NORTHWESTERN
UNIVERSITY

Introduction to Wireless Sensor Network

Peter Scheuermann and Goce Trajcevski
Dept. of EECS
Northwestern University

NORTHWESTERN
UNIVERSITY

A Database Primer

Taen o A leap In history

A brief overview/review of databases (DBMS’s)

m Aren’t they for payrolls, inventories, and transactions?

Databases are about providing a declarative interface
to data processing/management
m Hides complexity and increases flexibility

Programming sensors Is hard—can databases help?

m After all, 1it’s all about data

m But, as we will see, traditional databases don’t work well in this setting
(good for us: lots of research problems!)

B

o TWO important questions

UNIVERSITY

What’s the right interface?
m Data model: How is data structured conceptually?
m Query language: How do users specify data processing/management
tasks?
How do you support this interface efficiently?

m Physical data organization: Store and index data in smart ways to speed up
access

m Query processing and optimization: Figure out the most efficient method
to carry out a given task

B

e A simplified example

Data
= Nodes are uniquely identified by their ids
m They are deployed at fixed locations

m Each node generates readings (e.g., light, temperature,
humidity) from the environment periodically, over time

Query
m Find nodes in a rectangular region D, where the
temperature reading at time t is higher than 40

As a simplification, assume for now the base
station has already collected all data

B

ZTERN
(42
(o TN
SRy

!

NorTHWESTERN. Without DBMS...

Deployment configuration file
m One node per line (id, X, y), sorted by id
Data log file

m Each line contains (id, timestamp, light, temperature, ...),
sorted by timestamp

To answer the query, write a program
m In configuration file, find ids in D, and remember them
m Search log file for section for timestamp t

m Scan the section for lines with qualified ids and
temperature higher than 40

-

wmmer Tricks and Alternatives

Indexes, e.g., on t and on temperature?

Change evaluation order, e.g., find temperature
readings higher than 40 first?
= When does this work better?

Best choice may not be known in advance

Problems with imperative programming

m Burden on programmer to figure out right
tricks/alternatives

m To keep up with runtime characteristics, you need to

reprogram your apps constantly! -

wase - Physical data iIndependence

® Apps should not need to worry about how data is
physically organized

® Apps should work with a logical data model and a
declarative query language

= Specify what you want, not how to get it
= |_eave implementation and optimization to DBMS!

B

)
LA
-_l_l.i-._. BV e

w=_ Relational data model

UNIVERSITY

A database Is collection of relations (or tables)
Each relation has a list of attributes (or columns)
Each relation contains a set of tuples (or rows)

Readings
id [{time |light [{temp...
Nodes N1 |1 3.14 |26
id [x N2 |1 3.27 [27
N1 [14.2 8.5 N3 1 297 [26
N2 7.1 4.2
N3 -0.4 1.9 N1 2 3.17 26
N4 3.1 4.1 N2 2 299 125
N3 2 3.02 26
Key = {id}

Key = {id, time}

NORTHWESTERN

Key Constraint

s Two rules for Key constraints:

m Two distinct tuples in a legal instance cannot have
Identical values in all columns of keys (unigue)

m No subset of the set of fields in a key Is a unique
Identifier for a tuple (maximal)

m Example:
m No two nodes can have the same id
m NO two measurements can have the same id and time

CORE IDEA : Minimal subset of columns of the relation

that uniquely identify the tuple.

E; == 1:';

NORTHWESTER Relational algebra

UNIVERSITY

A language for querying relational databases based on
operators:

=@

m Core set of operators: selection, projection, cross product, union,
difference, and renaming

Additional, derived operators: join, natural join, etc.

® Compose operators to make complex queries

NORTHWESTERN

~=n Relational algebra operators

® Selection: o , R
m Return only rows that satisfy selection condition p
Projection: n- R
m Return all rows, but only with columns in C (eliminate
duplicates !)
Cross product: R x S

m For every pair of rows from R and S, return the
concatenation

Union and difference: Ru Sand R - S

Rename: ps R, pa, a2, ..) ROr psa1, a2,)R
m Rename a table and/or its columns

JoinnR P s=p (RxS)

Natural join:R B S

m Equate common columns and keep one in output n

Example query

UNIVERSITY

® Given:
m Nodes(id, X, y), Readings(id, time, light, temp, ...)

® Find nodes In rectangular region D(xl, yl, xh, yh), where
temperature at time t is higher than 40

T id
Oxl <=x <=xhand yl <=y <=yh Otime = t and temp > 40
Nodes Readings

B

SOL

NORTHWESTERN
UNIVERSITY

® Structured Query Language: standard language
spoken by most commercial DBMS

Simplest form:
SELECT A, A,, ..., A
FROM R, R,, ..., R
WHERE condition;

m A’s can be expressions in general

n
m

m Same as n A1, Ap, ..., A, (G condition (Rl X RZ X...X Rm))
m Except SQL preserves duplicates
m Also called an SPJ (select-project-join) query

B

ZRERN 7

oxeETEN. Same query in SQL

® Nodes(id, X, y), Readings(id, time, light, temp, ...)

Find nodes In rectangular region D(xI, yl, xh, yh),
where temperature at time t is higher than 40

SELECT Nodes.id
FROM Nodes, Readings

WHERE x| <= x AND x <= xh
AND yl <=y AND y <=yh
AND time =t
AND temp > 40
AND Nodes.id = Readings.id;

Compare this with an imperative program! n

ey More SQL features

UNIVERSITY

SELECT [DISTINCT] list_of output_exprs
FROM list_of tables

WHERE where_condition

GROUP BY list_of group by columns
HAVING having_condition

ORDER BY list_of order by columns

Operational semantics
FROM: take the cross product of list_of tables
WHERE: apply G where_ondition

GROUP BY: group result tuples according to
list_of group by columns

HAVING: apply c having_condition to groups
SELECT: evaluate list_of output_exprs for each output group

DISTINCT: eliminate duplicates in output

H H H H

ORDER BY: sort output by list_of order by columns

e Aggregation example

UNIVERSITY

® Nodes(id, x, y), Readings(id, time, light, temp, ...)
m Average light over time, by nodes
m SELECT id, AVG(light) FROM Readings GROUP BY id;

Compute GROUP BY: group Compute SELECT
rows according to the values for each group

of GROUP BY columns id lime light [templ..
@Nl 1 314 26 |. |
N1 2 3.17 26 |.. ¥ liaht
id ftime |light [temp |.. ' avg_lig
N2 |1 217 27
N1 |1 3.14 26 S N1 [3.155
N2 2 2.99 25
N2 1 3.27 27 |. N2 13.13
N3 |1 2.97 |26 N3 |1 2.97 26 N3 |2.095
N1 (2 3.17 |26 N3 |2 302 126 '
N2 (2 2.99 |25
N3 2 3.02 |26

B

o Symmary of the relational interface

How Is data structured conceptually?
m Simple tables (no order by design!)
m Rows “linked” by key values

How do users specify data processing/management
tasks?

m Relational algebra: data flow of operators
m SQL.: easier to write; even more declarative

= Next: How do we support this interface efficiently?

B

wmwer Physical data organization

UNIVERSITY

Lay out data In various ways, e.g.:

m Store Nodes hashed by id

m Store Readings sorted by time, id
Use auxiliary data structures

m Index data to provide alternative access paths, e.g.:
m R-tree index on Nodes(x, Y)
m B-tree index on Readings(light)

m Materialize views of data, e.g.:
m All temperatures higher than 40

SELECT id, time, temperature FROM Readlngs WHERE
temperature >40; 0 g

= Basic trade-off?

'__

oty BE T Fee lndexes

UNIVERSITY

Non-leaf ‘l
Pages ‘17 g J7

P /+\ /{,\ /¢\ /¢\
Leaf e Pada™ b ol Coor 2T aren 0 4ZE
Pages

(Sorted by search key)

< Index leaf pages contain data entries, and are chained (prev & next)
+ Index non-leaf pages have index entries; only used to direct searches:

index entry
[|

Po | K1 |Pq| K2|P, o o o Km|Pm

} } ! HED A

] e E\,l;
o
7:%:,{:,/3

e Example B+ Tree

Roo&

Entries <= @

AR e

Note how data entries
In leaf level are sorted

Entries > @

27

30

-

L1

117
5 13
7*

2% [3* ﬁ\g* 8* ﬂ* 16*

247

ﬁ_;* o T;* 34* 38*| 39*

m Find: 29*? 28*? All >15* and < 30*
® Insert/delete: Find data entry in leaf, then change it.

Query processing and optimization

NORTHWESTERN
UNIVERSITY

SQL query SELECT x, y, time, light
FROM Nodes, Readings
| \. WHERE Nodes.id = Readings.CID;
;QSIIJQI;/P | Parser \ |
< > v
<select-list> | _<mere-cond> Parse tr&e% \What you want
/1 <fr/om-Qt> N\ A
" <table> <table> ‘ Validator / ‘
| | BRI E X, ¥, time, light
Nodes Readings Logical Plan Nodes.id = Readings.id
Optimi <
PROJECT (x, y, time, IightJ] !_Icld/es Readings
|] :
MERGE-JOIN (id) Phy5|c|al plan— How to get it
7 '
SRR A Executor |
SCAN (Readings) Result

B

NORTHWESTERN

mer - Database Parameters

|R|, [S| = Number of pages in relations R and S
respectively

[|R]], [|S|| = Number of tuples in relations R and S
respectively

K= no. of tuples per page
® JS = Join Selectivity Factor

mJS = [IR B S|/ ([[RI*/ISI])
® V(A, R) = number of distinct values that appear in relation
R for attribute A

B

& Estimating the Selectivity of
"= Selection and Join

o = Selection selectivity factor of relation R
v cT(A:value) =11 V(A1 R)
B G asvaiue) = (Max(A) — value) / (max(A)-min(A))
m Max(A) (Min(A)) is the largest (smallest) value of A in R
||R BgS|| = min ([[RIX[IS|| / V(A, R), [IRIIX[IS|I/ V(A, S))
® For each tuple t € R there are on the average
IIS|| / V(A, S) tuples in S matching it

mer]oin Techniques: R3S

® Nested-loop Join Algorithm

For each block b, iInR do /* read blocks*/
For each block b, in S do

For each tupler € b, do
For each tuple s € b, do
If r.a = s.b then output rus

Cost of Method
Tr = Number of Reads = |R| + |[R[*|S|
T = Number of Writes = [JJ*||R||*]|S|| / K]
Cost can be lowered if index i1s availableon R and / or S

B

e Physical plan operators

One logical plan operator can be implemented in
many different ways (physical plan operators)

#t Example: R D><9g a5 S

m Nested-loop join: for each tuple of R, and for each tuple
of S, join

m Index nested-loop join: for each tuple of R, use the
Index on S.B to find joining S tuples

m Sort-merge join: sort R by R.A, sort S by S.B, and
merge-join
m Hash join: partition R and S by hashing R.A and S.B,

and join corresponding partitions

= And many more...

e QUETY Optimization

UNIVERSITY

One query, many alternative physical plans

m With different access methods, join order, join
methods, etc.

= With dramatically different costs too!
Query optimization

m Enumerate candidate plans

m Query rewrite: transform queries or query plans into equivalent
ones

m Estimate costs of plans
m Estimate result sizes using statistics such as histograms

m Pick a plan with reasonably low cost
m Dynamic programming
m Randomized search

B

omgEsE Metive Databases

00 =

ECA = Basic Paradigm of the Reactive Behavior:
Triggers (Active Rules)

seemingly straightforward,

ON EVENT > g
but incorporates an interplay

IF CONDITION SR

THEN ACTION semantic dimensions

B

Assume that the Average Salary of the employees in a given enterprise should not
exceed 65,000.

The Database Modlfications that could cause

a change of the value(s) of the Average Salary are:
-Insertions; (of new employees with high salary)
-Deletions; (deletions of employees with low salary
-Update of the salaries of current employees

An example of the SQL statement specifying a trigger that would automatically
correct the database state (if needed) after an UPDATE has been executed is:

CREATE TRIGGER Update-Salary-Check
ON UPDATE OF Employee.Salary
IF (SELECT AVG Employee.Salary) > 65,000
UPDATE Employee

SET Employee.Salary = 0.95*Employee.Salary

voxmvestes - Example of Triggers Execution

Assume that it was decided to increase the salary of every
employee in the “Maintenance” department by 10%. Following is

the SQL statement:

UPDATE Employee
SET Employee.Salary = 1.10*Employee.Salary
WHERE Employee.Department = ‘Maintenance’

Assume that there are 3 employees: Bob, Sam and Tom.
Below is an example of two execution scenarios:

begin commit begin commit
| update i update - update = | update / update % update =
Bob Sam P Bob Sam Tom 33l
dl‘t A chec‘k \ (all)conditions checking™
_______ eetloﬁe_ex_e_cﬁﬁﬁg (|f needed) A actions executing (if needed)

B

HE B B B H H

UNIVERSITY

Back to sensor data processing...

Does data really live in a few big, flat tables?
Are data signals or symbols?

Is SQL really enough?

What would an index look like?

What would a physical plan look like?

How would the optimizer define “cost”?

