
1

 Querying the Sensor Network

 TinyDb

2

Acquisitional Query Processing

How does the user control acquisition?

 Rates or lifetimes

 Event-based triggers

How should the query be processed?

 Sampling as an operator, Power-optimal ordering

 Frequent events as joins

Which nodes have relevant data?

 Semantic Routing Tree for effective pruning
 Nodes that are queried together route together

Which samples should be transmitted?

 Pick most “valuable”?

 Adaptive transmission & sampling rates

3

• E(sampling mag) >> E(sampling light)
1500 uJ vs. 90 uJ

Operator Ordering: Interleave Sampling + Selection

SELECT light, mag

FROM sensors

WHERE pred1(mag)

AND pred2(light)

EPOCH DURATION 1s

(pred1)

(pred2)

mag

light

(pred1)

(pred2)

mag

light

(pred1)

(pred2)

mag light

Traditional DBMS

ACQP

At 1 sample / sec, total power savings could be as

much as 3.5mW  Comparable to processor!

Correct ordering

(unless pred1 is very selective and

pred2 is not):

Cheap

Costly

4

Exemplary Aggregate Pushdown

SELECT WINMAX(light,30s,8s)

FROM sensors

WHERE mag > x

EPOCH DURATION 1s • Novel, general
pushdown technique

• Mag sampling is the
most expensive
operation!

WINMAX

(mag>x)

mag light

Traditional DBMS

light

mag

(mag>x)

WINMAX

(light > MAX)

ACQP

5

Event Query Batching

ON EVENT E(nodeid)
SELECT a
FROM sensors AS s
WHERE s.nodeid = e.nodeid
SAMPLE INTERVAL d FOR k

Problem: Multiple outstanding queries (lots of samples)

SELECT s.a

FROM sensors AS s, events AS e

WHERE s.nodeid = e.nodeid

AND e.type = E AND s.time – e.time <= k AND s.time > e.time

SAMPLE INTERVAL d

Solution: Rewrite as a sliding window join between
sensors and the last k seconds of detected events:

If events are frequent, use join approach…

6

Timing issues

When batching, what if instances of different queries start at

different times?

If we order sampling and predicates sequentially, we can no

longer take readings synchronously

When joining a storage point and a stream, what if their

sampling points don’t align?

Tension between continuous signals and discrete events

7

Acquisitional Query Processing

How does the user control acquisition?

 Rates or lifetimes

 Event-based triggers

How should the query be processed?

 Sampling as an operator, Power-optimal ordering

 Frequent events as joins

Which nodes have relevant data?

 Semantic Routing Tree for effective pruning

 Nodes that are queried together route together

Which samples should be transmitted?

 Pick most “valuable”?

 Adaptive transmission & sampling rates

8

Attribute Driven Topology Selection

Observation: internal queries often over local area

 Or some other subset of the network

 E.g. regions with light value in [10,20]

Idea: build topology for those queries based on values of

range-selected attributes

 For range queries

 Relatively static trees

 Maintenance Cost

9

Attribute Driven Query Propagation

1 2 3

4

[1,10]

[7,15]

[20,40]

SELECT …

WHERE a > 5 AND a < 12

Precomputed
intervals =
Semantic Routing
Tree (SRT)

Early pruning

10

An “index”: semantic routing tree

SELECT … FROM Sensors WHERE A in range…
 Not sure which sensors have these A values?

 Need to probe the entire network

Use an index
 Search tree =

routing tree

 Intermediate nodes
store bounding
boxes for subtrees

What’s different from
DB search trees?

11

Attribute Driven Parent Selection

1 2 3

4

[1,10] [7,15] [20,40]

[3,6]

[3,6]  [1,10] = [3,6]

[3,6]  [7,15] = ø

[3,6]  [20,40] = ø

Even without
known intervals,
expect that
choosing the
parent with
closest value will
help

12

Simulation Result

Nodes Visited vs. Query Range

0

50

100

150

200

250

300

350

400

450

0.001 0.05 0.1 0.2 0.5 1

Query Size as % of Value Range

(Random value distribution, 20x20 grid, ideal connectivity to (8)

neighbors)

#
 o

f
N

od
es

 V
is

it
ed

 (4
00

 =
 M

ax
)

Best Case (Expected)

Closest Parent

Nearest Value

Snooping

Random Parent

13

Acquisitional Query Processing

How does the user control acquisition?

 Rates or lifetimes

 Event-based triggers

How should the query be processed?

 Sampling as an operator, Power-optimal ordering

 Frequent events as joins

Which nodes have relevant data?

 Semantic Routing Tree for effective pruning

 Nodes that are queried together route together

Which samples should be transmitted?

 Pick most “valuable”?

 Adaptive transmission & sampling rates

14

Sample Rate vs. Delivery Rate

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16
Samples Per Second (Per Mote)

A
g

g
re

g
a
te

 D
e
li
v
e
ry

 R
a
te

(P
a
c
k
e
ts

/S
e
c
o

n
d

)

1 mote

4 motes

4 motes, adaptive

Adaptive Transmission Rates

Adaptive = 2x %
Successful
Xmissions

TinyDB monitors channel contention & backs-off as needed

15

Prioritizing Data Delivery

Score each item

Send largest score

 Out of order -> Priority Queue

Discard or aggregate when buffer is full

[1,2]

16

Choosing Data To Send

Delta encoding

[1,2]

Time vs. Value

0

2

4

6

8

10

12

14

16

1 2 3 4

Time

V
a
lu

e(time, value)

17

Choosing Data To Send

[2,6] [3,15] [4,1]

[1,2]

|2-6| = 4

| 2-15| = 13

|2-1| = 1

Time vs. Value

0

2

4

6

8

10

12

14

16

1 2 3 4

Time

V
a
lu

e

Delta encoding

Select which of
the 3 to send

18

Choosing Data To Send

[2,6]

[3,15]

[4,1]

[1,2]

Time vs. Value

0

2

4

6

8

10

12

14

16

1 2 3 4

Time

V
a
lu

e

|15-6| = 9 |15-1| = 14

Delta encoding

Keep selecting
until hit max
delivery rate

19

Choosing Data To Send

[2,6]

[3,15] [4,1] [1,2]

Time vs. Value

0

2

4

6

8

10

12

14

16

1 2 3 4

Time

V
a
lu

e

Delta encoding

20

Choosing Data To Send

[2,6] [3,15] [4,1] [1,2]

Time vs. Value

0

2

4

6

8

10

12

14

16

1 2 3 4

Time

V
a
lu

e

Delta encoding

If manage
to send all

21

Delta + Adaptivity

8 element queue

4 motes transmitting

different signals

8 samples /sec / mote

