es1(VEs1) <priority> validity(Ts1v/Es1v(VEs1v))

IF Cs11(VCs11)

within_time(Tc11)/within_event(Ec11(VEc11))

further nesting of triggers

THEN Ac11(VAc11)

further nesting of triggers

within_time(Ts11)/within_event(Es11(VEs11))

THEN As11(VAs11)

ELSE-IF ...
.....

further nesting of triggers

further nesting of triggers

Consume-Parent=<yes/no>
ON ...

(ECA)
2

Trigger

Consume-Parent=<yes/no>

Consume-Parent=<yes/no>Consumed-by-Parent=<yes/no>,

Fig. 1. Evolving Triggers Specification

Before we give detailed explanation of the syntax of the (ECA)2 triggers, we
provide an example for the Rq2, illustrated in Figure 2. Using variables, one can
express the desired relationships among the locations of the stock exchanges for
evaluating the criteria of interest. Thus, when evaluating the condition for the
alternative policy regarding the Google stock, the variable SE2 denotes a stock
exchange which is different from New York. By using SE2 as a variable in the
action that executes the Portfolio P2, we ensure that the purchase is executed at
“that other” stock exchange. The important observation here is that whenever
the value of the IBM stock in New York stock exchange decreases it terminates
the validity of the enabling event for the (parent) trigger. Past that point, the
child trigger which implements the reactive policy for Motorola stock exists on
its own, monitoring its respective event. Now we proceed with explaining the
elements in the syntax of the (ECA)2 triggers:
1. The option validity in the trigger’s specification allows the user to state how
long should the trigger be considered “alive”. It reflects the user’s policy, and
it can be either an explicit time-value, or an event which, when detected causes
the particular trigger’s instance to be disabled. As a special case, one is able
to specify for as long as the original enabling event is valid, by utilizing proper
expressions of the available event algebra. For example, in the case of Rq2 one
may specify a composite event which is (a sequence of) IBM-increase events that
enabled the trigger, followed by an IBM-decrease related event.

IF StockChange(SE1,’IBM’,X,60,T1) AND X>=0

 AND T1>=T within_time(15)

THEN Portfolio_P1(SE1,’IBM’)

ELSE-IF

 AND StockChange(SE1,’Intel’,Y,60,T1) AND Y >=0

StockChange(SE2,’Google’,Z,45,T2) AND Z>=0

ON E_StockIncrease(’NY’,’IBM’,3,5%,30,T)

Subsequently:

Consume-Parent = yes

ON E_StockIncrease(’London’,’Motorola’,2,8%,T2)

IF AVG-variation(SE3,’Motorola’,Z,T2) AND

 Z>=0 AND SE3 == ’London’

THEN Portfolio_B(’London’,’Motorola’)

p
ar

en
t

ch
il

d

THEN Portfolio_P2(SE2,’IBM’)

within_event(E_StockIncrease(’NY’,’IBM’,...))

AND T2>=T AND S2 == ’NY’

Increase of IBM stock

decrease of IBM

stock in New York

detected in New York

No Google-related

events detected

Trigger for Rq2::

Fig. 2. Example Trigger for Rq2

2. The Else-If parts at each level of nesting of the triggers correspond to alter-
native policies, based on the value of the respective conditions, once an instance
of a particular trigger is “awaken”. Clearly, these can be written as conditions
of separate triggers with the same enabling event. We use the way depicted in
Figure 1 for compactness, assuming that the ordering of the conditions actually
corresponds to the users’ preference when it comes to their evaluation. Some
prototype systems (e.g., Starburst [21]) enable the users to explicitly state their
ranking for (partial) ordering among the triggers (e.g., PRECEDES), but some
commercial systems conforming to the ANSI standard (e.g., Oracle 9i [2]) do
not allow this – triggers are ranked based on their time-stamps and that ranking
is not always ensured at run-time. As indicated in Figure 1, we do consider the
option of an explicit numeric priority specification for the triggers, which can be
straightforwardly extended to the conditions.
3. Each condition has two options for indicating for how long its corresponding
continuous query should be evaluated. One option is to explicitly list a time-
interval value, as commonly done in CQ systems (e.g., [6]). An example for this
is the statement within time(15) in the trigger for Rq2. The other option is to
specify an event which will confirm the termination of the user’s interest in that
condition. In the case of Rq1, the user is interested in getting updates about
the state of the air-base for as long as the composite event E moving towards is
satisfied, based on the (location,time) update-events [18].
4. There are two types of child-triggers:
4.1. The first type – child’, enables a reaction to subsequent occurrences of other
events that could potentially request monitoring of other conditions. This is the
case in Rq1, where the user is also interested in detecting the proximity of
that particular object to the region R. The value Consumed-by-Parent = yes
indicates that the child-trigger should terminate when the parent-trigger ter-
minates. Conversely, Consumed-by-Parent = no, specifies that the child-trigger

should continue its execution even though the parent has ceased to exist. As an
example, in Rq1 the value Consumed-by-Parent = no specifies that, although
the particular moving object may no longer be moving continuously towards the
region R (e.g., it is following a zig-zag route), which disables the original (parent)
trigger, the user is still interested in monitoring the distance of that particular
object. Both consumption parameters provide means to dynamically enable and
dissable instances of the triggers.
4.2. The second type of a child-trigger – child”, is specified with the Subse-
quently option, and its intended meaning is that, after the particular parent-
trigger has been enabled, and all its “options have been exhausted” (e.g., expi-
ration of the interval of interest for the continuous queries; no occurrence of the
events for the child’-triggers), the user wants to focus on other aspects of the
possible subsequent evolutions of the domain of interest. In the case of Rq2, the
user shifts his interests to the properties related to the Motorola stock. How-
ever, the user has the option of stating whether in the future, the system should
consider ”waking-up” the parent trigger again or not. This is achieved by the
statement Consume-Parent. Consume-Parent = yes reflects the user’s intention
not to consider the parent-trigger in the future at all. In the context of our Rq2
example, the user does not want to bother with the future variations related to
the IBM. In a sense, this is an equivalent to the SQL drop trigger rule, as no
further instances of the parent-trigger are desired. Consume-Parent = no has
the opposite effect.
Having the instances of the child-triggers active is similar in effect to the SQL
enable command. However, in practice it is very unlikely to expect that the
desired behavior can be achieved if the users are to manually execute it. Fur-
thermore, attempting to write a child-trigger as a separate trigger from (and at
the same scoping/nesting level as) its parent, with an enabling event which is a
sequence of the parent event followed by the own event, may yield an unintended
behavior. For example, in Rq2 if, instead of being a child, the trigger related to
Motorola stock is specified independently, with the event E StockIncrease(’NY’,
’IBM’,3,...) ; E StockIncrease(’London’,’Motorola’,2,...), the user may end up
executing the Portfolio B in the settings in which, according to his preferences,
he should have executed portfolio P1. The reason for this is that the condition of
the Motorola-related trigger is an instantaneous query, which may be satisfied as
soon as the composite event which enables the corresponding trigger is detected.

3 Metatriggers

The metatrigger is a module that is in charge of coordinating the detection of
events and evaluation of the conditions in distributed environments, in a manner
that ensures behavioral correctness and minimizes the communication overhead.
To better motivate it, observe the following detailed example in the context of
Rq1 assuming, for the sake of argument that the (location,time) are detected
every two minutes.

R

Air-Base B1
Take-off

 at 5:17
5:10

5:16

5:18

5:06

5:08

Fig. 3. Dynamics of Events and Conditions

As illustrated in Figure 3, the system began monitoring the object at 5:06, how-
ever, the (location,time) updates at 5:06 and 5:08, depicted with blank circles,
were discarded because they were of no use for detecting the event of interest.
Starting at 5:10, the system can detect the occurrence of the desired composite
event moving towards) at 5:16 [18] which, in turn, “awakes” an instance of the
corresponding trigger for Rq1. Upon checking the condition (less than 10 air-
planes in B1), the system will find out that there are actually 12 airplanes there
and will not execute the action part (alert). However, as illustrated in Figure 3,
in a very short time-span, three jets have left the air-base and, by 5:17 it has
only 9 jets available. Intuitively, the trigger for the Rq1 should fire and raise the
alert. However, this may not happen until 5:18 at which time the event moving
towards is (re)detected. In many time-critical applications, this may cause un-
wanted effects. One possible solution is to periodically poll the remote database,
however, this may incur a lot of unnecessary communication overhead4 and,
moreover, may still “miss” the actual time-point at which the condition became
satisfied.

The main role of the metatriggers is the management of the type of behavior
as described above in distributed environments. Figure 4 illustrates the position
of the metatrigger module in the context of a typical ADb architecture, extended
with an Event-Base (EB) (c.f. [8]). The arrowed lines indicated the data flow
among the modules. Note that the module for the Continuous Queries Process-
ing (CQP), is coupled with the Query Processing (QP) and the Rule (trigger)
Processing (RP) modules [6].
When it comes to managing the reactive behavior in distributed settings, the
crux of the metatriggers is the Event and Conditions Manager (ECM) com-
ponent. This component translates the original specifications of the user and
generates a new set of triggers, events and conditions that achieve the desired
behavior, but are much more efficient for distributed environments. To describe
this task more formally, consider the following simplified version of a trigger:

TR1: ON E1

IF C1i ∧ C1c

THEN A1

Its condition part consists of two conjuncts:
• Ci1-instantaneous conditions, whose evaluation may be bound to various states.

4 Observe that the user may insist on a particular frequency of re-evaluation of the
continuous query (c.f. [6]).

parser

ordering and

lifetime (OL)

IN
T

E
R

F
A

C
E

EDB

IDB

Primitive

Composite

detection consume

internal

DB event

external

event

queries
users’

Messaging
Interface

(Query; Trigger)
remote request

EB

DB

Query

Processing

(QP)

(CQP)

Rule
Processing
(RP)

system boundaries

Meta-Trigger Module
trigger

(ECA)
2

ECM

Fig. 4. Metatriggers Activities

Such bindings have already been identified as a semantic dimension of the active
databases [8, 15] and there are syntactic constructs that can specify particular
states for evaluating the condition of the triggers (e.g., referencing old/new).
• C1c- a condition which expresses a continuous query.
The ECM component of the metatrigger performs the following activities:
1. Translate the specifications of the original trigger into:

TR1’: ON E1 ; (E→
C1c

; E←
C1c

)
IF C1i

THEN A1

Where E→
C1c

and E←
C1c

are two new events with the following semantics:
1.1. E→

C1c
– an event denotes the request for evaluating C1c, which may have to

be sent to a remote site – e.g., in the case of Rq1 it is send to the air-base.
1.2. E←

C1c
– an event (external in case of Rq1), which denotes that the con-

tinuous condition has been evaluated to true, and the notification about it has
been received. Observe that the new local trigger TR1’ is now enabled by the
composite event which is the sequence of events E1 ; (E→

C1c
; E←

C1c
)

2. It translates the continuous query C1c of the condition into:
2.1. A message for the remote site, requesting immediate evaluation and notifi-
cation if true;
2.2. A trigger that is transmitted to the remote site, which essentially states:

TR1c: ON E1; E→
C1c

IF C1c

THEN A(Send Notification(E←
C1c

))
3. Lastly, the ECM generates the specification of another local trigger TR1”,
whose description we omit – but whose purpose is to detect when the original
trigger TR1, as specified by the user, has “expired”, i.e., the criteria used in the

validity specification, temporal or event-based, is satisfied, and:
3.1. disable the current instance of the local trigger TR1’.
3.2. Send a notification that the instance of the Tr1c in the remote site should
be disabled.

What we described above exemplifies how something that was initially per-
ceived as a pure query-like condition, becomes a ”generator” of a several new
events/triggers. We only explained the basic functionality of the ECM as a trans-
lator for a simplified version of the original specifications of the user’s trigger.
Clearly, in reality, one may expect more sophisticated queries whose translation
and generation of the equivalent new events, triggers, and messages to the re-
mote sites will be more complicated. In the settings of the Rq1, one may observe
another motivation for translating the original condition’s query: the predicate
JetsCount (c.f. Figure 2), say, for security purposes, may be a view and the user
cannot express much at the specification time of the corresponding trigger.

Although the ECM is the most relevant component of the metatrigger mod-
ule, it has few other components. The parser extracts the constructs of the syntax
that define the corresponding events and conditions, as well as user’s preferences
for priority/ordering. The Ordering and Lifetime (OL) component of the meta-
trigger works in conjunction with the RP component. It ensures that, whenever a
particular event is detected, the order of evaluating the conditions and executing
the actions among all the triggers ”awaken” by that event, conforms with the
user’s specifications. We re-iterate that although some prototype ADb systems,
such as Starburst [20] provide the option for priorities among the triggers ([8,
15]), the commercial DBMS with active capabilities, conforming with the ANSI
SQL99 standard specifications [1] do not. Since we are using Oracle 9i [2], we
needed to write a separate PL/SQL routine (c.f. [17]). The OL component of the
metatrigger is also in charge of enable-ing the (instances of the) child-triggers
in the proper states of the evolution of the system. Upon ”ceasing” of a par-
ticular trigger, OL ensures that the appropriate clean-up actions are performed
which, based on the values of the Consumed-by-Parent and Consume-Parent
parameters, are either disable or drop.

4 Related Works and Concluding Remarks

There is a large body of existing results in several research areas that address
managing of (re)active behavior [3, 5, 7, 8, 11, 13, 15, 21, 22]. These works provide
a technical foundations for, and in turn, can benefit from our work, however,
their detailed discussion is well beyond the scope of this paper.

We presented a novel paradigm (ECA)2, for triggers that are aware of the
dynamic correlation between the events and conditions and, in a sense, can
“react in a proactive manner” – by modifying themselves. We also provided
syntactic constructs for specifying the triggers under this paradigm and enable
using the (ECA)2 paradigm in dynamic distributed environments, and we pro-
posed the concept of the metatriggers as a possible tool for their management.
Currently, we are focusing on further incorporating the (ECA)2 in heteroge-

neous/multidatabase settings, and we would like to believe that, in a near future,
our work will motivate a wide spectrum of new challenges, ranging from theo-
retical aspects (e.g., termination/expresiveness [21]) up to intricate details that
depend on the application/problem domain constraints (e.g., power-limitations
in sensor networks [22]; interplay among context variables in LBS [16]).

References

1. ANSI/ISO International Standard: Database language SQL.
http://webstore.ansi.org.

2. Oracle 9i. www.oracle.com/technology/products/oracle9i.
3. A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Design and evaluation of a wide-

area event notification service. ACM-TOCS, 19(3), 2001.
4. S. Chandrasekaran and M.J. Franklin. Streaming queries over streaming data. In

VLDB Conference, 2002.
5. S. Chandrasekaran and M.J. Franklin. Remembrance of streams past: Overload-

sensitive management of archived streams. In VLDB Conference, 2004.
6. J.J. Chen, D.J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable continuous

query system for internet databases. In ACM SIGMOD Conference, 2000.
7. Y. Diao, S. Rizvi, and M.J. Franklin. Towards an internet-scale XML dissemination

service. In VLDB Conference, 2004.
8. P. Fraternali and L. Tanca. A structured approach for the definition of the seman-

tics of active databases. ACM TODS, 20(4), 1995.
9. G.Papamarkos, A.Poulovassilis, and P.T.Wood. Event-condition-action rule lan-

guages for the semantic web. In SWDB Workshop (at VLDB), 2003.
10. R.H. Güting and M. Schneider. Moving Objects Databases. Morgan Kaufmann,

2005.
11. A. Hinze and A. Voisard. Location-and time-based information delivery in tourism.

In SSTD, 2003.
12. L. Liu, C. Pu, and W. Tang. Continual queries for internet scale event-driven

information delivery. IEEE-TKDE, 11(4), 1999.
13. S. Madden, M.A. Shah, J.M. Hellerstein, and V. Raman. Continuously adaptive

continuous queries over streams. In ACM SIGMOD Conference, 2002.
14. C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous queries over

distributed data streams. In ACM SIGMOD, 2003.
15. N. Paton. Active Rules in Database Systems. Springer-Verlag, 1999.
16. J. Schiller and A. Voisard. Location-based Services. Morgan Kaufmann Publishers,

2004.
17. G. Trajcevski, H. Ding, and P. Scheuermann. Context-aware optimization of con-

tinuous range queries for trajectories. In MobiDE Workshop (at SIGMOD), 2005.
18. G. Trajcevski, P. Scheuermann, H. Brönnimann, and A. Voisard. Dynamic topo-

logical predicates and notifications in moving objects databases. In MDM, 2005.
19. J. D. Ullman. Principles of Database and Knowledge – Base Systems. Computer

Science Press, 1989.
20. J. Widom. The Starburst active database rule system. IEEE TKDE, 8(4), 1996.
21. J. Widom and S. Ceri. Active Database Systems: Triggers and Rules for Advanced

Database Processing. Morgan Kaufmann, 1996.
22. F. Zhao and L. Guibas. Wireless Sensor Networks: an Information Processing

Approach. Morgan Kauffman, 2004.

