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Based

Digital Halftoning

igital halftoning is the process of generating a
pattern of pixels with a limited number of col-
ors that, when seen by the human eye, is per-
ceived as a continuous-tone image. Digital
halftoning is used to display continuous-tone images in me-
dia in which the direct rendition of the tones is impossible.
The most common example of such media is ink or toner on
paper, and the most common ren-
dering devices for such media are, of
course, printers. Halftoning works
because the eye acts as a spatial
low-pass filter that blurs the ren-
dered pixel pattern, so that it is per-
ceived as a continuous-tone image.

Although all halftoning methods
rely; at least implicitly, on some under-
standing of the properties of human
vision and the display device, the goal
of model-based halftoning tech-
niques is to exploit explicit models of
the display device and the human vi-
sual system (HVS) to maximize the
quality of the displayed images. This
is illustrated in Figure 1.

Based on the type of computation
involved, halftoning algorithms can
be broadly classified into three cate-
gories [1]: point algorithms (screen-
ing or dithering), neighborhood algorithms (error
diffusion), and iterative algorithms [least squares and di-
rect binary search (DBS)]. All of these algorithms can in-
corporate HVS and printer models. The best halftone
reproductions, however, are obtained by iterative tech-
niques that minimize the (squared) error between the out-
put of the cascade of the printer and visual models in
response to the halftone image and the output of the visual
model in response to the original continuous-tone image.
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Introduction

We will discuss HVS models. Although all halftoning al-
gorithms rely on the fact that the eye acts as a spatial
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low-pass filter, many do not make use of an explicit HVS
model, and as such, they are not considered to be vi-
sion-model based. Vision-model-based halftoning algo-
rithms, on the other hand, explicitly incorporate a model
of the HV'S and exploit it to produce halftone images of
higher visual quality.

Also discussed are display models. We focus on black
and white (B&W) printers. How-
ever, many of the ideas extend to
color printers. For other display de-
vices, such as displays of handheld
devices and especially cell phones,
techniques similar to those used for
printers can be used. The most ele-
mentary halftoning techniques for
B&W printers assume that the
“blackness,” i.e., the perceived gray
level, of a printed binary pattern is
proportional to the fraction of black
dots in the pattern. (Recall that the
eye acts as a low-pass filter.) In effect,
this assumes that the area occupied
by each black dot is roughly the same
as the area occupied by the white
space left where no dot is placed. It
follows that the “desired” shape for
the black dots produced by a printer
would be T'xT" squares, where T' is
the dot spacing. However, actual printers do not obey this
assumption. For purely physical reasons, printers pro-
duce more or less circular dots that overlap adjacent
spaces, causing the perceived gray level to be darker than
the fraction of black dots. We refer to this as dot overlap.
As we will see in the following sections, a minimal overlap
is necessary so that the printer is capable of darkening en-
tirely a portion of the page. In addition, most printers
typically produce dots that appear larger than this, a phe-
nomenon that is called dot gain. This can be caused by
one or more of the following effects: optical gain (due to
scattered light being trapped under the colorant), me-
chanical gain (spreading of the colorant on the medium),
and electric field gain (which occurs in electrophoto-
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graphic printers). If a halftoning technique does not ac-
count for such nonlinearities, the resulting tone scale will
be distorted.

The classical approach to mitigating the effects of the
phenomena described above is to cluster black dots so the
percentage effect of dot gain on perceived gray level is re-
duced. Such clustering reduces the spatial resolution of
the resulting images and increases the visibility of half-
tone textures. On the other hand, dispersed dot
halftoning algorithms can provide high spatial resolution
and excellent halftone textures, but they are very sensitive
to dot gain as well as other printer distortions.
Model-based techniques, on the other hand, can rely on
accurate printer models to exploit (rather than avoid)
printer distortions in order to maximize the quality of the
resulting images. Thus, they make it possible to extend
the benefits of dispersed dot techniques to any device for
which an accurate model is available. A third approach is
to use tone correction, that is, a compensating gray-scale
transformation applied to the image before halftoning
[50, p. 36]. However, this approach does not give good
detail rendition and cannot match the tone levels as pre-
cisely as the model-based techniques. Moreover, for some
techniques (e.g., when the printer introduces a
nonmonotonic nonlinearity) this approach does not
work at all. In addition, since dot interactions can be very
complex, the tone correction approach does not work
well for dispersed dot techniques because there is very lit-
tle control over the dot microstructure, resulting in severe
artifacts. Thus, tone correction is less suitable for
dispersed dot printing with electrophotographic printers.

We present a general class of printer models that facili-
tate the implementation of model-based techniques and
examine a number of specific models. We then examine
several model-based techniques that exploit HVS and/or
printer models to improve the quality of the halftone im-
ages. Such techniques include screening, error diftusion,
and iterative algorithms (least squares and DBS).

For a given display device and viewing conditions, the
performance of a halftoning technique, i.e., the visual
quality of the halftone images it produces, can be judged
in terms of its spatial resolution (the ability to display de-
tail, such as edges, with sharpness), tone scale resolution
(the ability to display many different gray levels), tone
scale accuracy (the degree to which the displayed half-
tones are perceived with proper gray levels), and texture
(how visible or annoying the halftone-induced texture is).

These attributes can be tested in different regions of an
image. The spatial resolution affects regions of rapidly
changing intensity, such as at an edge. In regions of con-
stant intensity, the tone scale resolution and accuracy are
important if an exact reproduction is desired. However,
the most important consideration is the visibility of the
halftone induced textures. Finally, the regions of slowly
changing intensities are perhaps the most challenging for
a halftoning technique. Here the most important consid-
eration is the compatibility of adjacent tone levels. For if
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A 1. Model-based halftoning.

adjacent tone levels are not rendered with compatible
halftone patterns, then false contours will be visible in re-
gions where the intensity changes slowly. There can be
two causes for this effect: the lack of adequate tone scale
resolution and the incompatibility of the halftone textures
that correspond to adjacent tone levels.

In traditional halftoning techniques (clustered dot
screens), the main tradeoft (controlled by the period of
the screen) is between spatial resolution and texture (low
visibility) on the one hand, and tone scale resolution and
accuracy on the other. In contrast, in error diffusion and
iterative techniques, spatial resolution is very high in gen-
eral, and the main tradeoff is between texture and tone
scale resolution. There are, however, other important
tradeoffs. For example, clustered-dot screening tech-
niques offer robustness to dot gain and other printer dis-
tortions, while model-based error diffusion and iterative
algorithms offer better spatial resolution and texture for a
specific device. The tradeoft between robustness to
printer distortions and texture and spatial resolution is
one of the key issues in green-noise halftoning techniques
discussed in the second article of this issue.

HVS Models

Halftoning works because the eye, i.e., the HVS, acts
as a spatial low-pass filter that blurs patterns of printed
dots so as to be perceived as various gray levels. Though
every halftoning method is based on this understand-
ing (i.e., model) of human vision, certain halftoning
methods make explicit use of an HVS model. Such vi-
sion-model-based halftoning methods will be described
later. In this section, we describe some of the HVS mod-
cls that they use.

There are two closely related concepts: visual fidelity
(VF) metrics and HVS models. A VF metric is a function
V (z,2) thatis intended to indicate the degree to which the
image zis perceived to differ from the image z. Overviews
of VF metrics can be found in [2] and [3]. In the context
of halftoning, an HVS model is a system § that generates
S(z), which is an image like z, except that features have
been enhanced or suppressed in proportion to their per-
ceptibility. There is a close connection between VF met-
rics and HVS models. For example, given an HVS model
S, one can obtain a VF metric V(z,2) by computing the
energy in the difference image S(z)—S(z). This approach
is used in many vision-model-based halftoning methods.

The most basic HVS model is simply a two-dimen-
sional, linear, shift-invariant filter. For example, the
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widely cited paper by Mannos and Sakrison [4] found the
tollowing filter frequency response to be good for pre-
dicting the subjective quality of coded images:

H,(f,)=26(00192+0114f,)exp{~0114 )" } (1)

where frequency f, =,/ £ + f, is the RMS value of the
horizontal and vertical frequencies f, f, in units of cy-
cles per degree (cycles/deg). As illustrated in Figure 2,
which shows H plotted versus f,, this filter has a
bandpass character, peaking at 7.9 cycles/deg. We view
this frequency response as representing the sensitivity of
the eye at the various frequencies. Alternatively, direct es-
timates of the sensitivity of the eye at each frequency have
been made and then used to define the frequency re-
sponse of a filter in an HVS model. Such sensitivities are
typically found by measuring the faintest sinusoidal pat-
tern at a given frequency that is distinguishable from the
background. The inverse of such threshold sinusoidal am-
plitudes (actually, the thresholds are divided by the back-
ground intensity) is a measure of HVS sensitivity to the
corresponding frequency, and a plot of such sensitivities
versus frequency is often referred to as the contrast sensi-
tivity function. Direct estimates of the peak sensitivity
range from 3 to 10 cycles/deg [5, p. 55]. The frequency
responses of various filters that have been used in
model-based halftoning can be found in [6]-[14].

The decrease in sensitivity at higher frequencies is due
to the optical characteristics of the eye, e.g., properties of
the cornea and lens. Indeed, adopting optics terminology,
the frequency response of the model is often called the
modulation transfer function (MTF) of the eye. The de-
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A 3. The Mannos-Sakrison frequency response with frequency
expressed in cycles per inch at several viewing distances.

AL P

]GAuthorized licensed use limited to: Northwestern UniversllﬁlE.Banrfoadeggﬁ?esd!g%g’(‘a’f‘%‘,éﬂ!ﬁ at 17:06:43 UTC from IEEE Xplore. Restrictionsﬂa{lﬁ;y)ly.

crease in sensitivity at low frequencies is a consequence of
the eye’s ability adapt to a broad range of lighting condi-
tions. Because of this, the eye has difficulty determining
the intensity of any large constant intensity region.

It is well known that the eye is less sensitive to
obliquely oriented features than to horizontally and verti-
cally oriented features. This can be exploited by using a
filter of the form

H(fi" 39):H7 ( fr j
where ©=arctan(f,/f,) is the angle corresponding to
f.»f,- The following choice of 5(8) was proposed by
Daly [6] and used for model-based halftoning methods in
[71, [8], [12], and [14]

5(0)=0.15c0s(46) +085. (3)

A number of more sophisticated models have been
proposed for the HVS; a comprehensive reference is
[15]. For example, some models add a memoryless
nonlinearity before the linear filter and a number of mod-
els include a bank of filters [16, p. 295], [17]-[20]. The
latter model the multichannel nature of the HVS.

Although there are many more sophisticated HVS
models, simple filter-based models have been predomi-
nantly used in vision-model-based halftoning. This is es-
pecially true in iterative vision-model-based methods,
where simplicity is required so that the method is
computationally feasible. Thus in the remainder of this
section, we focus on models consisting only of a filter.

For use in halftoning, a filter-based HVS model such
as described by (1) needs converting in three steps: to fre-
quency in units of cycles per inch, to a spatial domain
point-spread function (impulse response), and to a sam-
pled version of the latter. The conversion to frequency in
cycles per inch (cycles/in) is accomplished via

an

H,(5)=H, (1] N
where f'is frequency in cycles/in and 4 is the viewing dis-
tance in inches from the eye to the image. As illustrated in
Figure 3, the frequency response changes substantially with
viewing distance. For example, as 4 increases, the peak of the
response shifts to lower frequencies, implying that rapid in-
tensity fluctuations become increasingly difticult to observe.
Conversely, as 4 decreases, the fine detail in the image and
the individual halftone dots, become visible.

Because viewers cannot be expected to maintain a fixed
distance from an image, vision-model-based halftoning
methods must, in effect, be designed for a range of HVS
models, rather than just one specific model such as in Fig-
ure 2. This is one reason why the models used in such
methods often consist of low-pass filters, like those shown
in Figure 2 with a red line, rather than bandpass filters like
the Mannos-Sakrison filter shown with a blue line. A vi-
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sion-model-based halftoning method that employs a
low-pass filter can be expected to respect the low frequen-
cies that will become quite visible at larger viewing dis-
tances. Accordingly, several low-pass filters have been
proposed. For example, as described in [7], Daly [6] pro-
posed a bandpass frequency response similar to that of Fig-
ure 2 and then formed a low-pass filter by simply extending
the peak to the origin, as illustrated in Figure 2. This ap-
proach has been used in [7], [9]-[14]. As a second form of
low-pass filter, several authors have used filters with an ex-
ponentially decaying frequency response [8], [21]-[24].
Finally, we mention that Neuhoff and Pappas found that, as
illustrated in Figure 2, a low-pass filter with a Gaussian fre-
quency response with standard deviation 6=16.7 cycles/
deg well matches the high frequency portion of the Mannos-
Sakrison frequency response [10], [11].

Converting a frequency response to an impulse re-
sponse is accomplished in the usual way with the inverse
Fourier transform. Typically, the filter in a vision-model-
based halftoning method is implemented in the spatial
domain by direct convolution. Since the images and half-
tones are, of course, sampled, the filter impulse responses
must be truncated and sampled. For example, Figure 4
shows the Gaussian filter of Figure 2, truncated to the in-
terval £0064° and sampled under two different condi-
tions. In general, if /(0) denotes a (one-dimensional)
impulse response, where 6 has units of degrees, then the
truncated and sampled impulse response is

Sn<pml9

180) ARm
’ T 180 ™

bl =h (120 ) B

(5)
where 4 is the viewing distance, R is the pixel resolution in
dots per inch (dpi) of the image and halftone, and 0
and @, specify the degree range to which /7 is to be trun-
cated. We should mention that for low resolutions and
short viewing distances, the filter design should be done
more carefully to avoid aliasing.

Since the above depends on 4 and R only through their
product, this product s =4R becomes a key parameter,
called the scale factor. It may be interpreted as the per-
ceived resolution in dots per radian, when viewing an im-
age printed with R dpi from distance 4. It also has a
significant influence on the halftone patterns produced by
a model-based halftoning algorithm that uses the HVS
model. A large value of 4 tells the halftoning algorithm
that the eye will do much blurring of the image and its
halftoned representation. Thus, it will tend to produce
coarsely textured halftoned patterns. On the other hand, a
small value of 4 tells the halftoning algorithm that dots
and other fine detail are more visible. In this case, the al-
gorithm will micromanage the placement of dots, creat-
ing a finer texture. A change in R has a similar effect.

Itis also interesting to consider the effect of changing s
on the sampled impulse response 4, , [#]. When the scale
factor s is small, the sampled impulse response has small
support, i.e., few nonzero terms, because the samples of
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Digital halftoning is the process
of generating a pattern of
pixels with a limited number of
colors that, when seen by the
human eye, is perceived as a
continuous-tone image.

h®) are widely spaced. Thus, when a model-based
halftoning algorithm secks a halftone pattern for a patch
of constant gray level, it works with only a small number
of dots. This means it can only create a small number of
gray levels, which causes the tone scale resolution to be
coarse. Moreover, for some gray levels, there will tend to
be a single pattern having the desired gray level and the
best texture. This, combined with the low grayscale reso-
lution, tends to cause false contouring. To see why, con-
sider a region that increases gradually in gray level. Then
there will be an imaginary line on one side of which the
halftoning algorithm consistently produces one pattern
of dots, while on the other side it produces a different pat-
tern of dots. The result is a visible but false contour line.
On the other hand, when the scale factor is large, the sup-
port of the filter will include many samples, giving the
model-based halftoning technique more flexibility in
choosing the best patterns to produce many gray levels
without false contouring. As mentioned previously, the
resulting halftones will tend to be coarse but not visible
due to the longer viewing distance.

Because the scale factor has such impact on the nature
of the halftones produced by model-based halftoning,
one may wish to consider it to be a parameter to be tuned,
even when the viewing distance is known in advance. In
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this case, one chooses s to obtain a pleasing compromise
between the fineness of the halftone textures on the one
hand, and the fineness of the tone scale resolution and the
avoidance of false contouring on the other.

Along similar lines in the context of least-squares
model-based (LSMB) DBS, Kim and Allebach [23] used
a sum of two separable Gaussians (corresponding to dif-
terent viewing distances) to represent the autocorrelation
of the HV'S point spread function and visually optimized
the parameters of the model. However, they found that
no single set of parameter values gave the best perfor-
mance across the entire tone scale. So they developed a
dual metric approach that effectively uses a larger scale
factor in the highlights, midtones, and shadows, and a
smaller scale factor elsewhere.

Printer Models

The purpose of a printer model is to accurately predict the
actual gray levels produced by a printer. In addition, it
should take a form that is easy to incorporate in a
halftoning algorithm. With accurate printer models,
model-based halftoning techniques can exploit the
printer characteristics to produce higher quality rendi-
tions of digital images.

To a first approximation, laser printers are capable of
producing black spots (usually called dots) on a piece of
paper, usually on a rectangular array of pixels with horizon-
tal and vertical spacing of T, and T, inches, respectively.
The reciprocal of T, (T,) is the horizontal (vertical) reso-
lution of the printer in dpi. We will use the following ter-
minology and notation. Pixel (z, j)is the T, by T, rectangle
whose center is the point (x,,y ), with x, =27, +T,/2in
from the left of the image, ‘and Y= ]T +T, /2 in from
the top of the image. We will refer to the collection of all
pixels, i.e., all such rectangles, as the printing lattice. The
printer is controlled by an N, x N, binary array [&, ],
where &, ; =1 indicates that a black dot is to be placed at
plxel center (x,, ), and b, . =0 indicates that a black dot
is not placed there. We will Sometimes refer to the latter as

a “white” dot. Finally, we assume that the grayscale image
(to be halftoned) has been sampled so there is one pixel
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A 5. Circular dot overlap (p =125).

per dot to be generated otherwise, interpolation is neces-
sary. Thus, it is also defined on an N, x N, array [z, ],
which takes values in the interval [0,1]. We will assume that
these values (gray levels) represent absorptance. Thus, the
gray level of a black pixel will be 1, and the gray level of a
white pixel will be 0. Reflectance will then be defined as 1 -
absorptance. We will refer to the collection of all image pix-
els as the image lattice.

As we saw in the introduction, to a first approxima-
tion, actual printers produce roughly circular black dots,
as shown in Figure 5. Depending on the printer technol-
ogy, the size, shape, colorant density (and hence absorp-
tion uniformity), and placement of the black dots may
vary. In addition, present day electrographic (laser or
LED) printers provide dot modulation capabilities (e.g.,
changing the area of the printed dots), and thus, each
pixel may be in one of several hundred states rather than
the two states of conventional printers. In such cases, the
array that controls the printer will take more than two val-
ues. In the following discussion, we will assume a binary
printer but the ideas extend to the more general case.

The Sampled Grayscale Printer Model

We now describe a general class of printer models that
forms the basis of model-based halftoning techniques.
The main idea, introduced by Roetling and Holladay
[25] and formalized by Pappas and Neuhott'in [26] and
[27], is to estimate the average gray level of each pixel of
the printed image as a function of the values of the binary
array [5, ] in the neighborhood of that pixel.

As a result of the phenomena such as those mentioned
above, the gray level produced by the printer at any point
in the image depends in some complicated way on the
surrounding pixels. Let #(s,) be the gray level produced
by the printer at point (s,#) located s inches from the left
and ¢ inches from the top of the image. Then

u(s,t)=f(s,5;B,,), 0ss<N T, ,0<t<N,T, (6)

where B, denotes the set of bits in a neighborhood of
the pomt (x t)and f is some function. As we will see, this
function f" could be deterministic or probabilistic. How-
ever, due to the close spacing of the dots and the limited
spatial resolution of the eye, the gray level #(s,t) of the
printed image can be modeled as having a constant value
2, ; within the area of pixel (7, 7) as follows:

z st e 1y, 1<

JE)=p. ., —sl<—= |y, —tl<—
u(s,t)=p, ;> |x,—s 501 5 )
where, as we saw above, (x, , y ;) are the coordinates of the
center of the pixel. Although the gray level is not actually
constant, the eye responds, essentially, only to the average
gray level over the site. It is this average gray level that p
represents, i.e., the average of the functionf(s,z; B, t)
over the site. Thus the average gray level p, ; depends on
the neighboring pixels in the form
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where W, ; is a window that consists of the bits in some
nelghborhood of b, . and P denotes some function
thereof. Note that the printer model is completely speci-
fied by the function P, which like £ in (6) could be deter-
ministic or probabilistic. Thus, given thc binary array
[, ;] that specifies the dot pattern to be printed, the
printer model generates a new array [p, ;] of gray levels
that has the same dimensions as the binary array as well as
the grayscale image array. This is very important, as all
processing can be done in the discrete domain without
any need for resampling. We refer to this generic model as
the sampled grayscale printer model (SGPM).

In the remainder of this section, we consider different
ways for obtaining this function P. A variety of phenom-
ena may contribute to the appearance of the printed page,
and the only place to account for them is in the function
P. For computational efficiency, it is essential that p, ;. be
entirely determined by the bits in a small window around
b, ;,e.g.,a3x3window. In this case, the possible values of
P can be listed in a table, e.g., with2” elements. The indi-
vidual elements of this table might be derived from a de-
tailed physical understanding of the various phenomena
effecting gray level or from measurements of the gray
level that results when various dot patterns are printed.
One example of the first approach uses the “circular
dot-overlap model,” which we describe below.

0<i<N,,0<j<N, (8)

Circular Dot-Overlap Model
One of the simplest printer models assumes that the
printer produces circularly shaped black dots [25], as
shown in Figure 5. The dots are saturated so that the over-
lapping areas do not get any darker (logical OR). In this
section, for simplicity, we will assume that the pixels are
square (i.e., T, =T, =T'). Note that neighboring black
dots may overlap and that black dots may cover parts of
adjacent white dots. The radius of the dots must be at
least T'/~/2 so that they are capable of blackening a region
of the page entirely. This means that there is always some
overlap between black dots and adjacent white dots, re-
sulting in a darkening of the gray level of the pixel that
corresponds to the white dot. This results in significant
distortion in the printed images. (The area of such a dot is
157 T?, i.e., 57 % larger than a T xT square!) Most
printers produce black dots that are larger than the mini-
mal size (dot gain), which further distorts the gray level.
The circular dot-overlap model proposed in [26] and
[27] accounts for such distortions by estimating the gray
level of each pixel of the printed image as the percentage
of the pixel covered by ink. This area can be calculated eas-
ily from the radius of the dots. More specifically, the
printer model takes the form

1, ifb,
b, =PW, ;)= {

fio+ £, 137, 1fb )
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A 6. SGPM output (p=125).

where the window W,  consists of 4,  and its eight neigh-
bors. Here f; is the number of horlzontally and vertically
neighboring dots that are black, f), is the number of diag-
onally neighboring dots that are black and not adjacent to
any horizontally or vertically neighboring black dot, and
f is the number of pairs of neighboring black dots in
which one is a horizontal neighbor and the other is a ver-
tical neighbor. The parameters o, 3, and y are the ratios of
the areas of the shaded regions shown in Figure 5 to 72

and can be expressed in terms of the ratio p of the actual
dot radius to the ideal dot radius T/+/2 [27]. Thus, the pa-
rameter p completely specifies the printer model. For typ-
ical write-black B&W printers, the value of p ranges from
10 to 17. Figure 6 shows the SGPM output for the dot
pattern in Figure 5 with p = 1.25. The model is not very
sensitive to small variations in p and applies to a wide
range of printers. Note that the circular dot-overlap
model can be used to account for both mechanical and
optical dot gain.

Roetling and Holladay [25] were the first to propose a
circular dot-overlap model and used it to improve the de-
sign of clustered dot screens. Several authors have used
printer models in their papers [9]-[11], [26]-[31]. We
will examine some of these in later sections.

Tabular Models

As we saw earlier, the printer model predicts the gray level
(i.e., the absorptance) of each pixel of the printed pattern
asa funct1on of the values of the binary array [, ;]in the
neighborhood of that pixel, as specified in (8) Such a
function can be specified by a formula, as in the circular
dot-overlap model, or by a table that lists a gray level for
each input pattern.

Models such as the circular dot-overlap are accurate for
many printers but cannot describe the behavior of all
printers. Thus, different models may have to be derived
for different printer technologies, or as we will see below,
different printer resolutions. In addition, for some print-
ers, the dot interactions can be very complex, and deriv-
ing a model based on a physical understanding of the
printing process can be too difficult or too complicated.
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To avoid such problems, Pappas et al. [32] proposed a
tabular approach for modeling printers that uses direct
measurements of the absorptance of printed test patterns
in order to obtain the table entries. This can be applied to
any printer and makes very few assumptions about its
characteristics. Their approach is based on macroscopic
measurements of the absorptance of specially designed
periodic test patterns. The average absorptance of each
pattern is related to the printer model parameters by a set
of linear equations. A constrained optimization problem
must then be solved to obtain the model parameters.
Note that a simple measuring device can be used and no
precise alignment is required.

The estimation of the parameters (table values) in the
tabular approach can be simplified considerably if a high
resolution device is available for measuring the absorp-
tance of individual pixels. This eliminates the need for
solving a set of equations to obtain the table values but re-
quires precise alignment. This microscopic approach was
proposed by Baqai and Allebach [24], who used a high
resolution (4,000 dpi) drum scanner to measure the ab-
sorptance of the central pixel for all possible 3 x 3 patterns.
To solve the alignment problem, they printed reference
marks around each pattern and used estimates of their
centroids to determine the center of the pattern. Figure 7
shows high resolution scans of the output of an HP Laser-
Jet 4M printer for the bitmap specification in Figure 7(a).
Note that the 600 dpi pattern of Figure 7(c) has been
magnified by two so that it is the same size as the 300 dpi
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(a) (b) (c)

A 7. (a) Digital halftone pattern and 4,000 dpi scan of its printed
versions obtained at (b) 3,000 dpi and (c) 600 dpi (magnified
by two).

Printing Lattice

SGPM Lattice

L

A 8. Offset centering for calculating the sampled grayscale
printer model.
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pattern of Figure 7(b). Note also that at 300 dpi, it ap-
pears that the circular dot-overlap model may provide a
reasonable approximation of the printer, but it would be
hard to justify the same model at 600 dpi. More impor-
tantly, Baqai and Allebach [24] found that the 600 dpi
patterns are not as stable (repeatable) as the 300 dpi pat-
terns, which necessitates the use of a stochastic printer
model. The tabular model they proposed incorporates
the mean and variance of each dot combination.

Offset-Centered Model

We described SGPMs that predict the gray level of each
pixel site in the printing lattice, that is, they produce
grayscale images that predict the output of the printer on
the same lattice as the printing lattice. However, there are
other possibilities. For example, as proposed by Wang et
al. [33] and illustrated in Figure 8, instead of predicting
the gray level of each printer pixel site, the SGPM could
predict the gray level at pixel sites centered at the corners
of the printer pixels. In other words, the lattice on which
the SGPM is based could have an offset relative to the
printing lattice. An advantage of this is that now each
printer model pixel has only four neighboring printer pix-
els, rather than the eight neighboring printer pixels when
there is no offset. Thus a 2 x 2 tabular model that accounts
for the effects of the nearest pixels need only have2* =16
entries, instead of 2° =512 for a 3 x 3 model. This is a
considerable savings. Of course, the 2 x 2 model might
not be quite as accurate as the 3 x 3 model. However, we
now see thatin additionto the 3x 3,5 x5,7 %7, ... neigh-
borhoods, we can add 2 x 2, 4 x 4, ... neighborhoods to
our toolbox.

Model for Electrophotographic Printers
Previously, we described a tabular printer model that is
based on the SGPM. We also described a method for
parameterizing the model based on macroscopic or micro-
scopic measurements. Here we show how these parame-
ters can alternatively be obtained from a more analytic,
physics-based characterization of an EP printer. This is es-
pecially important for EP printers that utilize pulse-width
modulation, since in this case the number of possible pixel
states is too large to permit use of a completely measure-
ment-based approach to parameterize the model.

The EP process has three main steps [34], which can
be understood by referring to Figure 9. The charged or-
ganic photoconductor (OPC) is exposed to a modulated
light source, which typically is either a scanned laser beam
ora 1-D array of light emitting diodes; 2) the exposed re-
gions attract charged toner particles to the surface of the
photoconductor; and, finally, 3) the toner particles on the
photoconductor are transferred and fused to the paper to
get the desired output. Laser EP printers can provide
pixel modulation by either turning on the laser beam for
less than the full width of the pixel or by keeping the beam
on for the full width of the pixel, but varying the beam in-
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tensity. Analytical characterization of the EP
process can be used within a halftoning algo-
rithm to yield improved textures [35]. Our
discussion here follows that in [35].

The relationship between exposure on the
OPC and the resulting charge is linear. The la-
ser beam can be represented by a spatially
varying intensity profile I(x,y) that is as-
sumed to be centered at the origin. To write a
dotat the (z, 7)th pixel, the laser beam is turned
on according to the temporal switching wave-
torm 0< 7 5 (t)<1, as it is scanned across that
pixel. Assuming that the spacing between pix-
els in the horizontal and vertical directions is
T, and T, respectively, and the laser beam is
scanned with velocity V, the total exposure at
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each point (x,y) due to the writing of the

(¢,7)th pixel can be expressed as
E, (x,9)=[I{()I(x~iT, =Vt,y—jT,)dr. (10)

Typically, I (x, y)is Gaussian, and 1 z(; (t)is arising expo-
nential during the turn-on phase and a decaying exponen-
tial during the turn-off phase. Assuming that both
exponentials have the same time constant, we can find the
total exposure E(x,y) on the OPC by simply summing
over all the pixels, i.e.,

E(x,y)= 2 E, ;(%,)). (11)

Unfortunately, the remainder of the EP process is not
nearly so easy to characterize. The manner in which toner
particles are attracted to the OPC is an extremely complex
and highly stochastic process. Transfer of the toner from
the OPC to the paper and subsequent fusing of the toner
to the paper introduces further changes to the latent im-
age. In lieu of analytical descriptions for these parts of the
EP process, an empirical approach can be taken in which
the relation between exposure E(x, y) at any point on the
OPC and the absorptance #(x, y) at the corresponding
point in the final print is modeled by a simple
point-to-point transformation 1(); so#(x, y) = 1(E(x, ¥)).

The transformation 7 is obtained in two steps. In the
first step, the relation between a constant potential on the
OPC and the resulting absorptance on the paper is deter-
mined. This is done by printing and measuring the absorp-
tance of test patches with constant pulse width, which due
to the spread of the Gaussian beam results in nearly con-
stant exposure on the OPC. In the second step, this rela-
tionship is modified to account for halftone texture
dependent factors such as dot gain discussed earlier. This
step is accomplished by measuring the absorptance from
constant tone patches that have been rendered with the tar-
get halftoning algorithm.

Once the transformation thas been obtained, we have an
analytic expression for the absorptance (x, y) at any point on
the paper due to the underlying digital halftone image &, ,
which in this case might not be binary. To parameterize the
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A 9. Cross section of the toner cartridge for a typical EP laser printer.

tabular model, the absorptance is calculated in an M x M
grid of points within each T', x T, pixel of the SGPM, and
this is used to compute p; ; in (8).

Model for Ink-Jet Printers

Ink-jet devices print by passing a printhead containing
many small nozzles over the paper and ejecting drops of
ink from the nozzles. The print head may contain nozzles
for one or more colorants, for example, cyan, magenta,
and yellow; and each colorant is typically assigned two
columns of nozzles; so for a three-color print head, there
will be a total of six columns of nozzles. Compared to EP
printers, ink-jet printers render dots that have a greater in-
tegrity than those shown in Figure 7 and are much more
stable. However, ink-jet printers exhibit dot displacement
errors and dot irregularity that are caused by misaligned
nozzles in the printhead, the dynamics of the carriage mo-
tion and drop formation, and turbulence in the air be-
tween the print head and the paper surface. The
displacement errors that result from these sources appear
largely random in nature. Ink-jet printers support various
print options such as different print resolutions, speeds,
directions (uni/bi), number of printing passes, and num-
ber of ink drops at each pixel. The artifacts that result are
very dependent on the print mode. In general, slower
printing modes will result in less visible artifacts.
Multipass print modes are usually employed to reduce
printing artifacts [36]. In a multiple-pass mode, the pen
visits each pixel more than once and puts a drop there dur-
ing a certain pass. A binary array called the print mask is
used to control this process.

For certain print modes, dot displacement errors may
cause significant artifacts in the printed halftone texture.
For example, when an HP DeskJet 970 printer is oper-
atedina 600 dpi, 10 in/s unidirectional mode, veining ar-
tifacts such as those shown in Figure 10(a) will occur.
These artifacts can be traced to the fact that the dots
printed in even-numbered rows are displaced to the right
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with a bias of 0.25 pixels, whereas those printed in
odd-numbered rows are displaced to the left by 0.25 pix-
els. This is indicated by Figure 11, which shows the histo-
grams of the horizontal dot displacement for even- and
odd-numbered rows. These displacement biases are a
consequence of the print head construction. Figure 11
also shows that the dot displacements for this particular
print mode are quite random, being approximately uni-
tormly distributed over an interval of width equal to the
pixel dimension.

To eliminate these artifacts [37], one can again turn to
the SGPM and tabular model discussed earlier. A dot
overlap model similar to that discussed earlier is used to
account for the effect of horizontal dot displacement.
However, the stochastic nature of these displacements
adds an additional level of complexity to the model and
intimately links this modeling stage to the error metric
employed with the halftoning algorithm. Since this topic
has not yet been discussed, it will suffice to say here that
for an LSMB approach like DBS [22], the expectation of
the mean-squared error is taken with respect to the en-
semble of all possible dot displacement configurations

(a) (b)

A 10. Constant gray patch halftoned using TDED (a) with ideal
model and (b) with inkjet model discussed here, and printed
with an HP DesklJet 970 printer operated in the 600 dpi, 10
in/s, unidirectional print mode.

given the fixed digital halftone image. For tone-depend-
enterror diffusion (TDED) [38], at each gray level, an es-
timate of the power spectrum of the printed halftone is
computed and the parameters of the algorithm are chosen
for that gray level to minimize the difference between this
spectrum and an ideal halftone power spectrum based on
DBS textures. Figure 10(b) illustrates the improvement
that results.

Model-Based Halftoning Algorithms

LSMB Halftoning with DBS

Given accurate models for the HVS and display device,
we now consider algorithms that maximize the visual
quality of the displayed images using a fidelity metric. In
the LSMB approach this takes the form of minimizing the
squared error between the output of the cascade of the
printer and visual models in response to the halftone im-
age specification and the output of the visual model in re-
sponse to the original continuous-tone image. As we will
see below, the optimal solution, and in this sense the “op-
timal” halftone reproduction, can only be obtained by it-
erative techniques that in effect search through the space
of all possible halftone images and pick the one that mini-
mizes the error criterion. Since the typical halftone speci-
fication is binary, we refer to this process as DBS. The
overall approach has thus been known as either the DBS
[14], [22], [24], [35] or the LSMB approach [9]-[11].
Similar approaches (not including a display model) have
been proposed in [39]-[42].

We now look at a more detailed formulation of the
problem. Let [z, ] denote a continuous-tone image. As
illustrated in Flgure 12, the LSMB approach seeks the
halftone image [5, ] that minimizes the squared error

E=ZJ (E] _EJ )2

(12)
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A 11. Horizontal dot displacement for pixels in (a) even and (b) odd rows for an HP DeskJet 970 printer operated in the 600 dpi, 10

in/s, unidirectional print mode.
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where

= *k
zi,j Zi,j ﬂi,j

(13)

?i,j zpi,j*ﬂi,j = P(W,f )*ﬂi,]"

(14)

Here W, ; consists of 4,  and its neighbors as in (8), and
* indicates convolution. The boundary conditions as-
sume that no colorant is placed outside the image borders.

In principle, the optimal solution can be obtained by
an exhaustive search over all possible binary patterns for
the entire image. This approach is not computationally
teasible, however. The number of possible patterns for an
N, xN, image is 2" (e.g., 116x107 just for a
16 x16 image). Thus, the least-squares solution must be
obtained by iterative optimization techniques. Such tech-
niques find a solution that is only a local optimum. They
assume that an initial estimate of the binary image [, ,]is
given. This could be a trivial image, e.g., a constant or
random image, or the output of any halftoning algo-
rithm. Depending on the optimization strategy, the visual
quality of the resulting halftone image may be influenced
by this starting point.

A search strategy that has been found to work very
well traverses the image in a raster scan. At each pixel, we
consider toggling the state of that pixel from O to 1 or 1
to 0, whichever is appropriate, and also swapping the
state of that pixel with the state of any of its eight nearest
neighbors, if they are different. Among these possible
nine changes, we retain that single change, if any, that re-
duces the overall error (12) the most. When the HV S fil-
ter has finite impulse response, the binary value of each
pixel affects only the model outputs 7, , in its neighbor-
hood, and thus the error need only be computed locally.
Here we should mention that the error value should not
be computed from scratch each time; the value of %, |
never changes and only a few terms in the convolution
sum that determines p, ; must be updated (those that in-
volve the current pixel and its ne1ghbors) By exploiting
the bilinearity of the error metric, we can achieve a dra-
matic reduction in the cost of evaluating trial changes
from O(Q(yg, ;)) arithmetic operations, where Q(g, ) is
the number of pixels in the support of the filter g, ;, toa
handful of arithmetic operations, independent of
Q(g,;) [22]. An iteration is complete when the
minimization is performed once at each image pixel.
The number of iterations depends on the starting point
and the effective filter width. The resulting halftones,
however, are practically independent of the starting
point. More sophisticated (and computationally inten-
sive) schemes use simulated annealing [42], [43] but
have not yet shown any significant improvements in im-
age quality.

Figure 13(a) and (b) shows a magnified detail of a
grayscale ramp halftoned with LSMB using HVS filters
corresponding to viewing distances of 0.5 and 2 ft at 300
dpi. Note that, as predicted earlier, as the viewing distance

increases, the textures become coarser. If each image is
viewed at the right viewing distance, the number of per-
ceived gray levels should increase with coarser textures
(which become less visible as the actual viewing distance
increases). An immediate consequence of this observa-
tion is the fact that the white regions at the left of the
ramps grow as the viewing distance decreases. This is an
artifact directly related to the coarseness of the grayscale.
Specifically, when the dots are farther apart than the eye
can average, the LSMB metric finds it better to produce
no dots to represent a nearly white region, rather than
placing a few widely separated dots. Figure 13(c) shows
the ramp halftoned with the dual-metric DBS technique
[23] that we discussed earlier. This approach eftectively
changes the viewing distance to improve the halftone pat-
terns in different parts of the image.

Figure 14 shows a magnified detail (shown at 100 dpi)
of an image halftoned with (a) the Floyd/Steinberg error
diffusion [44], (b) the TDED [38], (c) the dual-metric
DBS screening technique [23], [45], and (d) the
dual-metric DBS technique [23]. Observe the superior
patterns of the dual-metric DBS, followed by TDED,
Floyd/Steinberg, and the screening technique. Note that
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A 12. LSMB halftoning.

A 13. LSMB/DBS halftoning for different viewing distances at
300 dpi (shown magnified by three): (a) 0.5 ft, (b) 2 ft, and (c)
dual-metric DBS.

A 14. Different halftoning techniques shown at 100 dpi: (a)
Floyd/Steinberg error diffusion, (b) TDED, (c) dual-metric DBS
screen, and (d) dual-metric DBS.
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the latter is the most constrained, while Floyd/Steinberg
exhibits well-known artifacts.

Model-Based Error Diffusion

The error-diffusion algorithm [44] is a neighborhood
technique that produces sharper images than point
(screening) techniques and generates visually pleasant
textures. However, as we discussed earlier, it is very sensi-
tive to dot-overlap and other printer distortions. There-
fore, it is necessary to incorporate a printer model in the
algorithm. In addition, we consider the use of HVS mod-
els in error diffusion. The basics of error diffusion and a
number of fundamental issues are discussed in the Lau et
al. and Eschbach et al. articles in this issue, while funda-
mentals of color error diffusion are discussed in the
Damera-Venkata et al. article.

Printer Model-Based Error Diffusion
The main idea behind error diffusion is very simple. As illus-
trated in Figure 15 it keeps track of “past” quantization er-
rors and compensates for them when it quantizes the next
pixel value. If we ignore the printer model in Figure 15, the
¢, ;S represent the quantization errors, and compensatmg
for them is accomplished by subtracting a filtered version of
the errors from the image values z, .. Equally simple is the
extension of error diffusion to anlude a printer model. In
addition to quantization errors, the algorithm must take
into account the printer effects, as shown in Figure 15.
Stucki [29], [30] was the first to suggest the use of a
dot-overlap model to account for printer eftects in error
diffusion. At each pixel in the image, Stucki’s algorithm
accounts for the newly placed colorant. While this scheme
produces the correct tone scale, it also results in a loss of
sharpness. That’s because part of the newly placed
colorant may be outside the pixel boundaries, while some
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A 15. Modified error diffusion.

(b)

A 16. (a) “Classical” screen, (b) error diffusion (no printer
model), (c) MED, and (d) blue-noise screen.

previously placed colorant may be inside the pixel bound-
aries. In effect, this increases the cell size of the SGPM,
thus resulting in a loss of spatial resolution. Pappas and
Neuhoft [26], [27] used the dot-overlap model of (9),
which accounts only for the colorant within the pixel
boundaries. Thus, it preserves the sharpness of the origi-
nal error-diftusion algorithm. They referred to the result-
ing algorithm as modified error diffusion (MED).

A block diagram of the MED algorithm is shown in
Figure 15. Without loss of generality, we assume that the
image is scanned left to right, top to bottom. The binary
image [b, ] is obtained by thresholding a “corrected”
value », . of the grayscale image. The MED algorithm
uses a prlnter model to estimate the gray level b of the
printed pixels. The difference between this gray level and
the “corrected” grayscale image is defined as the errore;
at the location (7, 7). Previous errors are filtered and sub-
tracted from the current image value z; i, o obtain the “cor-
rected” value of the grayscale image. The threshold # is
typically fixed at 0.5. The MED equations are

i'_z '_zhmn zm;n (15)
b = 1, ifvi’]. >t

“7 10, otherwise (16)
m n _pm n Vm,n fOI‘ (Wl,ﬂ)<(1,]) (17>

where (m,n) < (i, j) means (m,7) precedes (7, ) in the scan-
ning order and

ij :'p(W’f ) for (m,n)<(i,7)

m,n myn

(18)
where W, consists of 4,, , and its neighbors as in (8).
Here the neighbors 4, , have been determined only for
(k1)< (i,7); they are assumed to be zero (i.e.,white) for
(k,)=(i,7). Since only the dot-overlap contributions of
the previous pixels can be used in (18), the previous errors
keep getting updated as more binary values are com-
puted. This is why the error and the printer model output
depend on the location (7, j). The assumption that the un-
determined pixels are white leads to a bias in the grayscale
of the printed image. This bias is very small and difficult
to detect in practice and can be eliminated by the
multipass version of the MED algorithm [32].

Figure 16 shows magnified details of halftone images as
they would be printed on a 300 dpi printer, if it obeyed the
circular dot-overlap model with p=125. They are repro-
duced with simulated dot gain at one third of the printer res-
olution. In particular, it shows (a) the “classical”
clustered-dot screening technique without any compensa-
tion for printer effects, (b) error diffusion with a Jarvis-Ju-
dice-Ninke filter [46] and no printer model, (¢) MED with
a Jarvis-Judice-Ninke filter and a circular dot-overlap model
with p=125, and (d) a blue-noise screening (BNS) tech-
nique with the same printer model [43]. Observe that with-
out a printer model, the error diffusion results in noticeable
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grayscale distortion (darkening), while the “classical” screen
is very robust to printer effects. Observe also that the MED
image is sharper and has better texture than either of the
screening techniques. In particular, the texture that the BNS
produces is considerably grainier than that of the MED.

Tone-Dependent Error Diffusion

Recently, a number of researchers have considered varying
the weights in the error-diffusion kernel as a function of the
gray level of the continuous-tone input image to improve
the control of the texture at each gray level [38], [47]-[49].
Ostromoukhov [49] trained his weights to yield error-diffu-
sion textures that have blue noise spectra. In addition to
making the weights tone dependent, Li and Allebach [38]
used a serpentine raster and replaced the threshold # in Fig-
ure 15 by two tone-dependent thresholds ¢! >#” | where z
denotes the gray level. If the input z to the threshold step is
less than ¢!, the output is 0. If it is greater than ", the out-
put is 1. If = falls between #! and ¢, the binary output is
taken from a binary texture patch with absorptance 0.5 gen-
erated by DBS [22]. They trained all the parameters of the
algorithm to minimize a cost function based on an HVS
model. In the highlights and shadows, this cost function is
given by (12). In the midtones, they found that this cost
function did not result in textures with satisfactory homoge-
neity and texture variety; so they replaced it with the total
squared error between the power spectrum of the halftone
generated by TDED and that generated by DBS. So here
the cost function is indirectly linked to an HVS model via
the power spectrum of the DBS halftone. In general,
TDED can yield halftone textures that have almost the same
level of quality as DBS. Because of the large number of de-
grees of freedom that TDED possesses, it is well suited to
use with a printer model. As discussed earlier, Lee and
Allebach [37] have based the training of the parameters on
an inkjet printer model and successfully eliminated very visi-
ble artifacts that were directly due to the printer mechanism.

Other Halftoning Algorithms

Model-Based Screening and Lookup Table Halftoning
In screening, the binary image is generated by comparing
each pixel of a continuous-tone image to an array of im-
age-independent thresholds [50]. The binary image is
black when the gray level of the image pixel is greater than
the corresponding threshold and white otherwise. The
thresholds can be generated randomly (random dither)
or can be periodic (ordered dither). The main advantage
of screening techniques is that the required amount of
computation is minimal and can be carried out in parallel.
Traditional screening techniques malke use of the proper-
ties of the eye only implicitly. The “classical” clustered-dot
screen has been the most popular for printing because of its
robustness to printer distortions and its similarity to tradi-
tional analog halftoning techniques. Dispersed-dot screen-
ing techniques produce images with better spatial resolution
and better texture than clustered-dot techniques but are
more sensitive to printer distortions.

JU YU%QOS
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Dispersed-dot screens can be designed by using any dis-
persed-dot halftoning algorithm to generate halftone tex-
tures for each constant gray level between zero and 255. To
be implementable by thresholding, these textures must
obey a stacking constraint so that once a black dot is turned
on at a given pixel location, that dot will remain turned on
for all darker gray levels. To minimize the visibility of the
fundamental period in the halftone patterns and to enable
the design of higher quality textures, it is common to use
screens that are much larger than the 16 X 16 minimum
that would be required to generate 256 gray levels. Sizes of
128x128 or 256 x256 are typical. A number of ap-
proaches have been used to design the binary textures at
each gray level. Some of these methods use an explicit
model for the HVS and directly minimize an error metric
[71, [43] [45], [51]. Others attempt to force the spectrum
of the halftone textures to have a blue noise characteristic
[52] or to eliminate voids and clusters in the halftone tex-
ture [53]. With this latter method, the Gaussian filter used
to identify the largest void and the tightest cluster can be
interpreted as the point spread function of an HVS. It is
also possible to generalize the screening concept to a
model-based lookup-table-based approach that can yield
some improvement over screening [21].

Printer models can be used with screening techniques
to account for printer distortions. They can be used to
modify the thresholds of an already designed screen. For
example, this was done by Roetling and Holladay [25],
who used a circular dot-overlap model. In addition, they
also used the printer model to optimize screen design. In
[43], Schulze and Pappas used the circular dot-overlap
printer model described above to optimize the design of
BNSs using the void-and-cluster method. The images
generated using such model-based BNSs are very similar
in appearance to those generated by BNSs with modified
thresholds. Figure 16(a) and (d) compares a “classical”
screen and a model-based BNS, respectively. Note that
the “classical” screen is fairly robust to printer distortions
(no printer compensation was used), while the
model-based BNS is sharper and has better texture.

AM/FM Halftoning

The halftoning algorithms we have discussed so far achieve
a given level of absorptance by either modulating the size
of dots that are placed on a fixed lattice of points or by
modulating the spacing or density of dots that have fixed
size. The best example of the first group of methods is the
traditional clustered dot screen. In the second group, we
have error diffusion and LSMB halftoning. Algorithms in
the first group are more stable for printing with EP print-
ers, whereas algorithms in the second group provide better
detail resolution. The AM/FM algorithm [54] combines
both modes of modulation to yield a tradeoft between sta-
bility and detail resolution that is optimized for a given EP
print mechanism. It is especially well suited for EP printers

with pixel modulation capability.
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The basic idea of AM/EM halftoning is that each in-
tended gray level is reproduced by a prespecified macrodot
density and macrodot size. For example, assuming no dot
gain, to attain gray level 0.2, the density could be 0.1 and the
size might be 2, meaning that macrodots consisting of two
adjacent printer dots are placed at 10% of the printer lattice
sites. Alternatively, the density might be 0.4 and the
macrodot size might be 0.5, indicating that macrodots are
placed at 40% of the sites, each with half the usual size. This
basic idea is implemented with some dispersed dot
halftoning method, such as tone-dependent error diffusion,
along with two point-to-point nonlinear mappings, stored
as lookup tables. For each gray level, one table determines
the density and the other determines the macrodot size. The
AM/EM algorithm operates by first applying the density
mapping to the image, with the effect of reducing gray levels
that are to be reproduced with macrodot sizes greater than
one, and increasing gray levels corresponding to macrodot
sizes less than one. Next, the dispersed dot halftoning is ap-
plied, which, at least approximately, produces the desired
macrodot density for each gray level of the image. Finally,
for each pixel (z7) at which there is a macrodot, the original
image gray level z;;is used to address the size table to deter-
mine the size of the macrodot at this location.

There are obviously many combinations of density and
size that can attain each gray level. In [54], the tables were
designed by using the AM/FM algorithm to generate halt-
tone patches with every possible combination of macrodot
size and density, and then measuring the average absorp-
tance and visually weighted mean-squared error of these
patches. The dot size and density mappings were found us-
ing a multiresolution iterative coordinate descent algo-
rithm, with a cost function that was regularized to penalize
abrupt changes in dot size or density as a function of input
gray level (which might cause false contouring).

For EP printers, the AM/FM algorithm produces
more stable and higher quality halftones than conven-
tional error diffusion, while providing better detail rendi-
tion than clustered dot screens. It is particularly useful for
scan-to-print applications where the susceptibility of clus-
tered dot screens to moire in scanned material that
contains periodic halftone dot patterns is unacceptable.
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