NORTHWESTERN
UNIVERSITY

Querying the Sensor Network
TinyDB/TAG

NORTHWESTERN

TAG: Tiny Aggregation

Query Distribution: aggregate queries are pushed down the network to
construct a spanning tree.
m Root broadcasts the query and specifies its level |
m Each node that hears message assigns its own level to be 1+1 and chooses as parent
a node with smallest level.
m Each node rebroadcasts message until all nodes have received it
m Resulting structure is a spanning tree rooted at the query node.

® Data Collection: aggregate values are routed up the tree.
m Internal node aggregates the partial data received from its subtree.

B

NORTHWESTERN
UNIVERSITY

Tree-based Routing

® Tree-based routing
m Used In:
m Query delivery
m Data collection
m In-network aggregation

http://webs.cs.berkeley.edu/tinyos

TAG example

Query distribution Query collection

| t

O
-
© \° ©
o o

TS

G/ \° s

.

oL

NORTHWESTERN
UNIVERSITY

Data Model

® Entire sensor network as one single, infinitely-long logical table: sensors
Columns consist of all the attributes defined in the network
n Typical attributes:
m Sensor readings
m Meta-data: node id, location, etc.
m Internal states: routing tree parent, timestamp, queue length, etc.
Nodes return NULL for unknown attributes
On server, all attributes are defined in catalog.xml
Discussion: other alternative data models?

B

UNIVERSITY

Query Language (TinySQL)

SELECT <aggregates>, <attributes>
[FROM {sensors | <buffer>}]
[WHERE <predicates>]

[GROUP BY <attributes>]
[SAMPLE PERIOD <const> | ONCE]
[INTO <buffer>]

NORTHWESTERN
UNIVERSITY

Comparison with SQL

& Single table in FROM clause (exception: storage points...)

Only conjunctive comparison predicates in WHERE and
HAVING

No subqueries
#t No column alias in SELECT clause

m Arithmetic expressions limited to column op constant
®# Only fundamental difference: SAMPLE PERIOD clause

B

UNIVERSITY T i nySQ L Exam p I eS

"Find the sensors in bright nests.”

@ Sensors

SELECT nodeid, nestNo, light Epoch | Nodeid nestNo | Light
FROM sensors

0 1 17 455
EPOCH DURATION 1s 0 2 25 389
iE 1 17 422
1 2 25 405

—m

NORTHWESTERN

west | INYSQL Examples (cont.)

(2) SELECT AV6(sound) “Count the number of occupied
EROM “ehsors nests in each loud region of the
island.”
EPOCH DURATION 10s

ELECT r'egion, CNT(occupied) Epoch region CNT(...) AVG(...)

AVG(sound) 0 North 3 360
FROM sensors 0 South 3 520
GROUP BY region ~: 1 North 3 370

HAVING AVG(sound) > 200
EPOCH DURATION 10s

1 South 3 520

“’. \‘
“ Regions w/ AVG(sound) > 200

B

NORTHWESTERN

Basic Aggregation

In each epoch:
m Each node samples local sensors once
m Generates partial state record (PSR)
m |ocal readings
m readings from children
m Outputs PSR during assigned comm. interval

At end of epoch, PSR for whole network output at root
New result on each successive epoch

m EXxtras:
m Predicate-based partitioning via GROUP BY

B

NORTHWESTERN
UNIVERSITY

|Hlustration: Aggregation

SELECT COUNT(*) FROM
sensors Interval 4

Sensor # f *-
il N e Epoch
1 2 3 4 5 ///" ‘\\\\
av e
o

Interval #
PNy

o
R Y
\ _ pm

NORTHWESTERN

[Hlustration; Aggregation

Sen%ng#

I N
1 2 3 4 5

Interval #
FIANY

L

@

z .
_ pm

NORTHWESTERN
UNIVERSITY

Interval #

2

[Hlustration: Aggregation

Sensor #
s

3

Interval 2

s e
o
.
_ pm

NORTHWESTERN
UNIVERSITY

[Hlustration: Aggregation

s O ® e

Sensor # I
b 4Rl o
1 2 3 4 5 / \
(|4
///1
| s o o
() o
2
g < /’1/’3
+ 1 5 \
<
i 4

\ _ pm

NORTHWESTERN

" TAG Algorithm w/ GROUP-ing

Group # | AVG

10
30
25

wWN P

Temp: 20

Group # | AVG
5 Group # | AVG

@) 218 1 G)
2 | 50 1 | 10

Temp: 10
Light : 10 3 | 25 ;
\ Group # | AVG

Temp: 20
Light : 50

N SELECT
@ Temp: 30 FROMAVG(light) @ 1 | 10
: Light : 25 ' 3 | 25
' . Sensors ;
: GROUP BY :
! temp/10 :
. EP H DURATION 2
& oc J o Group # | AVG
Temp: 10 1 | 10
Light : 15
Group # | AVG
Temp: 10 1 | 5
Light : 5

Aggregation state progress during on

Sensor measurements within one epoch

NORTHWESTERN
UNIVERSITY

Aggregation Framework

e As in extensible databases, TAG supports any aggregation function
conforming to:

Aggn={finit! fmerge’ fevaluate}

Finit {20} — <agp> \/-'Par'rial State Record (PSR)

Fmerge {<a1>!<az>} [<a12>

Fovaluate {<24>} — aggregate value

AVG,. {Vv} — <V, 1>
AVGierge {<Sy, Ci>, <S5;, G>} —><5,+5,,C +C>
AVG, 5 iuatet<S, C>} — S/C

Restriction: Merge associative, commutative

NORTHWESTERN
UNIVERSITY

Considerations about aggregations

n Packet loss?
m Acknowledgement and re-transmit?
m Robust routing?

m Packets arriving out of order or in duplicates?
m Double count?

m Size of the aggregates?
m Message size growth?

NORTHWESTERN
UNIVERSITY

Classes of aggregations

Exemplary aggregates return one or more representative
values from the set of all values; summary aggregates
compute some properties over all values.

m MAX, MIN: exemplary; SUM, AVERAGE: summary.

m Exemplary aggregates are prone to packet loss and not
amendable to sampling.

m Summary aggregates of random samples can be treated as a

robust estimation.

NORTHWESTERN

Classes of aggregations

Duplicate insensitive aggregates are unaffected by
duplicate readings.
m Examples: MAX, MIN.
m Independent of routing topology.
m Combine with robust routing (multi-path).

NORTHWESTERN

UNIVERSITY Classes Of aggregations

Monotonic aggregates: when two partial records s,
and s, are combined to s, either e(s) > max{e(s,), e(s,)}

or e(s) < min{e(s,), e(s,)}.
m Examples: MAX, MIN.

m Certain predicates (such as HAVING) can be applied early
IN the network to reduce the communication cost.

B

UNIVERSITY

Classes of aggregations

m Partial state of the aggregates:

Good mm)
O

worst mm)™

bad =)
o

Distributive: the partial state is simply the aggregate for the partial
data. The size is the same with the size of the final aggregate.
Example: MAX, MIN, SUM

Algebraic: partial records are of constant size. Example: AVERAGE.

Holistic: the partial state records are proportional in size to the partial
data. Example: MEDIAN.

Unique: partial state is proportional to the number of distinct values.
Example: COUNT DISTINCT.

Content-sensitive: partial state is proportional to some (statistical)
properties of the data. Example: fixed-size bucket histogram, wavelet,

etc.

NORTHWESTERN

Classes of aggregates
Duplicate Exemplary, Monotonic Partial State
sensitive Summary
MAX, MIN No E Yes Distributive
COUNT, SUM Yes S Yes Distributive
AVERAGE Yes S No Algebraic
MEDIAN Yes - No Holistic
COUNT No S Yes Unique
DISTINCT
HISTOGRAM Yes S No Content-
sensitive

.

UNIVERSITY

Use Multiple Parents

® Use graph structure
m Increase delivery probability with no communication overhead

For duplicate insensitive aggregates, or

® Aggs expressible as sum of parts

m Send (part of) aggregate to all parents
m |n just one message, via multicast

m Assuming independence, decreases variance

SELECT COUNT(*)

link xmit successful) = p &R

P(success from A->R) = p?
Elenty =6V ps
Var(ent)=c2*p2*(1-p?)=V

E(cnt) =n* (c/n* p?)

Var(cnt) = n > (c/n)? * p? * (1
- p?) = V/n

NORTHWESTERN
UNIVERSITY

Better than previous analysis
expected!

Losses aren’t independent!

® Insight: spreads data over many
links

Multiple Parents Results

Avg. COUNT

1400

1200

1000

(0]
o
o

(o))
o
o

400

200

Benefit of Result Splitting
(COUNT query)

[Splitting -

0 No Splitting [—

T

(2500 nodes, lossy radio model, 6 parents per

node)

NORTHWESTERN
UNIVERSITY

Multiple Parents Results

ORTHWESTERN TinyDB Architecture

TinyDB GUI
>

TinyDB Client API

TinyDB query

processor

Sensor network

NORTHWESTERN
UNIVERSITY

Multihop Networking

Revised implementation of “tree based routing”

Parent Selection:
Use parent with best
Quality link

Node D

Neigh Qual
75

Neigh Qual

NORTHWESTERN
UNIVERSITY

Data model—revisited

® A single, append-only table
Sensors (nodeid, time, light, temp, ...)

m Just a conceptual view for posing queries; in reality:

m Data Is not already there at query time
m Traditional database: queries independent of acquisition
m Here: queries drive acquisition
m Didn’t ask for light? Then 1t won’t be sampled!
m Data may not be at one place
m Like a distributed database, but here nodes/network are much less

powerful/reliable

m Data won’t be around forever
m Similar to stream data processing

NORTHWESTERN

wesrr—— ACQUISItional Query Processing

What’s really new & different about databases on (mote-based)
sensor networks?

TinyDB’s answer:
m Long running queries on physically embedded devices that

control when and where and with what frequency data is
collected

m Versus traditional DBMS where data is provided a priori

® For a distributed, embedded sensing environment, ACQP
provides a framework for addressing issues of
= When, where, and how often data Is sensed/sampled
m Which data is delivered

R

wrmesresAcquisitional Query Processing

UNIVERSITY

How does the user control acquisition?
m Rates or lifetimes
m Event-based triggers
How should the query be processed?
m Sampling as an operator, Power-optimal ordering
m Frequent events as joins
\Which nodes have relevant data?
m Semantic Routing Tree for effective pruning
m Nodes that are queried together route together
Which samples should be transmitted?
m Pick most “valuable”?
m Adaptive transmission & sampling rates

NORTHWESTERN
UNIVERSITY

Rate & Lifetime Queries

Rate query
nodeid, light, temp @
Sensors Estimate sampling rate that
1s 1M achieves this

u Lifetime query

30 days
May not be able to

10 days / transmit all the data
1s

NORTHWESTERN

s PFOCESSING Lifetimes: Issues

Provide formulas for estimating power consumption: set
maximum per-node sampling rates

& \What makes this difficult?

e estimating the selectivity of predicates

e amount transmitted by a node varies widely

e root is a bottleneck: all nodes rates must correspond to it

e aggregation vs. sending individual values

- multiple sensing types (temp, accel) with different drain

e conditions change: multiple queries, burstiness, message losses

- What to do when can't transmit all the data

NORTHWESTERN

UNIVERSITY Sto rag e po i ntS

CREATE STORAGE POINT recentLight SIZE 8 AS
(SELECT nodeid, light FROM Sensors
SAMPLE PERIOD 10s);
m A sliding window of recent readings, materialized locally
Joining with the Sensors stream

B SELECT COUNT (*)
FROM Sensors s, recentlLight rl (::)
WHERE rl.nodeid = s.nodeid AND s.light <
5l S e e

SAMPLE PERIOD 10s;
= TinyDB only allows joining a stream with a storage point !

B

NORTHWESTERN
UNIVERSITY

Event-based Queries

ON event SELECT ...
Run query only when interesting events happens

® Event examples
m Button pushed
m Message arrival
m Bird enters nest

Analogous to triggers but events are user-defined

R

NORTHWESTERN

Event Based Processing

® ACQP — want to initiate queries in response to events

bird-detect(loc):
AVG(s.light), AVG(s.temp), event.loc
Sensors AS s
dist(s.loc, event.loc) < 10m
2S 30s

Reports the average light and temperature level at sensors near a bird nest
where a bird has been detected

E.g., New query instance generated for as long as bird is there

B

NORTHWESTERN Event Based Processing

UNIVERSITY

Time v. Current Draw

35
30 ~
<C - i
- 25
— 20 r |
=
© 15 | Event Based Trigger 7
3 10} .
5 R, A0 it S A -
0
<
£
p=
o
S
> g
10 15 20 25 30 35 40

Time (s)

Single external interrupt

