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TAG: Tiny Aggregation

#  Query Distribution: aggregate queries are pushed down the network to
construct a spanning tree.
m  Root broadcasts the query and specifies its level |
m  Each node that hears message assigns its own level to be 1+1 and chooses as parent
a node with smallest level.
m  Each node rebroadcasts message until all nodes have received it
m  Resulting structure is a spanning tree rooted at the query node.

® Data Collection: aggregate values are routed up the tree.
m Internal node aggregates the partial data received from its subtree.
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Tree-based Routing

® Tree-based routing
m Used In:
m Query delivery
m Data collection
m In-network aggregation



http://webs.cs.berkeley.edu/tinyos

TAG example
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Data Model

® Entire sensor network as one single, infinitely-long logical table: sensors
# Columns consist of all the attributes defined in the network
n Typical attributes:
m Sensor readings
m Meta-data: node id, location, etc.
m Internal states: routing tree parent, timestamp, queue length, etc.
# Nodes return NULL for unknown attributes
# On server, all attributes are defined in catalog.xml
# Discussion: other alternative data models?

B
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Query Language (TinySQL)

SELECT <aggregates>, <attributes>
[FROM {sensors | <buffer>}]
[WHERE <predicates>]

[GROUP BY <attributes>]
[SAMPLE PERIOD <const> | ONCE]
[INTO <buffer>]
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Comparison with SQL

& Single table in FROM clause (exception: storage points...)

# Only conjunctive comparison predicates in WHERE and
HAVING

# No subqueries
#t No column alias in SELECT clause

m Arithmetic expressions limited to column op constant
®# Only fundamental difference: SAMPLE PERIOD clause

B
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"Find the sensors in bright nests.”

@ Sensors

SELECT nodeid, nestNo, light Epoch | Nodeid nestNo |  Light
FROM sensors

0 1 17 455
EPOCH DURATION 1s 0 2 25 389
iE 1 17 422
1 2 25 405

—m
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(2) SELECT AV6(sound) “Count the number of occupied
EROM “ehsors nests in each loud region of the
island.”
EPOCH DURATION 10s

ELECT r'egion, CNT(occupied) Epoch region CNT(...) AVG(...)

AVG(sound) 0 North 3 360
FROM sensors 0 South 3 520
GROUP BY region ~: 1 North 3 370

HAVING AVG(sound) > 200
EPOCH DURATION 10s

1 South 3 520

“’. \‘
“ Regions w/ AVG(sound) > 200

B
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Basic Aggregation

# In each epoch:
m Each node samples local sensors once
m Generates partial state record (PSR)
m |ocal readings
m readings from children
m Outputs PSR during assigned comm. interval

# At end of epoch, PSR for whole network output at root
# New result on each successive epoch

m EXxtras:
m Predicate-based partitioning via GROUP BY

B
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|Hlustration: Aggregation

SELECT COUNT(*) FROM
sensors Interval 4
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[Hlustration; Aggregation
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[Hlustration: Aggregation
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" TAG Algorithm w/ GROUP-ing

Group # | AVG

10
30
25

wWN P

Temp: 20

Group # | AVG
5 Group # | AVG

@) 218 1 G)
2 | 50 1 | 10

Temp: 10
Light : 10 3 | 25 ;
\ Group # | AVG

Temp: 20
Light : 50

N SELECT
@ Temp: 30 FROMAVG( light ) @ 1 | 10
: Light : 25 ' 3 | 25
' . Sensors ;
: GROUP BY :
! temp/10 :
. EP H DURATION 2
& oc J o Group # | AVG
Temp: 10 1 | 10
Light : 15
Group # | AVG
Temp: 10 1 | 5
Light : 5

Aggregation state progress during on

Sensor measurements within one epoch
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Aggregation Framework

e As in extensible databases, TAG supports any aggregation function
conforming to:

Aggn={finit! fmerge’ fevaluate}

Finit {20} — <agp> \/-'Par'rial State Record (PSR)

Fmerge {<a1>!<az>} [ <a12>

Fovaluate {<24>} — aggregate value

AVG,. {Vv} — <V, 1>
AVGierge {<Sy, Ci>, <S5;, G>} —><5,+5,,C +C>
AVG, 5 iuatet<S, C>} — S/C

Restriction: Merge associative, commutative
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Considerations about aggregations

n Packet loss?
m Acknowledgement and re-transmit?
m Robust routing?

m Packets arriving out of order or in duplicates?
m Double count?

m Size of the aggregates?
m Message size growth?
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Classes of aggregations

# Exemplary aggregates return one or more representative
values from the set of all values; summary aggregates
compute some properties over all values.

m MAX, MIN: exemplary; SUM, AVERAGE: summary.

m Exemplary aggregates are prone to packet loss and not
amendable to sampling.

m Summary aggregates of random samples can be treated as a

robust estimation.
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Classes of aggregations

# Duplicate insensitive aggregates are unaffected by
duplicate readings.
m  Examples: MAX, MIN.
m Independent of routing topology.
m  Combine with robust routing (multi-path).
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# Monotonic aggregates: when two partial records s,
and s, are combined to s, either e(s) > max{e(s,), e(s,)}

or e(s) < min{e(s,), e(s,)}.
m  Examples: MAX, MIN.

m Certain predicates (such as HAVING) can be applied early
IN the network to reduce the communication cost.

B
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Classes of aggregations

m Partial state of the aggregates:

Good mm)
O

worst mm)™

bad =)
o

Distributive: the partial state is simply the aggregate for the partial
data. The size is the same with the size of the final aggregate.
Example: MAX, MIN, SUM

Algebraic: partial records are of constant size. Example: AVERAGE.

Holistic: the partial state records are proportional in size to the partial
data. Example: MEDIAN.

Unique: partial state is proportional to the number of distinct values.
Example: COUNT DISTINCT.

Content-sensitive: partial state is proportional to some (statistical)
properties of the data. Example: fixed-size bucket histogram, wavelet,

etc.
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Classes of aggregates
Duplicate Exemplary, Monotonic Partial State
sensitive Summary
MAX, MIN No E Yes Distributive
COUNT, SUM Yes S Yes Distributive
AVERAGE Yes S No Algebraic
MEDIAN Yes - No Holistic
COUNT No S Yes Unique
DISTINCT
HISTOGRAM Yes S No Content-
sensitive

.
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Use Multiple Parents

® Use graph structure
m Increase delivery probability with no communication overhead

# For duplicate insensitive aggregates, or

® Aggs expressible as sum of parts

m Send (part of) aggregate to all parents
m |n just one message, via multicast

m Assuming independence, decreases variance

SELECT COUNT(*)

link xmit successful) = p &R

P(success from A->R) = p?
Elenty =6V ps
Var(ent)=c2*p2*(1-p?)=V

E(cnt) =n* (c/n* p?)

Var(cnt) = n > (c/n)? * p? * (1
- p?) = V/n
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# Better than previous analysis
expected!

# Losses aren’t independent!

® Insight: spreads data over many
links

Multiple Parents Results

Avg. COUNT
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Benefit of Result Splitting
(COUNT query)

[ Splitting -

0 No Splitting [—

T

(2500 nodes, lossy radio model, 6 parents per

node)
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Multiple Parents Results
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TinyDB GUI
>

TinyDB Client API

TinyDB query

processor

Sensor network
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Multihop Networking

# Revised implementation of “tree based routing”

Parent Selection:
Use parent with best
Quality link

Node D

Neigh Qual
75

Neigh Qual
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Data model—revisited

® A single, append-only table
Sensors (nodeid, time, light, temp, ...)

m Just a conceptual view for posing queries; in reality:

m Data Is not already there at query time
m Traditional database: queries independent of acquisition
m Here: queries drive acquisition
m Didn’t ask for light? Then 1t won’t be sampled!
m Data may not be at one place
m Like a distributed database, but here nodes/network are much less

powerful/reliable

m Data won’t be around forever
m Similar to stream data processing
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# What’s really new & different about databases on (mote-based)
sensor networks?

# TinyDB’s answer:
m Long running queries on physically embedded devices that

control when and where and with what frequency data is
collected

m Versus traditional DBMS where data is provided a priori

® For a distributed, embedded sensing environment, ACQP
provides a framework for addressing issues of
= When, where, and how often data Is sensed/sampled
m  Which data is delivered

R
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# How does the user control acquisition?
m Rates or lifetimes
m Event-based triggers
# How should the query be processed?
m Sampling as an operator, Power-optimal ordering
m Frequent events as joins
# \Which nodes have relevant data?
m Semantic Routing Tree for effective pruning
m Nodes that are queried together route together
# Which samples should be transmitted?
m Pick most “valuable”?
m Adaptive transmission & sampling rates
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Rate & Lifetime Queries

# Rate query
nodeid, light, temp @
Sensors Estimate sampling rate that
1s 1M achieves this

u Lifetime query

30 days
May not be able to

10 days / transmit all the data
1s
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s PFOCESSING Lifetimes: Issues

# Provide formulas for estimating power consumption: set
maximum per-node sampling rates

& \What makes this difficult?

e estimating the selectivity of predicates

e amount transmitted by a node varies widely

e root is a bottleneck: all nodes rates must correspond to it

e aggregation vs. sending individual values

- multiple sensing types (temp, accel) with different drain

e conditions change: multiple queries, burstiness, message losses

- What to do when can't transmit all the data
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# CREATE STORAGE POINT recentLight SIZE 8 AS
(SELECT nodeid, light FROM Sensors
SAMPLE PERIOD 10s);
m A sliding window of recent readings, materialized locally
# Joining with the Sensors stream

B SELECT COUNT (*)
FROM Sensors s, recentlLight rl (::)
WHERE rl.nodeid = s.nodeid AND s.light <
5l S e e

SAMPLE PERIOD 10s;
= TinyDB only allows joining a stream with a storage point !

B
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Event-based Queries

# ON event SELECT ...
# Run query only when interesting events happens

® Event examples
m Button pushed
m Message arrival
m Bird enters nest

# Analogous to triggers but events are user-defined

R
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Event Based Processing

® ACQP — want to initiate queries in response to events

bird-detect(loc):
AVG(s.light), AVG(s.temp), event.loc
Sensors AS s
dist(s.loc, event.loc) < 10m
2S 30s

Reports the average light and temperature level at sensors near a bird nest
where a bird has been detected

E.g., New query instance generated for as long as bird is there

B
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