

Introduction to Wireless Sensor Network

Peter Scheuermann and Goce Trajcevski

Dept. of EECS

Northwestern University

1

2

 A Database Primer

3

A leap in history

A brief overview/review of databases (DBMS’s)

 Aren’t they for payrolls, inventories, and transactions?

Databases are about providing a declarative interface

to data processing/management
 Hides complexity and increases flexibility

Programming sensors is hard—can databases help?
 After all, it’s all about data

 But, as we will see, traditional databases don’t work well in this setting

(good for us: lots of research problems!)

4

Two important questions

What’s the right interface?

 Data model: How is data structured conceptually?

 Query language: How do users specify data processing/management
tasks?

How do you support this interface efficiently?

 Physical data organization: Store and index data in smart ways to speed up
access

 Query processing and optimization: Figure out the most efficient method
to carry out a given task

5

A simplified example

Data

 Nodes are uniquely identified by their ids

 They are deployed at fixed locations

 Each node generates readings (e.g., light, temperature,
humidity) from the environment periodically, over time

Query

 Find nodes in a rectangular region D, where the
temperature reading at time t is higher than 40

As a simplification, assume for now the base
station has already collected all data

6

Without DBMS…

Deployment configuration file

 One node per line (id, x, y), sorted by id

Data log file

 Each line contains (id, timestamp, light, temperature, …),
sorted by timestamp

To answer the query, write a program

 In configuration file, find ids in D, and remember them

 Search log file for section for timestamp t

 Scan the section for lines with qualified ids and
temperature higher than 40

7

Tricks and Alternatives

Indexes, e.g., on t and on temperature?

Change evaluation order, e.g., find temperature

readings higher than 40 first?

 When does this work better?

Best choice may not be known in advance

Problems with imperative programming

 Burden on programmer to figure out right

tricks/alternatives

 To keep up with runtime characteristics, you need to

reprogram your apps constantly!

8

Physical data independence

Apps should not need to worry about how data is

physically organized

Apps should work with a logical data model and a

declarative query language

 Specify what you want, not how to get it

 Leave implementation and optimization to DBMS!

9

Relational data model

A database is collection of relations (or tables)

Each relation has a list of attributes (or columns)

Each relation contains a set of tuples (or rows)

Nodes

Readings

Key = {id}

Key = {id, time}

id x y

N1 14.2 8.5

N2 7.1 -4.2

N3 -0.4 1.9

N4 3.1 -4.1

...

id time light temp ...

N1 1 3.14 26 ...

N2 1 3.27 27 ...

N3 1 2.97 26 ...

...

N1 2 3.17 26 ...

N2 2 2.99 25 ...

N3 2 3.02 26 ...

...

10

Key Constraint

Two rules for Key constraints:

 Two distinct tuples in a legal instance cannot have

identical values in all columns of keys (unique)

 No subset of the set of fields in a key is a unique

identifier for a tuple (maximal)

 Example:

 No two nodes can have the same id

 No two measurements can have the same id and time

CORE IDEA : Minimal subset of columns of the relation

that uniquely identify the tuple.

11

Relational algebra

Core set of operators: selection, projection, cross product, union,
difference, and renaming

Additional, derived operators: join, natural join, etc.

Compose operators to make complex queries

RelOp

RelOp

A language for querying relational databases based on
operators:

12

Relational algebra operators

Selection:  p R

 Return only rows that satisfy selection condition p

Projection: C R

 Return all rows, but only with columns in C (eliminate
duplicates !)

Cross product: R x S

 For every pair of rows from R and S, return the
concatenation

Union and difference: R  S and R – S

Rename: S R, (A1, A2, …) R or  S(A1, A2, …) R

 Rename a table and/or its columns

Join: R p S =  p (R x S)

Natural join: R S

 Equate common columns and keep one in output


 


 

13

Example query

Given:

 Nodes(id, x, y), Readings(id, time, light, temp, …)

Find nodes in rectangular region D(xl, yl, xh, yh), where

temperature at time t is higher than 40

xl  x  xh and yl  y  yh

Nodes Readings

time = t and temp > 40

 id


 

14

SQL

Structured Query Language: standard language
spoken by most commercial DBMS

Simplest form:
 SELECT A1, A2, …, An
 FROM R1, R2, …, Rm
 WHERE condition;
 Ai’s can be expressions in general

 Same as  A1, A2, …, An
 ( condition (R1 x R2 x … x Rm))

 Except SQL preserves duplicates

 Also called an SPJ (select-project-join) query

15

Same query in SQL

Nodes(id, x, y), Readings(id, time, light, temp, …)

Find nodes in rectangular region D(xl, yl, xh, yh),

where temperature at time t is higher than 40

SELECT Nodes.id

FROM Nodes, Readings

WHERE xl <= x AND x <= xh

 AND yl <= y AND y <= yh

 AND time = t

 AND temp > 40

 AND Nodes.id = Readings.id;

Compare this with an imperative program!

16

More SQL features

 SELECT [DISTINCT] list_of_output_exprs
FROM list_of_tables
WHERE where_condition
GROUP BY list_of_group_by_columns
HAVING having_condition
ORDER BY list_of_order_by_columns

Operational semantics

FROM: take the cross product of list_of_tables

WHERE: apply  where_ondition

GROUP BY: group result tuples according to
list_of_group_by_columns

HAVING: apply  having_condition to groups

SELECT: evaluate list_of_output_exprs for each output group

DISTINCT: eliminate duplicates in output

ORDER BY: sort output by list_of_order_by_columns

17

Aggregation example

Nodes(id, x, y), Readings(id, time, light, temp, …)

Average light over time, by nodes

 SELECT id, AVG(light) FROM Readings GROUP BY id;

Compute GROUP BY: group

rows according to the values

of GROUP BY columns

Compute SELECT

for each group

id time light temp ...

N1 1 3.14 26 ...

N2 1 3.27 27 ...

N3 1 2.97 26 ...

N1 2 3.17 26 ...

N2 2 2.99 25 ...

N3 2 3.02 26 ...

id time light temp ...

N1 1 3.14 26 ...

N1 2 3.17 26 ...

N2 1 3.27 27 ...

N2 2 2.99 25 ...

N3 1 2.97 26 ...

N3 2 3.02 26 ...

id avg_light

N1 3.155

N2 3.13

N3 2.995

18

Summary of the relational interface

How is data structured conceptually?

 Simple tables (no order by design!)

 Rows ―linked‖ by key values

How do users specify data processing/management

tasks?

 Relational algebra: data flow of operators

 SQL: easier to write; even more declarative

Next: How do we support this interface efficiently?

19

Physical data organization

Lay out data in various ways, e.g.:

 Store Nodes hashed by id

 Store Readings sorted by time, id

Use auxiliary data structures

 Index data to provide alternative access paths, e.g.:

 R-tree index on Nodes(x, y)

 B-tree index on Readings(light)

 Materialize views of data, e.g.:

 All temperatures higher than 40

 SELECT id, time, temperature FROM Readings WHERE
temperature > 40;

 Basic trade-off?

B+ Tree Indexes

 Index leaf pages contain data entries, and are chained (prev & next)
 Index non-leaf pages have index entries; only used to direct searches:

P 0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf

Pages

Pages

(Sorted by search key)

Leaf

Example B+ Tree

Find: 29*? 28*? All > 15* and < 30*

Insert/delete: Find data entry in leaf, then change it.

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

13 5

7* 5* 8* 22* 24*

27

27* 29*

Entries <= 17 Entries > 17

Note how data entries

in leaf level are sorted

22

Query processing and optimization

Parser

Validator

Optimizer

Executor

 Result

SQL query SELECT x, y, time, light

FROM Nodes, Readings

WHERE Nodes.id = Readings.CID;

Parse tree
<SFW>

<select-list>
<from-list>

<where-cond>

<table> <table>

<Query>

Nodes Readings

… …

Physical plan

PROJECT (x, y, time, light)

MERGE-JOIN (id)

SCAN (Readings)
SCAN (Nodes)

SORT (id)

Logical plan

 x, y, time, light
 Nodes.id = Readings.id

Nodes Readings

What you want

How to get it


 

23

Database Parameters

|R|, |S| = Number of pages in relations R and S

respectively

||R||, ||S|| = Number of tuples in relations R and S

respectively

K= no. of tuples per page

JS = Join Selectivity Factor

 JS = ||R S|| / (||R||*||S||)
V(A, R) = number of distinct values that appear in relation

R for attribute A


 

24

Estimating the Selectivity of

Selection and Join

 = Selection selectivity factor of relation R

 (A = value) = 1 / V(A, R)

 (A>value) = (max(A) – value) / (max(A)-min(A))
 Max(A) (Min(A)) is the largest (smallest) value of A in R

||R S|| = min (||R||x||S|| / V(A, R), ||R||x||S|| / V(A, S))

For each tuple t  R there are on the average

 ||S|| / V(A, S) tuples in S matching it


 

25

Join Techniques: R S

Nested-loop Join Algorithm

For each block br in R do /* read blocks*/
For each block bs in S do

For each tuple r  br do

 For each tuple s  bs do

 if r.a = s.b then output rs

Cost of Method

TR = Number of Reads = |R| + |R|*|S|

TW = Number of Writes = [Js*||R||*||S|| / K]

Cost can be lowered if index is available on R and / or S


 

26

Physical plan operators

One logical plan operator can be implemented in
many different ways (physical plan operators)

Example: R R.A = S.B S

 Nested-loop join: for each tuple of R, and for each tuple
of S, join

 Index nested-loop join: for each tuple of R, use the
index on S.B to find joining S tuples

 Sort-merge join: sort R by R.A, sort S by S.B, and
merge-join

 Hash join: partition R and S by hashing R.A and S.B,
and join corresponding partitions

 And many more…


 

27

Query optimization

One query, many alternative physical plans

 With different access methods, join order, join
methods, etc.

 With dramatically different costs too!

Query optimization

 Enumerate candidate plans

 Query rewrite: transform queries or query plans into equivalent
ones

 Estimate costs of plans

 Estimate result sizes using statistics such as histograms

 Pick a plan with reasonably low cost

 Dynamic programming

 Randomized search

28

 Active Databases

ECA = Basic Paradigm of the Reactive Behavior:

Triggers (Active Rules)

ON EVENT

IF CONDITION

THEN ACTION

seemingly straightforward,
but incorporates an interplay
of many
semantic dimensions

29

Example of Triggers Execution

CREATE TRIGGER Update-Salary-Check
 ON UPDATE OF Employee.Salary
 IF (SELECT AVG Employee.Salary) > 65,000
 UPDATE Employee
 SET Employee.Salary = 0.95*Employee.Salary

Assume that the Average Salary of the employees in a given enterprise should not

exceed 65,000.

The Database Modifications that could cause
a change of the value(s) of the Average Salary are:
-Insertions; (of new employees with high salary)
-Deletions; (deletions of employees with low salary
-Update of the salaries of current employees

An example of the SQL statement specifying a trigger that would automatically
correct the database state (if needed) after an UPDATE has been executed is:

30

Example of Triggers Execution

UPDATE Employee
 SET Employee.Salary = 1.10*Employee.Salary
 WHERE Employee.Department = ‘Maintenance’

Assume that it was decided to increase the salary of every
employee in the ―Maintenance‖ department by 10%. Following is

the SQL statement:

Assume that there are 3 employees: Bob, Sam and Tom.

Below is an example of two execution scenarios:

31

Back to sensor data processing…

Does data really live in a few big, flat tables?

Are data signals or symbols?

Is SQL really enough?

What would an index look like?

What would a physical plan look like?

How would the optimizer define ―cost‖?

