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Cutsets
Shengxin Zha, Member, IEEE, Daizong Tian,Thrasyvoulos N. Pappas, Fellow, IEEE,

Abstract—We present a pattern-based approach for reconstructing
a K-level image from cutsets, dense samples taken along a family of
lines or curves in two- or three-dimensional space, which break
the image into blocks, each of which is typically reconstructed
independently of the others. The pattern-based approach utilizes
statistics of human segmentations to generate a codebook of patterns,
each of which represents a pair of a block boundary specification
and the corresponding pattern in the block interior. We develop
the approach for rectangular cutset topologies and show that it
can be extended to general periodic sampling topologies. We also
show that, for bilevel cutset reconstruction, the pattern-based can
be combined with the previously proposed cutset-MRF approach to
substantially reduce the size of the codebook with a slight increase
in reconstruction error. In addition, we present an algorithm for
segmenting the cutset samples of an original grayscale or color
image, followed by reconstruction of the full segmentation field
via the pattern-based approach. Experimental results show that
the proposed approaches outperform the cutset-MRF approaches
in terms of both reconstruction error rate and perceptual quality.
Moreover, this is accomplished without any side information about
the structure of the block interior. Systematic comparisons of the
performance of different sampling topologies are also provided.

Index Terms—Image sampling, segmentation, reconstruction, in-
terpolation

I. INTRODUCTION

Cutset sampling is a recently proposed approach for gathering

data along a family of lines or curves in two- or three-dimensional

space. For example, Figure 1 shows cutset sampling along rows

and columns of a dense two-dimensional Cartesian grid, and

compares it to uniform sampling. The advantages of cutset

sampling were first exploited for lossy bilevel image compression

[1]–[3]. Apart from compression efficiency, cutset sampling may

be dictated by physical constraints, e.g., deploying sensors along

city streets or forest service roads, or when sampling from

moving vehicles (trucks, buses, ships, airplanes) for which a cutset

topology substantially reduces the number of passes to be made

by the vehicle over the area of interest. Cutset sampling may

also be beneficial for wired sensor networks, for which the cutset
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Fig. 1: Uniform versus cutset sampling on a Cartesian grid

topology substantially reduces the number and length of wires,

or for wireless sensor networks, for which the cutset topology

facilitates energy efficient communication among sensors [4].

In cutset sampling, the samples are typically one or more scalar

values collected at the location of each sensor, which can rep-

resent physical measurements (temperature, salinity, pollution),

image intensities (grayscale, color, multispectral), or region labels

in a segmentation map. Given the samples on the cutset, the task

is then to recover (interpolate) the samples in the rest of the

field, based on an underlying model, typically uniform regions

separated by sharp transitions at smooth or piecewise smooth

boundaries.

In this paper, we will focus on the cutset topology shown in

Figure 1, whereby the samples are taken every N rows and every

N columns, resulting in (N+1)×(N+1) square blocks, each of

which shares 4N cutset samples on the block boundaries with the

neighboring blocks and encloses (N − 1)× (N − 1) unsampled

Cartesian nodes (N = 8 in the figure). Note that the average

sampling densities of the uniform and cutset topologies are not

the same; what really matters is the sample availability or the

efficiency with which the samples can be collected, encoded, or

transmitted. We will assume that the cutset samples represent

region labels, taking values in the set {1, 2, . . . ,K}, and that

the numbers have no other significance. As we will see, the

assumption is that the images or data fields we are sampling have

been segmented, either before or after sampling.

The primary goal of this paper is the reconstruction of the

missing Cartesian samples from the cutset. We will assume that

the underlying K-level images (K ≥ 2) belong to a broad

class of images, in which the regions are separated by smooth,

or piecewise smooth boundaries. We will refer to this as the

smoothness criterion [3]. Such images may arise in graphics, line

drawings, pen and ink sketches, or logos, but our primary interest

is on segmentation maps, from which decisional, regional, or

semantic information can be extracted. Given that the underlying

image satisfies the smoothness criterion, the aim of the K-level

cutset reconstruction is to extend segments from the cutset to

the full field with piecewise smooth contours. Figure 2 illustrates

an example of K-level cutset sampling and reconstruction. In
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Original Cutset samples Reconstruction
Fig. 2: Cutset sampling and reconstruction

addition to cutset sampling and reconstruction of a K-level

image, we will consider cutset sampling of a grayscale or color

image, segmentation of the cutset, and reconstruction of the full

segmentation field.

The 2-level reconstruction was considered in the context of

lossy bilevel image compression [1]–[3]. The key idea of the lossy

cutset coding (LCC) approach by Reyes et al. is to encode and

transmit the pixels on a cutset, and to reconstruct the interiors of

the blocks formed by the grid using a Markov random field (MRF)

model. The role of the MRF model is to enforce the reconstruction

of the smoothest image that is consistent with the samples on the

cutset. The term cutset was adopted because, when second-order

MRF models are used, the reconstructions of the block interiors

are decoupled [1], [2]. The role of a cutset is to preserve key

structural information of the image, from which the full image

field can be reconstructed. Reyes et al. [1], [2] found explicit

rules for optimal reconstructions for boundary specifications that

contain up to two runs of black (and two runs of white) pixels.

Zha et al. [3] proposed a hierarchical version of LCC that adapts

the grid size to local image detail. We will refer to the MRF-based

reconstruction as the cutset-MRF approach.

The bilevel cutset reconstruction has also been used as an

intermediate step (providing segment information) for grayscale

cutset reconstruction based on a Gaussian-MRF model [5]. A

variation of this approach, based on three-level plane fitting and

the Gaussian-MRF model, was introduced in [6]. Prelee et al.

[6] also considered the K-level reconstruction for K > 2, and

suggested heuristic rules that favor fewer long smooth boundaries

between regions; however, the problem remains quite open. An

alternative approach obtains grayscale reconstructions directly

based on orthogonal gradients on cutsets [7].

Reyes et al. [1], [2] found that the optimal reconstruction does

not always provide an accurate representation of the original

bilevel image, and used side information in the form of a

connection bit to signify which segments of black or white

pixels (runs) on the block boundary should be connected in

the reconstruction. They found that reconstructions based on the

connection bit are significantly better at preserving the structural

information of the image. Zha et al. [3] introduced additional

connection bits, which provide valuable structural information for

larger grid sizes (N > 8). However, in most real-world scenarios,

apart from compression applications, such side information is

not available. Thus, the first challenge is to recover as much

structural information as possible without the use of connection

bits. Moreover, the explicit rules for optimal reconstruction that

Reyes et al. [1], [2] found do not apply to images with K > 2
levels, and one has to resort to iterative reconstruction, which is

extremely time-consuming. Thus, the second challenge is to find

efficient and accurate algorithms for reconstruction of piecewise

smooth K-level images from cutsets for the K > 2 case.

In this paper we explore an alternative, pattern-based approach

for K-level cutset reconstruction that relies on statistics of human

segmentations of natural images to generate a codebook of pat-

terns that correspond to a set of boundary specifications. The idea

is to find the pattern that is most likely to have resulted in a given

boundary specification. Thus, the structural decisions (whether

two runs should be connected) are made based on statistics (how

often they are connected in segmentations of natural images). We

show that the performance of the pattern-based approach results

in lower reconstruction error rate and better visual appearance

than the cutset-MRF approaches. The pattern-based approach

also applies to a broader class of images, including K-level

images (K ≥ 2), and general sampling topologies, such as non-

intersecting lines, hexagonal cutsets, and uniform point samples.

In addition, we show that the pattern-based and MRF-based

approaches can be combined for bilevel cutset reconstruction. The

idea is to utilize statistics of human segmentations to determine

structural information and then to reconstruct piecewise smooth

segment contours based on an MRF model. Such a combina-

tion slightly increases the reconstruction error rate compared to

the pure pattern-based approach, but substantially reduces the

codebook size, thus reducing both the storage overhead and the

testing time. We show that the combined approach, which we call

PAT/MRF approach, still outperforms the cutset-MRF approaches

when there are no connection bits. However, as we discussed

above, there is no efficient MRF-based reconstruction for K > 2,

so the PAT/MRF approach only applies to bilevel reconstruction.

The main contributions of this paper are summarized as follows

• We present a pattern-based K-level cutset reconstruction

approach that utilizes statistics from human segmentations of

natural images to generate a codebook of patterns, without

additional information (connection bits).

• We extend the pattern-based approach to general periodic

sampling topologies.

• We combine the pattern-based and cutset-MRF approaches

into the PAT/MRF approach for bilevel cutset reconstruction.

• In addition, we show how the adaptive clustering algorithm

[8] can be modified to segment the cutset samples of the

original grayscale or color image, followed by reconstruction

of the full segmentation field via the pattern-based approach.

The key ideas on pattern-based cutset reconstruction were

introduced in two conference papers [9], [10]. This paper provides

a comprehensive presentation of the approaches with additional

details, analysis, and extended experimental results.

The remainder of this paper is organized as follows. Section II

reviews the related work. Section III introduces the pattern-

based approach. Section VI demonstrates the experimental results.

Section VII concludes this paper.

II. RELATED WORK

Cutsets have been studied in bilevel image compression [1],

[2], [11], image sampling and reconstruction [5]–[7], [12], [13],

and sensor networks [4], [14]. In this section we review bilevel

cutset reconstruction based on MRF and the most relevant work

on K-level and bilevel cutset reconstructions.

A. MRF-Based Bilevel Cutset Reconstruction

A bilevel image can be modeled by a Markov random field

(MRF). A second-order MRF is defined on an 8-connected graph,
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(a) Neighborhood
(b) 2-pt cliques

(c) Cutset (blue); unsampled in-
terior nodes (gray)

Fig. 3: MRF and cutset associated with 2-point cliques

in which each node (pixel or point) belongs to a second-order

neighborhood shown in Figure 3a. Of all the cliques (groups

of points that are neighbors of each other) that are associated

with such a neighborhood, we use only four types of two-point

cliques: horizontal, vertical, diagonal, and anti-diagonal, as shown

in Figure 3b. Let xs denote the value of a node s. The image

values x are modeled by the probability density function

p(x) =
1

Z
exp{−

∑

C

VC(x)}, x ∈ {0, 1} (1)

VC(x) =

{

−β, xs = xq, (s, q) ∈ C
+β, xs 6= xq, (s, q) ∈ C

(2)

where Z is a normalization constant, β is a positive constant,

C denotes a specific clique, and s and q denote the nodes in

the clique C. Maximizing p(x) is equivalent to minimizing the

number of odd bonds (black and white transitions along the

segment contours). This model has been the basis for cutset-based

bilevel image reconstruction and compression [1], [2].

A cutset subdivides an image into blocks, each of which

includes the cutset nodes on the block boundary shared by

adjacent blocks and the unsampled nodes in block interior, as

illustrated in Figure 3c. With the second-order MRF model, the

cutset decouples the blocks, in the sense that the reconstruction

of each block interior is independent of the reconstruction of

the other blocks. The reconstruction in [1], [7] is based on a

maximum a posteriori (MAP) estimate of the interior pixels of

a block, given the values of the boundary pixels, which reduces

to finding the bilevel block interior that in combination with the

boundary has the fewest black-white transitions between pixels.

In the following, we will refer to the cutset-MRF approach with a

second-order MRF model as MRF2. Note that a digitized straight

line representation of segment contours is among the optimal

reconstructions [3]. Accordingly, in the experimental results of

Section VI, we will use straight lines for MRF2 reconstructions.

There are two main limitations of the cutset-MRF approach.

First, an efficient reconstruction algorithm is currently only avail-

able for bilevel images sampled on rectangular cutsets. Extension

to multiple levels and other sampling topologies may be possible

but is not obvious. Second, the quality of reconstruction based on

second-order MRF model depends highly on the connection bits,

which are not available without access to the full bilevel image.

A two stage cutset-MRF approach that relies on a hybrid MRF

model to reconstruct bilevel images from cutsets was proposed

in [13]; we will refer to this as the hybrid-MRF approach or

MRFh. MRFh separates the structural decisions that indicate the

connectivities of pixels in black and white regions from the

contour reconstruction details. The structural decisions rely on

a hybrid MRF model, in which the nodes are associated with 3-

point cliques or 2-point cliques that align in vertical, horizontal,

and diagonal lines. The contour details are generated by the

second-order MRF model given the connectivities of nodes on the

boundary. The MRFh approach provides better reconstruction than

MRF2 when connection bits are not available. However, as we

will show in Section VI, MRFh cannot match the performance of

the proposed pattern-based approach or that of the more efficient

combined pattern-based/cutset-MRF approach. As we will see,

the advantages of the proposed approaches become more obvious

as the image structure becomes more complicated.

B. Interpolation, Inpainting, Restoration, and Neural Nets

Cutset reconstruction can be viewed as a form of image inter-

polation, where the samples are densely located on intersecting

lines with relatively large gaps in between. The classic image

interpolation algorithms, such as bilinear, bicubic, and polynomial

interpolation, do not work for cutset reconstruction. In Section VI,

we will show that a variation of bilinear interpolation, adapted for

region labels, and simple nearest neighbor interpolation result in

clearly inferior performance.

Image inpainting is closely related to cutset reconstruction

in that it attempts to continue the isophote lines (equal level

lines) smoothly from the boundary into the reconstructed regions.

The well-known inpainting approach by Bertalmio et al. [15] is

based on the Navier-Stokes equations for fluid dynamics, which

project the gradient of the smoothness of the image intensity in

the direction of the isophotes and formulate the problem as a

discrete approximation of a partial differential equation (PDE).

A specialized PDE-based approach for bilevel image inpaint-

ing was achieved with a modified Cahn-Hilliard equation [16].

Another inpainting approach, first proposed in [17], propagates

the weighted average of boundary pixel values along with their

gradients into the missing region and uses a fast marching method,

which is relatively faster than previous PDE-based approaches.

However, since these approaches rely on gradients in the boundary

neighborhood, they are not suited for cutset reconstruction, where

only a one-pixel-wide boundary is available. An exemplar-based

image inpainting approach was proposed in [18], and aims to

remove large objects by simultaneous propagation of texture

and structure information. However, it is designed for filling

a target region from relatively large known regions, which are

not available in a cutset. Huang et. al. proposed a method for

automatically guiding patch-based image completion using mid-

level structural cues [19]. This method produces strong image

inpainting results. However, the mid-level structural cues are

based on image features that can not be extracted from the cutsets.

Cutset reconstruction is related to, but differs from typical

image restoration problems, such as image denoising and image

deblurring, where the former consider reconstructing the full field

from samples while the latter consider recovering or enhancing

an image from noise, blurriness, or damage.

Eslami et al. [20] used a deep Boltzmann machine (“shape

Boltzmann machine”) to model object shape for image segmen-

tation and object detection. However, the approach they proposed

does not work for the cutset reconstruction problem because the

network input consists of pixels of an entire image block rather

than its boundaries. The authors discuss shape completion from

missing image sections but, in the results they show, the missing

blocks are surrounded by solid areas of pixels, not lines. When we
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tried to use their algorithm for cutset reconstruction, the results

were very poor. In addition, their algorithm has only been shown

to reconstruct a limited number of object categories, in contrast to

the pattern-based reconstruction that can handle arbitrary shapes

that meet the smoothness criterion.

In summary, one of the main challenges for cutset recon-

struction is that it is based on one-pixel-wide lines of samples

with relatively large gaps between the lines, as compared to

higher sampling densities considered in other image interpolation

problems, and thicker boundaries or larger neighborhoods in

typical image inpainting problems.

III. PATTERN-BASED APPROACH FOR K-LEVEL CUTSET

RECONSTRUCTION

In this section we introduce the pattern-based approach for

K-level cutset reconstruction that relies on statistics of human

segmentations of natural images. We first develop the approach

for rectangular cutset topologies, and then extend it to general

periodic sampling topologies.

In the following, we first present a probabilistic formulation of

the problem. We then describe the construction of a database (DB)

of K-level cutset block patterns that will enable the association of

a boundary specification with the most probable interior pattern.

Finally, we propose a rule for matching the boundary specification

of a given block with a boundary pattern in the database and the

associated interior pattern.

A. Probabilistic Problem Formulation

Let S be the set of all (N + 1) × (N + 1) blocks of region

labels, sampled on a Cartesian grid, and taking values in the set

{1, 2, . . . ,K}. Each element (b j ,xj) of S consists of a boundary

specification b
j and an interior pattern x

j , where j is the element

index. Each boundary specification will be represented as an n-

dimensional vector b j = [b j
0 , b

j
1 , . . . , b

j
n]

T that includes the n =
4N cutset samples, and the block interior will be represented as

an m-dimensional vector x
j = [x j

0 , x
j
1 , . . . , x

j
m]T that includes

the m = (N − 1)× (N − 1) interior samples.

If we assume a probabilistic model for S, the Bayesian

estimator of the interior x given the boundary b is given by

x̂(b) = E{x|b}, which minimizes the expected mean square er-

ror E{(x̂(b)− x)
2}. In practice, the expected value is estimated

by an empirical average. If So ⊂ S is the set of observed blocks

in the database of natural image segmentations, then

x̂B
i (b) = E {xi|b} ≈

∑

j∈So

x j
i f(x

j
i |b j = b) i = 0, . . . ,m (3)

where f denotes the frequency that an interior pattern x
j cor-

responds to a boundary pattern b
j . However, since in K-level

images the pixel values represent levels rather than grayscale

values, it does not make sense to compute a weighted sum of

pixel labels, and thus, we cannot use the Bayesian estimator of

(3). Instead, we use the maximum likelihood (ML) estimator, that

is, the most frequent level at each pixel.

x̂ML
i (b) = xJ

i , J = argmax
j∈So

f(x j
i |b j = b) i = 0, . . . ,m (4)

When So is large and representative of natural image segmenta-

tions, the ML estimate provides the most likely reconstruction to

appear in a natural image.

Fig. 4: K-level human segmentations of natural images

The next step will be to collect a database of K-level cut-

set block patterns and to organize the boundary specifications

in the database into equivalence classes by applying a set of

normalization rules. This will enable the association of each

boundary specification in the database with the most probable

interior pattern, based on (4).

B. Construction of K-level Pattern Database

A K-level cutset block pattern database is built from hu-

man segmentations of natural images; examples of such K-

level images are shown in Figure 4. These K-level images are

then decoupled into blocks, each processed independently from

other blocks. We make the following assumptions: (i) the region

boundaries of the K-level field are piecewise smooth; and (ii)

there are no islands in the block interior, i.e., all components in the

block interior are connected to the block boundaries. Assumption

(i) is a direct extension of the piecewise smooth region boundary

assumption of bilevel images [3]. Assumption (ii) states that

the sampling step of a cutset should be fine enough to capture

information about all segments.

An explicit listing of all the distinct instances of boundary spec-

ifications for K-level images results in polynomial complexity,

O(K4N ), where N denotes the cutset sampling step. As we saw, a

cutset block consists of 4N boundary pixels (shared with adjacent

blocks), and (N − 1)2 interior pixels. However, since the pixel

values are just labels and have no other significance (and hence

the values for each class can be arbitrarily reassigned), and the

actual number of runs of pixels of the same label that can occur

on the boundary of an N ×N block is small (typically 1-6), the

overall number of boundary patterns is reasonably small to be

examined but large enough to be non-trivial.

In order to reduce the number of distinct boundary patterns

and to increase the amount of data collected for each boundary

pattern, we use the following normalization rules:

1) Rotate each block by 0
o
, 90

o
, 180

o
, or 270

o
so that the first

pixel (assuming clockwise scanning) of the longest run is at

the top of the boundary, excluding the top-right corner.

2) Index the level of the longest run with 0.

3) Index the levels of the remaining runs incrementally accord-

ing to their discovery order in a clockwise scan of the block

boundary, starting from the longest run.

4) Note that for each boundary index there is a corresponding

original boundary level, which is consistent with the block

interior labels.

By doing so, the number of possible distinct boundary speci-

fications for a given number of runs, R, is upper bounded by

4R−1NR(k−1)R−2, as compared to 4RNRK(K−1)R−1 without

normalization, where k and K denote the number of distinct levels

in a block and an image, respectively, and k ≤ K. For example,

for N = 8, k = K = 4, and R = 6, we have 234 = 17 ∗ 109
specifications with normalization and 240 = 1012 without. These

numbers are still too big. However, when we take into account
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Fig. 5: Sampling topologies with periodic structures

the fact that one-pixel runs are extremely rare and isolated and

typical runs are several pixels long, the numbers are considerably

smaller. Specific numbers can be found in Section VI.

In constructing the database, we collect all the interior patterns

that correspond to a given boundary specification, and then use

(4) to find the most likely interior pattern to associate with that

boundary specification. If there are not enough instances of a

boundary specification (e.g., less than 5), then it is merged with a

similar boundary specification that differs by at most one pixel. In

such cases, there are separate entries in the database that associate

these boundary specifications with the same interior pattern.

The next step will be to propose a rule for matching the

boundary specification of a given block with a boundary pattern

in the database.

C. Pattern Retrieval

We now consider the reconstruction of the full K-level image

from a cutset. We partition the cutset into N × N blocks; each

block has N -point overlap with its 4-connected neighbors and

1-point overlap with its 8-connected neighbors. A query block

boundary is normalized using the same rules that were used for

the database construction. If there is an exact match for a query

block boundary in the database, then we use the interior pattern

associated with the specification as the reconstruction of the block

interior. If an exact match cannot be found, the reconstruction is

based on the closest match by allowing a shift by one pixel in two

consecutive runs (shortening one run and lengthening the other

by one pixel). If no such match is found, then we iteratively

merge the shortest run into its neighbors (by flipping the color

of the shortest run to the color of its longest neighboring run)

until a match is found. If several matches are equally close, then

the most frequent of the block interior patterns associated with

these matches is used. This process is summarized in Algorithm 1.

The reconstruction then proceeds with inverting the normalization

operations that were used to match the original query.

D. Generalized Cutset Sampling and Reconstruction

The pattern-based cutset reconstruction approach we presented

in the previous section assumes square cutsets, i.e., cutsets sam-

pled on evenly spaced rows and columns of Cartesian grids. The

pattern-based approach can be extended to generalized sampling

topologies that consist of periodic structures, such as the evenly

spaced straight lines, zig-zagged lines, and hexagonal blocks,

shown in Figure 5 along with the corresponding period of the

structure. The pattern-based approach can also be used for more

conventional sampling topologies, such as uniform sampling, peri-

odic random sampling (a random block is periodically repeated),

and periodic blue noise, as well as combinations of cutset and

conventional sampling topologies [10].

Algorithm 1: Boundary Pattern Matching

Input : Q: Query boundary vector

r: Number of runs in Q
l1, . . . , lr: Run lengths in Q
Bm, m = 1, . . . ,M : Boundary vectors in DB

rm: Number of runs in Bm

l1, . . . , lrm : Run lengths in Bm

Output: q: Index of closest matching boundary vector Bq

Preprocessing Step:

Apply normalization rules to Q and Bm, m = 1, . . . ,M
while r > 0 do

s = 0
for m = 1, . . . ,M do

if rm 6= r then
continue

end

else if li = mi for all i = 1, 2, . . . , r then
Done; return q = m

end

else if li = mi ± 1 and li+i = mi+1 ∓ 1 for all

i = 1, 2, . . . , r, with wrap-around at i = r) then
s← s+ 1 qs ← m and ns = associated number

of shifts
end

end

if s > 0 then
ss = argmins ns (if several minima, pick one with

most frequent interior)

Done; return q = qss
end

Find the index j of the shortest run in Q;

lj−1 ← lj−1 + lj ;

li ← li+1 for i = j, . . . r − 1;

r ← r − 1;
end

For generalized sampling topologies, the database construction

and full-field reconstruction are based on generalized patterns

(GPs), which have different amounts of overlap with neighboring

GPs. We use the following normalization rules for the GPs in

order to minimize the entries in the database and to increase the

amount of the data for each GP: (i) If the GP is rotationally

symmetric, the patterns are rotated so that the longest run is at

the top (or left) of the GP; (ii) the level indices start from 0

and consecutively increase if a new level appears in the samples

given a pre-specified order of samples; (ii) the levels and level

indices have one-to-one correspondence in a GP, including both

the sampled and unsampled nodes, independent of other ROIs.

The pattern-based approach is flexible in choosing GPs and

sampling topologies. In particular, additional samples can be

included from neighboring GPs to propagate global information.
IV. PATTERN/MRF COMBINATION

Here we discuss PAT/MRF, the combination of the pattern-

based approach with the cutset-MRF approach. As we discussed

in the introduction, there is no efficient MRF-based reconstruction

for K > 2, so the PAT/MRF approach only applies to bilevel

cutset reconstruction.

The reconstructions based on both approaches are piecewise

smooth in the block interior. However, as we will see in Sec-

tion VI, the performance of the cutset-MRF approach is heavily
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Fig. 6: Examples of complex bilevel images

Fig. 7: Examples of simple bilevel images

dependent on the connection bits. On the other hand, the pattern-

based approach bases the structural decisions (whether two runs

should be connected) on natural image statistics, without the

need for connection bits. Otherwise, i.e., when the same runs are

connected, the segment contours generated by the two approaches

are similar, although the pattern-based approach tends to preserve

finer details. The two approaches can be combined in such a

way that the connection choices are based on the statistics of the

pattern-based approach, while the patterns are approximated by

the MRF model given the connections. Specifically, the cutset

block pattern database is constructed as described in Section III.

We then consider one, two, or more reconstructions based on the

MRF approach depending on the number of runs and associated

connection bits (up to 4). We compare these MRF reconstructions

with the pattern-based reconstruction and select the one that

minimizes the error rate. The selection can be represented as one

or a few connection bits [2], [3], which requires considerably

less storage than the (N − 1)2 pixels for each block pattern in

the database. As in [3], we base all MRF-based reconstructions

on digital straight lines using Bresenham’s approximation [21].

When enough connection bits are used, the structural choices

are the same, and the only difference in the two reconstructions

is that curved lines are replaced with straight lines, that is, the

pattern-based approach preserves finer details. This combination

largely reduces the memory for storing the reconstruction code-

books, and thus, also the testing time.

V. CUTSET SAMPLING AND SEGMENTATION

In this section we consider cutset sampling of a grayscale or

color image and segmenting the cutset. The reconstruction of

the full segmentation field can then be done as described in the

previous sections.

Figure 8 shows an original image in (a) and the cutset samples

in (b). The segmentation is done using the adaptive clustering

algorithm (ACA) [8]. Applying to the pixels on the cutset requires

minor adjustments to account for the fact that the image samples

and segment labels exist only on the cutset. In fact, all we need

to do is use a fixed label for the pixels that are not on the

cutset, and proceed with the segmentation as in the full grid case.

The conditional probabilities and local intensity functions are

estimated using only the pixels on the grid. The results are shown

in Figure 8(c) and compared with the full ACA segmentation in

(d) and the corresponding cutset in (e). Note that the resulting

segments in the cutsets are comparable. More results will be

presented in Section VI-G.

VI. EXPERIMENTAL RESULTS

A. Experiment Setup

In our experiments we used three datasets: (i) an in-house

bilevel dataset including 13 fairly complex bilevel images; exam-

ples are shown in Figure 6; (ii) a large collection of relatively

simple bilevel images of single objects (5578 images) [22];

examples are shown in Figure 7; and (iii) BSDS500, a dataset of

K-level images obtained by human segmentations of 500 natural

images [23]; examples are shown in Figure 4.1

The BSDS500 dataset is partitioned into a training set (200

original images, 1087 segmentations), a test set (200 original

images, 1063 segmentations), and a validation set (100 original

images, 546 segmentations) [23]. We used the training set to

construct the pattern database segmentations and the test set for

algorithm evaluation. The training and test sets were completely

separate. We did not make use of the validation set, as there were

no parameters to be estimated.

The training partition contains adequate numbers of both

bilevel and K-level patterns for database construction. The cutsets

were sampled and reconstructed at multiple cutset sampling steps,

N . We will use PAT to refer to the pattern-based approach, and

PM to refer to the PAT/MRF combination. These approaches were

implemented in C++. The cutset-MRF approaches, based on the

second-order MRF model (MRF2) and the hybrid MRF approach

(MRFh), were tested on the bilevel images and compared with

the pattern-based approaches.

In addition, we implemented two baseline interpolation meth-

ods adapted for images that consist of region labels without any

quantitative significance. The first is a nearest neighbor (NN)

approach, whereby an interior pixel takes the value of the closest

boundary point. The second is a variation of bilinear interpolation

(BL), whereby we find the closest point in each of the four linear

segments of the block boundary (top, bottom, left, and right), and

weigh its label by the fraction of its distance from the opposite

side, as in bilinear interpolation. However, since it does not make

sense to compute a weighted sum of pixel labels, we only combine

weights for equal labels and then simply pick the label with the

highest weight.

B. Block Statistics

Table I lists the percentage of nonuniform blocks in the training

partition of the BSDS500 dataset with different combinations of

1These datasets can be found at drive.google.com/file/d/1HqUsJ359l-
M2At1UOZIYKpd-HQQhzX8H
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Original Cutset Samples Cutset Segmentation ACA Segmentation Cutset of ACA Segm.

Fig. 8: Cutset sampling and segmentation versus segmentation and cutset sampling of the original image

TABLE I: BSDS500 Block Statistics: Percentage of blocks with

K levels and R runs for cutset sampling steps N

N = 8 N = 16
K\R 2 3 4 5 6 7 8 2 3 4 5 6 7 8

2 85 0 4.6 0 0.3 0 .03 73 0 6.8 0 0.9 0 0.2
3 0 3.6 4.5 0.2 0.3 .01 .03 0 5.2 8.1 0.6 1.1 0.1 0.2
4 0 0 0.3 0.3 0.2 .02 .03 0 0 0.8 0.9 0.9 0.1 0.2
5 0 0 0 .02 .04 .02 .01 0 0 0 0.1 0.2 0.1 0.1

numbers of levels K and runs R for cutset sampling steps 8

and 16. The number of nonuniform blocks, i.e., blocks with at

least two levels, in this database is of the order of 107, resulting

from 103 human segmentations of 200 training images. Bilevel

blocks are the most common and can only have an even number

of runs, i.e., black and white runs appear in pairs. Three-level

blocks are also quite common. In the training data, the number

of levels and runs in a block are bounded by K ≤ 8, R ≤ 14
when N = 8, and K ≤ 24, R ≤ 11 when N = 16, respectively.

When N = 8, the blocks with K > 4 or R > 6 only account

for less than 0.1% of the total. When N = 16, the blocks with

K > 5 or R > 8 only account for less than 0.1% of the total.

Therefore, considering the connections of up to 4 pairs of black

and white runs in bilevel images are enough to cover 99.9% of the

nonuniform blocks. In K-level image reconstruction, processing

blocks independently reduces the number of levels to consider,

thus reducing complexity. The statistics are similar for blocks

obtained with other cutset sampling steps.

C. Block Reconstructions

Figure 9 shows examples of normalized 2-level cutset block

boundaries, normalized original blocks collected in the training

set, and local reconstructions from the boundaries based on PAT,

MRF2, and MRFh, as well as the NN and BL interpolations.

PAT determines the most probable (on a pixel-by-pixel basis)

reconstruction pattern for a given a boundary specification. In

some cases, the PAT reconstructions are similar to those of MRF2

or MRFh but, overall, PAT is much better at preserving image

structure. The NN and BL reconstructions are clearly worse than

those of the other approaches.

The PM reconstructions (not shown in the figure) have the same

structure as the PAT reconstructions, with curved lines replaced

with straight lines. Note that we refer to digital straight lines using

Bresenham’s approximation [21] as straight lines, and all other

lines as curved. While straight line contours are often favored

by PAT, curvy contours are also possible, as the examples in the

second and last rows of Figure 9 and the third row of Figure 10

demonstrate.

The last row of Figure 9 shows a case where the black and

white runs are almost symmetric. In this case, PAT reconstructs

the most likely pattern with curvy contours, MRF2 prefers the

reconstruction with shorter segment contours, while MRFh con-

siders the two reconstructions (shown in the last two columns)

equally likely and picks one randomly or based on a preset

preference.

Figure 10 shows examples of normalized 3-level cutset block

boundaries, normalized original blocks collected in the train-

ing set, and local reconstructions from the boundaries based

on PAT and the NN an BL interpolations. The NN approach

reconstructions are clearly inferior but the BL reconstructions

look reasonable. However, as we will see below, their overall

performance on the entire image is significantly worse than that

of the pattern-based approach.

D. Visual Results

Figure 11 shows the K-level reconstruction results of the PAT

approach for N = 8 and the challenging sampling step N =
16. Note that the PAT approach preserves most of the segment

structure for N = 8 and misses some of the finer details for

N = 16. The figure also shows the NN and BL reconstructions for

N = 8, which are clearly worse than those of the PAT approach.

The N = 16 reconstructions (not shown) are equally poor.

Figure 12 shows reconstruction results for bilevel cutsets with

the typical sampling step of 8. The figure shows that the proposed

approaches, PAT and PM, clearly outperform the NN and BL

interpolations and MRF2 without connection bits, and come very

close to MRF2 with connection bits. The performance of MRFh

is also significantly better than MRF2, but inferior to PAT as can

be seen in the broken lines of images in the second and third row

of Figure 12. PAT also reduces the number of isolated one-pixel-

wide runs in the reconstruction compared to the MRF approaches.

As we discussed, PMselects the most probable connections based

on the statistics collected by PAT and reconstructs piecewise

smooth contours.

The pattern-based approach can also be applied to general

sampling topologies with periodic structures. The first row of

Figure 13 shows examples of various sampling topologies and

the other rows show the reconstructions from such sampling

topologies. Note that the sampling densities are similar but not

directly comparable. Systematic comparisons will presented in

the next subsection. The figures show that when the cutset

GPs consist of connected samples, that is, the block interiors

can be reconstructed from the boundaries independently of the

other blocks, as in the rectangular and hexagonal topologies,

the reconstructions are smoother and better preserve the image



8 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 31, 2022

Boundary Exmpl 1 Exmpl 2 Exmpl 3 Exmpl 4 Exmpl 5 Exmpl 6 PAT MRF2 MRFh NN BL

Fig. 9: Boundary specifications (K = 2); examples (1-6) of normalized patterns with the same or similar boundaries; retrieved block

patterns (PAT); reconstructions by cutset-MRF model (MRF2); hybrid MRF model (MRFh); NN and BL interpolation.

structure than those obtained with polyline (e.g., zig-zag) or

random topologies, where the GPs are not connected.

E. Reconstruction Error Rate

Table II shows the reconstruction error rate with cutset sam-

pling steps N = {16, 14, . . . , 2} based on various reconstruction

approaches in the three datasets. The associated variances are

shown in Table III for N = 16 and N = 8. Note that for

square cutsets, the number of cutset samples is smaller than that

of the unsampled nodes to be reconstructed when N ≥ 6. PAT

outperforms the MRF approaches in both bilevel and K-level

reconstructions. Note that, as expected, the reconstruction error

rate for PM lies between that of MRFh and PAT. The lower

PM error rate compared to MRFh is mainly due to the higher

percentage of blocks with correct connectivities of runs. PM

has higher error rate than PAT because it uses straight lines to

approximate PAT. Finally, the performance of the NN and the

modified BL approaches is clearly inferior to the pattern-based

and MRF-based approaches.

To determine the significance of the differences in the recon-

struction error rates, we conducted a Kruskal-Wallis H test [24],

which is a non-parametric method for testing whether two sets of

samples originate from the same distribution. Since the in-house

bilevel image dataset includes only 13 images, we combined it

with the bilevel shape dataset for the test. The results are shown

in Table IV, and demonstrate the significance of the performance

differences. More importantly, as Figures 12 and 11 demonstrate,

the differences are perceptually significant.

We also compare the reconstruction error rate for the different

sampling topologies. Since the number of samples on the cutset

is not the same for the different topologies, we plotted the

reconstruction error rate versus the normalized wire length needed

to connect the sensors. This assumes that the sensor cost is

negligible and that the only cost is the length of wire needed

to connect the sensors. We chose wire length for simplicity.

Alternative wireless communications schemes among the sensors

can also be considered, as in [4].

The wire needed to connect the sensors in each geometry is

illustrated in Fig. 14. Note that, since the data in our simulations

is given on a Cartesian grid, for hexagonal sampling, the samples

are not on perfect hexagons; the green lines show the hexagons

that that the border samples approximate. The hexagonal sampling

is specified by three parameters (h,w, l), the height and width of

the cutset block and the length of the vertical edge of the block,

respectively. The wire length for each geometry can be calculated

as follows. Assume that we are sampling an m×n Cartesian grid.

For a u×u uniform topology, we need wire to connect m/u rows

of length n− 1 and one column of length m− 1. The total wire

length is

lunif =
m(n− 1)

u
+m− 1 (5)

For a r × r rectangular topology, we need wire to connect m/r
rows of length n−1 and n/r columns of length m−1. The total

wire length is

lrect =
m(n− 1)

r
+

n(m− 1)

r
(6)

For a line topology with l horizontal spacing, we need wire to

connect n/l columns of length m − 1 and one row of length 1.
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Boundary Exmpl 1 Exmpl 2 Exmpl 3 Exmpl 4 Exmpl 5 Exmpl 6 PAT NN BL

Fig. 10: Boundary specifications (K = 3); examples (1-6) of normalized patterns with the same or similar boundaries; retrieved block

patterns (PAT); NN and BL reconstructions.

TABLE II: Average reconstruction error rate

In-house bilevel image dataset Bilevel shape dataset [22] K-level dataset
N [15] [17] MRF2 MRFh PAT PM NN BL [15] [17] MRF2 MRFh PAT PM NN BL [15] [17] PAT NN BL

16 .075 .069 .071 .049 .047 .048 .066 .067 .064 .054 .047 .043 .039 .042 .050 .043 .035 .068 .016 .031 .024
14 .065 .061 .061 .042 .039 .039 .061 .062 .056 .047 .040 .036 .033 .035 .046 .038 .031 .058 .014 .027 .020
12 .056 .053 .050 .034 .031 .032 .053 .053 .048 .042 .033 .029 .026 .028 .041 .033 .026 .046 .011 .024 .017
10 .047 .044 .038 .027 .024 .025 .045 .042 .040 .035 .025 .023 .020 .022 .037 .026 .021 .036 .009 .020 .014
8 .038 .035 .027 .019 .017 .018 .035 .031 .032 .029 .018 .017 .015 .016 .031 .020 .017 .025 .007 .016 .011
6 .027 .025 .016 .013 .011 .012 .027 .021 .022 .020 .013 .012 .011 .011 .022 .014 .012 .016 .005 .012 .008
4 .015 .015 .007 .007 .007 .007 .018 .011 .012 .012 .006 .006 .006 .006 .015 .008 .007 .007 .003 .008 .005
2 .005 .003 .002 .002 .002 .002 .007 .004 .003 .002 .002 .002 .002 .002 .006 .002 .002 .001 .001 .003 .002

TABLE III: Standard deviation of reconstruction error rate

In-house bilevel image dataset Bilevel shape dataset [22] K-level dataset
N MRF2 MRFh PAT PM NN BL MRF2 MRFh PAT PM NN BL PAT NN BL

16 .040 .028 .030 .027 .030 .039 .022 .017 .015 .017 .014 .015 .010 .014 .011
8 .015 .011 .010 .010 .016 .018 .010 .008 .007 .007 .008 .007 .004 .007 .006

The total wire length is

lline =
n(m− 1)

l
+ n− 1 (7)

For a z × z zig-zag topology with diagonal lines, we need wire

to connect n/z columns of length
√
2(m − 1) and one row of

length n− 1. The total wire length is

lzigz =

√
2n(m− 1)

z
+ n− 1 (8)

For a (h,w, l) hexagonal topology, the pattern is periodic with

period (h + l) × w, so there are a total of n
h+l

m
w

periods.

However, the wire length of each period depends on the particular

parameters. For (4, 4, 2) and (8, 8, 4) , each period has length

2(h+ w) for a total wire length of

lhexa =
n

h+ l

m

w
2(h+ w) (9)

For (19, 16, 9), each period has length 2l + 4(5 + 4 ·
√
2) for a

total wire length of

lhexa =
n

h+ l

m

w
(2l + 4(5 + 4 ·

√
2)) (10)

Since the dominant term is each of the above length formulas is

mn, it is natural to use it as the normalization factor.

Since the image size is not always an exact multiple of the

cutset block, we extend the images to the right and bottom by

repeating pixels until complete cutset blocks are formed, and after

reconstruction, we remove the pixels beyond the original image

boundary. An example can be found in the supplemental material.

For hexagonal sampling, this has to be done on all four sides of

the image.

Figure 15 plots the reconstruction error rate versus the nor-

malized wire length averaged over each of the three datasets. In

our wire length calculations, we took into account the extra wire
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Original N=8 cutset PAT NN BL N=16 cutset PAT

Fig. 11: Reconstructions of K-level images from cutsets with sampling steps 8 and 16. Images cropped for display.

Original N=8 cutset MRF2 MRF2-cbit PAT PAT-MRF MRFh NN BL

Fig. 12: Reconstruction of bilevel images from cutsets with sampling step 8. Images cropped for display.

TABLE IV: Kruskal-Wallis H Test

Combined bilevel in-house image and shape [22] datasets K-level dataset
N PAT vs. MRF2 PAT vs. MRFh PAT vs. PM PAT vs. NN PAT vs. BL PAT vs. NN PAT vs. BL

16 1.35 E-123 3.89 E-44 1.83 E-26 0.00 E+00 2.72 E-47 1.06 E-155 8.40 E-59
8 1.11 E-68 1.78 E-31 2.67 E-06 0.00 E+00 0.00 E+00 6.72 E-223 1.73 E-100

needed to complete the cutsets on the boundaries, even though

this is not reflected in (5) – (10). Details can be found in the

supplemental materials. For each of the cutset topologies, we

consider three sampling steps, (4, 4, 2), (8, 8, 4), and (19, 16, 9)
for the hexagonal, and 4, 8, and 16 for the other topologies.

Observe that uniform sampling is clearly suboptimal in the

error-wirelength plots. The performance of the other topologies

is comparable, providing different operating points along a curve.

However, we could argue that the rectangular topology performs

best on average followed by the zig-zag and lines topologies,

while the (4, 4, 2) hexagonal is clearly inferior on the bilevel

shape dataset.

F. Computational Cost

The algorithms were implemented in C++ and ran on a laptop

with a 2.2 GHz Intel Core i7 processor and 16 GB 1600 MHz

DDR3 memory. Table V lists the average time for reconstructing

a 512 × 512 image. The codebook is loaded into the memory

once prior to reconstruction, which is the main factor for con-

sumption of computational resources. Consequently, the codebook

size directly impacts test time. When combined with MRFs,

the codebook size in the database for PM is reduced, which

consequently reduces the test time. The processing of bilevel

images requires less time than that of the K-level images. The

block sizes make a difference in pattern-based approaches mainly

due to the resulting size of codebooks.
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original uniform 4× 4 lines zig-zag rectangular hexagonal

Fig. 13: Sampling (first row) and reconstruction for generalized cutsets

2× 2 uniform 4× 4 rectangular 1× 4 lines 4× 4 zig-zag (4, 4, 2) hex (8, 8, 4) hex (19, 16, 9) hex

Fig. 14: Sensor wire connections for different cutset geometries

TABLE V: Average time (sec) for reconstructing 512×512 image

Bilevel K-level
Methods MRF2 MRFh PAT PM PAT

N = 16 0.007 0.007 1.253 0.008 1.480
N = 8 0.005 0.005 0.082 0.007 0.119

G. Cutset Sampling, Segmentation, and Reconstruction

Figure 16 shows an original color image, the cutset samples,

the segmentation of the cutset samples, and the reconstruction

from the cutset segments, and compares the latter to the seg-

mentation of the full image. Note that the resulting segments are

comparable. In fact, the full image segmentation detects some

spurious segments in the upper right edge, which are not present

in the cutset segmentation and reconstruction. Figure 17 shows

another example, where the main structures (a “river” and a

“lake”) are preserved by both approaches. Note that, in this figure,

the segments have been “painted” with their average color.

VII. CONCLUSIONS

We introduced a pattern-based approach for K-level cutset

reconstruction that utilizes the statistics of human segmentations

to generate a codebook of patterns for reconstruction. The pattern-

based approach also applies to a broader class of images, includ-

ing K-level images (K ≥ 2), and general sampling topologies,

such as non-intersecting lines, hexagonal cutsets, and uniform

point samples. The pattern-based approach and the MRF model

were then combined for bilevel cutset reconstruction, utilizing

human segmentation statistics to determine structural information,

while generating the reconstruction details based on the MRF

model. This reduces the codebook size, and consequently the

computation time, with the reconstruction error rate between that

of pattern-based approach and hybrid cutset-MRF approach. In

addition, we presented an algorithm for segmenting the cutset

samples of an original grayscale or color image, followed by

reconstruction of the full segmentation field via the pattern-based

approach. Experimental results demonstrate that the proposed

approaches outperform the cutset-MRF approaches in terms of

both reconstruction error rate and perceptual quality. A systematic
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(a) In-house bilevel dataset
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(b) Bilevel shape dataset
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(c) K-level dataset

Fig. 15: Reconstruction error rate versus normalized wire length for different cutset geometries

Original Cutset Samples Cutset Segmentation Cutset Reconstruction ACA Segmentation

Fig. 16: Cutset sampling, segmentation, and reconstruction

Original Cutset Samples Cutset Segmentation Cutset Reconstruction ACA Segmentation

Fig. 17: Cutset sampling, segmentation, and reconstruction

comparison of the reconstruction error rate versus the normalized

wire length needed to connect the sensors shows that the per-

formance of the different cutset topologies is comparable and

significantly better than uniform sampling. Finally, we believe

that introducing global information can further improve the cutset

reconstruction quality.
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