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A leap in history 

A brief overview/review of databases (DBMS’s) 

 Aren’t they for payrolls, inventories, and transactions? 

Databases are about providing a declarative interface 

to data processing/management 
 Hides complexity and increases flexibility 

Programming sensors is hard—can databases help? 
 After all, it’s all about data 

 But, as we will see, traditional databases don’t work well in this setting 

(good for us: lots of research problems!) 
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Two important questions 

What’s the right interface? 

 Data model: How is data structured conceptually? 

 Query language: How do users specify data processing/management 
tasks? 

How do you support this interface efficiently? 

 Physical data organization: Store and index data in smart ways to speed up 
access 

 Query processing and optimization: Figure out the most efficient method 
to carry out a given task 
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A simplified example 

Data 

 Nodes are uniquely identified by their ids 

 They are deployed at fixed locations 

 Each node generates readings (e.g., light, temperature, 
humidity) from the environment periodically, over time 

Query 

 Find nodes in a rectangular region D, where the 
temperature reading at time t is higher than 40 

As a simplification, assume for now the base 
station has already collected all data 
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Without DBMS… 

Deployment configuration file 

 One node per line (id, x, y), sorted by id 

Data log file 

 Each line contains (id, timestamp, light, temperature, …), 
sorted by timestamp 

To answer the query, write a program 

 In configuration file, find ids in D, and remember them 

 Search log file for section for timestamp t 

 Scan the section for lines with qualified ids and 
temperature higher than 40 
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Tricks and  Alternatives 

Indexes, e.g., on t and on temperature? 

Change evaluation order, e.g., find temperature 

readings higher than 40 first? 

 When does this work better? 

Best choice may not be known in advance 

Problems with imperative programming 

 Burden on programmer to figure out right 

tricks/alternatives 

 To keep up with runtime characteristics, you need to 

reprogram your apps constantly! 
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Physical data independence 

Apps should not need to worry about how data is 

physically organized 

Apps should work with a logical data model and a 

declarative query language 

 Specify what you want, not how to get it 

 Leave implementation and optimization to DBMS! 
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Relational data model 

A database is collection of relations (or tables) 

Each relation has a list of attributes (or columns) 

Each relation contains a set of tuples (or rows) 

Nodes 

Readings 

Key = {id} 

Key = {id, time} 

id x y 

N1 14.2 8.5 

N2 7.1 -4.2 

N3 -0.4 1.9 

N4 3.1 -4.1 

... ... ... 

id time light temp ... 

N1 1 3.14 26 ... 

N2 1 3.27 27 ... 

N3 1 2.97 26 ... 

... ... ... ... ... 

N1 2 3.17 26 ... 

N2 2 2.99 25 ... 

N3 2 3.02 26 ... 

... ... ... ... ... 
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Key Constraint 

Two rules for Key constraints: 

 Two distinct tuples in a legal instance cannot have 

identical values in all columns of keys (unique) 

 No subset of the set of fields in a key is a unique 

identifier for a tuple (maximal) 

 Example:  

 No two nodes can have the same  id 

 No two measurements can have the same id and time 

  

CORE IDEA :  Minimal subset of columns of the relation 

that uniquely identify the tuple.  
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Relational algebra 

Core set of operators: selection, projection, cross product, union, 
difference, and renaming 

Additional, derived operators: join, natural join, etc. 

Compose operators to make complex queries 

RelOp 

RelOp 

 

A language for querying relational databases based on 
operators: 
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Relational algebra operators 

Selection:  p R 

 Return only rows that satisfy selection condition p 

Projection: C R 

 Return all rows, but only with columns in C (eliminate 
duplicates !) 

Cross product: R x S 

 For every pair of rows from R and S, return the 
concatenation 

Union and difference: R  S and R – S 

Rename: S R, (A1, A2, …) R or  S(A1, A2, …) R 

 Rename a table and/or its columns 

Join: R       p        S =  p (R x S) 

Natural join: R              S 

 Equate common columns and keep one in output 


 

 


 
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Example query 

Given: 

 Nodes(id, x, y), Readings(id, time, light, temp, …) 

Find nodes in rectangular region D(xl, yl, xh, yh), where 

temperature at time t is higher than 40 

 

xl  x  xh and yl  y  yh 

Nodes Readings 

time = t and temp > 40 

 id 


 
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SQL 

Structured Query Language: standard language 
spoken by most commercial DBMS 

 

Simplest form: 
 SELECT A1, A2, …, An 
 FROM R1, R2, …, Rm 
 WHERE condition; 
 Ai’s can be expressions in general 

 Same as  A1, A2, …, An
 ( condition (R1 x R2 x … x Rm)) 

 Except SQL preserves duplicates 

 Also called an SPJ (select-project-join) query 
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Same query in SQL 

Nodes(id, x, y), Readings(id, time, light, temp, …) 

Find nodes in rectangular region D(xl, yl, xh, yh), 

where temperature at time t is higher than 40 

SELECT Nodes.id 

FROM Nodes, Readings 

WHERE xl <= x AND x <= xh 

  AND yl <= y AND y <= yh 

  AND time = t 

  AND temp > 40 

  AND Nodes.id = Readings.id; 

Compare this with an imperative program! 
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More SQL features 

 SELECT [DISTINCT] list_of_output_exprs 
FROM list_of_tables 
WHERE where_condition 
GROUP BY list_of_group_by_columns 
HAVING having_condition 
ORDER BY list_of_order_by_columns 

Operational semantics 

FROM: take the cross product of list_of_tables 

WHERE: apply  where_ondition  

GROUP BY: group result tuples according to 
list_of_group_by_columns 

HAVING: apply  having_condition to groups 

SELECT: evaluate list_of_output_exprs for each output group 

DISTINCT: eliminate duplicates in output 

ORDER BY: sort output by list_of_order_by_columns 
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Aggregation example 

Nodes(id, x, y), Readings(id, time, light, temp, …) 

Average light over time, by nodes 

 SELECT id, AVG(light) FROM Readings GROUP BY id; 

Compute GROUP BY: group  

rows according to the values  

of GROUP BY columns 

Compute SELECT  

for each group 

id time light temp ... 

N1 1 3.14 26 ... 

N2 1 3.27 27 ... 

N3 1 2.97 26 ... 

N1 2 3.17 26 ... 

N2 2 2.99 25 ... 

N3 2 3.02 26 ... 

id time light temp ... 

N1 1 3.14 26 ... 

N1 2 3.17 26 ... 

N2 1 3.27 27 ... 

N2 2 2.99 25 ... 

N3 1 2.97 26 ... 

N3 2 3.02 26 ... 

id avg_light 

N1 3.155 

N2 3.13 

N3 2.995 
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Summary of the relational interface 

How is data structured conceptually? 

 Simple tables (no order by design!) 

 Rows ―linked‖ by key values 

How do users specify data processing/management 

tasks? 

 Relational algebra: data flow of operators 

 SQL: easier to write; even more declarative 

 

Next: How do we support this interface efficiently? 
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Physical data organization 

Lay out data in various ways, e.g.: 

 Store Nodes hashed by id 

 Store Readings sorted by time, id 

Use auxiliary data structures 

 Index data to provide alternative access paths, e.g.: 

 R-tree index on Nodes(x, y) 

 B-tree index on Readings(light) 

 Materialize views of data, e.g.: 

 All temperatures higher than 40 

 SELECT id, time, temperature FROM Readings WHERE 
temperature > 40; 

 Basic trade-off? 



B+ Tree Indexes 

 Index leaf pages contain data entries, and are chained (prev & next) 
 Index non-leaf pages have index entries; only used to direct searches: 

P 0 K 1 P 1 K 2 P 2 K m P m 

index entry 

Non-leaf 

Pages 

Pages  

(Sorted by search key) 

Leaf 



Example B+ Tree 

Find:   29*?    28*?     All > 15* and < 30* 

Insert/delete:  Find data entry in leaf, then change it.  

2* 3* 

Root 

17 

30 

14* 16* 33* 34* 38* 39* 

13 5 

7* 5* 8* 22* 24* 

27 

27* 29* 

Entries <=  17 Entries >  17 

Note how data entries 

in leaf level are sorted 
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Query processing and optimization 

Parser 

Validator 

Optimizer 

Executor 

 Result 

SQL query SELECT x, y, time, light  

FROM Nodes, Readings 

WHERE Nodes.id = Readings.CID; 

Parse tree 
<SFW> 

<select-list> 
<from-list> 

<where-cond> 

<table> <table> 

<Query> 

Nodes Readings 

… … 

Physical plan 

PROJECT (x, y, time, light) 

MERGE-JOIN (id) 

SCAN (Readings) 
SCAN (Nodes) 

SORT (id) 

Logical plan 

 x, y, time, light 
 Nodes.id = Readings.id 

Nodes Readings 

What you want 

How to get it 


 
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Database Parameters 

|R|, |S|  = Number of pages in relations R and S 

respectively 

||R||, ||S|| = Number of tuples in relations R and S 

respectively 

K= no. of tuples per page 

JS = Join Selectivity Factor 

 JS = ||R      S|| / (||R||*||S||) 
V(A, R) = number of distinct values that appear in relation 

R for attribute A 


 
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Estimating the Selectivity of 

Selection and Join 

 = Selection selectivity factor of relation R 

 (A = value) = 1 / V(A, R) 

 (A>value) = (max(A) – value) / (max(A)-min(A)) 
 Max(A) (Min(A)) is the largest (smallest) value of A in R 

||R      S|| = min (||R||x||S|| / V(A, R), ||R||x||S|| / V(A, S)) 

For each tuple t  R there are on the average  

    ||S|| / V(A, S) tuples in S matching it 


 
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Join Techniques: R     S  

Nested-loop Join Algorithm 

For each block br in R do       /* read blocks*/ 
For each block bs in S do 

For each tuple r  br  do 

  For each tuple s  bs  do 

    if r.a = s.b then output rs 

Cost of Method 

TR = Number of Reads = |R| + |R|*|S| 

TW = Number of Writes = [Js*||R||*||S|| / K] 

Cost can be lowered if index is available on R and / or S 


 
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Physical plan operators 

One logical plan operator can be implemented in 
many different ways (physical plan operators) 

Example: R       R.A = S.B S 

 Nested-loop join: for each tuple of R, and for each tuple 
of S, join 

 Index nested-loop join: for each tuple of R, use the 
index on S.B to find joining S tuples 

 Sort-merge join: sort R by R.A, sort S by S.B, and 
merge-join 

 Hash join: partition R and S by hashing R.A and S.B, 
and join corresponding partitions 

 And many more… 


 
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Query optimization 

One query, many alternative physical plans 

 With different access methods, join order, join 
methods, etc. 

 With dramatically different costs too! 

Query optimization 

 Enumerate candidate plans 

 Query rewrite: transform queries or query plans into equivalent 
ones 

 Estimate costs of plans 

 Estimate result sizes using statistics such as histograms 

 Pick a plan with reasonably low cost 

 Dynamic programming  

 Randomized search 
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 Active Databases 

ECA = Basic Paradigm of the Reactive Behavior: 

Triggers ( Active Rules) 

ON        EVENT 

IF          CONDITION 

THEN   ACTION 

seemingly straightforward, 
but incorporates an interplay 
of many 
semantic dimensions 
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Example of Triggers Execution 

CREATE TRIGGER Update-Salary-Check 
 ON UPDATE OF Employee.Salary 
 IF (SELECT AVG Employee.Salary) > 65,000 
 UPDATE Employee 
  SET Employee.Salary = 0.95*Employee.Salary 
 

Assume that the Average Salary of the employees in a given enterprise should not 

exceed 65,000. 

The Database Modifications that could cause 
a change of the value(s) of the Average Salary are: 
-Insertions; (of new employees with high salary) 
-Deletions; (deletions of employees with low salary 
-Update of the salaries of current employees 

An example of the SQL statement specifying a trigger that would automatically  
correct the database state (if needed) after an UPDATE has been executed is: 
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Example of Triggers Execution 

UPDATE Employee 
 SET Employee.Salary = 1.10*Employee.Salary     
 WHERE Employee.Department = ‘Maintenance’   
 

Assume that it was decided to increase the salary of every 
employee in the ―Maintenance‖ department by 10%. Following is 

the SQL statement: 
 

Assume that there are 3 employees: Bob, Sam and Tom.  

Below is an example of two execution scenarios: 
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Back to sensor data processing… 

Does data really live in a few big, flat tables? 

Are data signals or symbols? 

Is SQL really enough? 

What would an index look like? 

What would a physical plan look like? 

How would the optimizer define ―cost‖? 


