
1

 Querying the Sensor Network

 TinyDB/TAG

2

TAG: Tiny Aggregation

Query Distribution: aggregate queries are pushed down the network to

construct a spanning tree.

 Root broadcasts the query and specifies its level l

 Each node that hears message assigns its own level to be l+1 and chooses as parent

 a node with smallest level.

 Each node rebroadcasts message until all nodes have received it

 Resulting structure is a spanning tree rooted at the query node.

Data Collection: aggregate values are routed up the tree.

 Internal node aggregates the partial data received from its subtree.

3

Tree-based Routing

Tree-based routing

 Used in:

 Query delivery

 Data collection

 In-network aggregation

A

B C

D

F
E

Q:SELECT …

Q Q

Q

Q Q

Q

Q

Q

Q

Q Q Q

R:{…}

R:{…}

R:{…}

R:{…} R:{…}

http://webs.cs.berkeley.edu/tinyos

4

TAG example

Query distribution Query collection

1

2 3

4

5 6

1

2 3

4

5 6

5

Data Model

Entire sensor network as one single, infinitely-long logical table: sensors

Columns consist of all the attributes defined in the network

Typical attributes:

 Sensor readings

 Meta-data: node id, location, etc.

 Internal states: routing tree parent, timestamp, queue length, etc.

Nodes return NULL for unknown attributes

On server, all attributes are defined in catalog.xml

Discussion: other alternative data models?

6

Query Language (TinySQL)

SELECT <aggregates>, <attributes>

[FROM {sensors | <buffer>}]

[WHERE <predicates>]

[GROUP BY <attributes>]

[SAMPLE PERIOD <const> | ONCE]

[INTO <buffer>]

7

Comparison with SQL

Single table in FROM clause (exception: storage points…)

Only conjunctive comparison predicates in WHERE and
HAVING

No subqueries

No column alias in SELECT clause

Arithmetic expressions limited to column op constant

Only fundamental difference: SAMPLE PERIOD clause

8

TinySQL Examples

SELECT nodeid, nestNo, light

FROM sensors

WHERE light > 400

EPOCH DURATION 1s

1
Epoch Nodeid nestNo Light

0 1 17 455

0 2 25 389

1 1 17 422

1 2 25 405

Sensors

“Find the sensors in bright nests.”

9

TinySQL Examples (cont.)

Epoch region CNT(…) AVG(…)

0 North 3 360

0 South 3 520

1 North 3 370

1 South 3 520

“Count the number of occupied
nests in each loud region of the
island.”

SELECT region, CNT(occupied)
AVG(sound)

FROM sensors

GROUP BY region

HAVING AVG(sound) > 200

EPOCH DURATION 10s

3

Regions w/ AVG(sound) > 200

SELECT AVG(sound)

FROM sensors

EPOCH DURATION 10s

2

10

Basic Aggregation

In each epoch:

 Each node samples local sensors once

 Generates partial state record (PSR)

 local readings

 readings from children

 Outputs PSR during assigned comm. interval

At end of epoch, PSR for whole network output at root

New result on each successive epoch

Extras:

 Predicate-based partitioning via GROUP BY

1

2

4

5

3

11

Illustration: Aggregation

1 2 3 4 5

4 1

3

2

1

4

1

2 3

4

5

1

Sensor #

In
te

rv
al

 #

Interval 4
SELECT COUNT(*) FROM
sensors

Epoch

12

Illustration: Aggregation

1 2 3 4 5

4 1

3 2

2

1

4

1

2 3

4

5

2

Sensor #

Interval 3
SELECT COUNT(*) FROM
sensors

In
te

rv
al

 #

13

Illustration: Aggregation

1 2 3 4 5

4 1

3 2

2 1 3

1

4

1

2 3

4

5

3 1

Sensor #

Interval 2
SELECT COUNT(*) FROM
sensors

In
te

rv
al

 #

14

Illustration: Aggregation

1 2 3 4 5

4 1

3 2

2 1 3

1 5

4

1

2 3

4

5

5

Sensor #

SELECT COUNT(*) FROM
sensors Interval 1

In
te

rv
al

 #

15

TAG Algorithm w/ GROUP-ing

Temp: 10

Light : 5

Temp: 10

Light : 15

Temp: 30

Light : 25

Temp: 20

Light : 50

Temp: 20

Light : 10
1

23

4

5

6

1

23

4

5

6

Group # | AVG

 1 | 5

Group # | AVG

 1 | 10

Group # | AVG

 1 | 10

 3 | 25

Group # | AVG

 1 | 10

 2 | 50

 3 | 25

Group # | AVG

 1 | 10

 2 | 30

 3 | 25

Temp: 10

Light : 10

Group # | AVG

 1 | 10

Sensor measurements within one epoch
Aggregation state progress during one epoch

SELECT

AVG(light)

FROM

 Sensors

GROUP BY

 temp/10

EPOCH DURATION

....

16

Aggregation Framework

• As in extensible databases, TAG supports any aggregation function
conforming to:

Agg
n
={f

init
, f

merge
, f

evaluate
}

F
init

{a
0
}  <a

0
>

F
merge

{<a
1
>,<a

2
>}  <a

12
>

F
evaluate

{<a
1
>}  aggregate value

Example: Average

AVGinit {v}  <v,1>

AVGmerge {<S1, C1>, <S2, C2>}  < S1 + S2 , C1 + C2>

AVGevaluate{<S, C>}  S/C

Partial State Record (PSR)

Restriction: Merge associative, commutative

17

Considerations about aggregations

Packet loss?

 Acknowledgement and re-transmit?

 Robust routing?

Packets arriving out of order or in duplicates?

 Double count?

Size of the aggregates?

 Message size growth?

18

Classes of aggregations

Exemplary aggregates return one or more representative

values from the set of all values; summary aggregates

compute some properties over all values.

 MAX, MIN: exemplary; SUM, AVERAGE: summary.

 Exemplary aggregates are prone to packet loss and not

amendable to sampling.

 Summary aggregates of random samples can be treated as a

robust estimation.

19

Classes of aggregations

Duplicate insensitive aggregates are unaffected by

duplicate readings.

 Examples: MAX, MIN.

 Independent of routing topology.

 Combine with robust routing (multi-path).

20

Classes of aggregations

Monotonic aggregates: when two partial records s1

and s2 are combined to s, either e(s)  max{e(s1), e(s2)}

or e(s)  min{e(s1), e(s2)}.

 Examples: MAX, MIN.

 Certain predicates (such as HAVING) can be applied early

in the network to reduce the communication cost.

21

Classes of aggregations

Partial state of the aggregates:

 Distributive: the partial state is simply the aggregate for the partial
data. The size is the same with the size of the final aggregate.
Example: MAX, MIN, SUM

 Algebraic: partial records are of constant size. Example: AVERAGE.

 Holistic: the partial state records are proportional in size to the partial
data. Example: MEDIAN.

 Unique: partial state is proportional to the number of distinct values.
Example: COUNT DISTINCT.

 Content-sensitive: partial state is proportional to some (statistical)
properties of the data. Example: fixed-size bucket histogram, wavelet,
etc.

Good

bad

worst

22

Classes of aggregates

Duplicate

sensitive

Exemplary,

Summary

Monotonic Partial State

MAX, MIN No E Yes Distributive

COUNT, SUM Yes S Yes Distributive

AVERAGE Yes S No Algebraic

MEDIAN Yes E No Holistic

COUNT

DISTINCT

No S Yes Unique

HISTOGRAM Yes S No Content-

sensitive

23

Use Multiple Parents

Use graph structure

 Increase delivery probability with no communication overhead

For duplicate insensitive aggregates, or

Aggs expressible as sum of parts

 Send (part of) aggregate to all parents

 In just one message, via multicast

 Assuming independence, decreases variance

SELECT COUNT(*)

A

B C

R

A

B C

c

R

P(link xmit successful) = p

P(success from A->R) = p2

E(cnt) = c * p2

Var(cnt) = c2 * p2 * (1 – p2)  V

of parents = n

E(cnt) = n * (c/n * p2)

Var(cnt) = n * (c/n)2 * p2 * (1
– p2) = V/n A

B C

c/n c/n

R

n = 2

24

Multiple Parents Results

Better than previous analysis
expected!

Losses aren’t independent!

Insight: spreads data over many
links

Benefit of Result Splitting

(COUNT query)

0

200

400

600

800

1000

1200

1400

(2500 nodes, lossy radio model, 6 parents per

node)

A
v
g

.
C

O
U

N
T Splitting

No Splitting

25

Multiple Parents Results

Critical Link!

No Splitting With Splitting

26

27

TinyDB GUI

TinyDB Client API
DBMS

Sensor network

TinyDB query

processor

0

4

0

1

5

2

6

3

7

JDBC

Mote side

PC side

8

TinyDB Architecture

27

Multihop Networking

 Revised implementation of ―tree based routing‖

A

B C

D

F
E

B B

B

B B

B

B

B

B

B B B

R:{…}

R:{…}

R:{…}

R:{…} R:{…}

Parent Selection:
Use parent with best
Quality link

Node D

Neigh Qual

B .75

C .66

E .45

F .82

Node C

Neigh Qual

A .5

B .44

D .53

F .35

28

Data model—revisited

A single, append-only table
Sensors (nodeid, time, light, temp, …)

Just a conceptual view for posing queries; in reality:

 Data is not already there at query time

 Traditional database: queries independent of acquisition

 Here: queries drive acquisition

 Didn’t ask for light? Then it won’t be sampled!

 Data may not be at one place

 Like a distributed database, but here nodes/network are much less
powerful/reliable

 Data won’t be around forever

 Similar to stream data processing

29

Acquisitional Query Processing

What’s really new & different about databases on (mote-based)
sensor networks?

TinyDB’s answer:

 Long running queries on physically embedded devices that
control when and where and with what frequency data is
collected

 Versus traditional DBMS where data is provided a priori

For a distributed, embedded sensing environment, ACQP
provides a framework for addressing issues of

 When, where, and how often data is sensed/sampled

 Which data is delivered

30

Acquisitional Query Processing

How does the user control acquisition?

 Rates or lifetimes

 Event-based triggers

How should the query be processed?

 Sampling as an operator, Power-optimal ordering

 Frequent events as joins

Which nodes have relevant data?

 Semantic Routing Tree for effective pruning

 Nodes that are queried together route together

Which samples should be transmitted?

 Pick most ―valuable‖?

 Adaptive transmission & sampling rates

31

Rate & Lifetime Queries

Rate query

SELECT nodeid, light, temp

FROM sensors

SAMPLE INTERVAL 1s FOR 10s

Lifetime query

SELECT …

LIFETIME 30 days

 May not be able to

transmit all the data

Estimate sampling rate that

achieves this

SELECT …

LIFETIME 10 days

MIN SAMPLE INTERVAL 1s

A

32

Processing Lifetimes: Issues

Provide formulas for estimating power consumption: set

maximum per-node sampling rates

What makes this difficult?

• estimating the selectivity of predicates

• amount transmitted by a node varies widely

• root is a bottleneck: all nodes rates must correspond to it

• aggregation vs. sending individual values

• multiple sensing types (temp, accel) with different drain

• conditions change: multiple queries, burstiness, message losses

• What to do when can’t transmit all the data

33

Storage points

CREATE STORAGE POINT recentLight SIZE 8 AS

(SELECT nodeid, light FROM Sensors

 SAMPLE PERIOD 10s);

 A sliding window of recent readings, materialized locally

Joining with the Sensors stream
 SELECT COUNT(*)

FROM Sensors s, recentLight rl

WHERE rl.nodeid = s.nodeid AND s.light <

rl.light

SAMPLE PERIOD 10s;

TinyDB only allows joining a stream with a storage point !

B

C

34

Event-based Queries

ON event SELECT …

Run query only when interesting events happens

Event examples

 Button pushed

 Message arrival

 Bird enters nest

Analogous to triggers but events are user-defined

35

Reports the average light and temperature level at sensors near a bird nest
where a bird has been detected

Event Based Processing

ACQP – want to initiate queries in response to events

ON EVENT bird-detect(loc):

 SELECT AVG(s.light), AVG(s.temp), event.loc

 FROM sensors AS s

 WHERE dist(s.loc, event.loc) < 10m

 SAMPLE PERIOD 2s FOR 30s

E.g., New query instance generated for as long as bird is there

36

Event Based Processing

Single external interrupt

