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ABSTRACT
We study first-price auction mechanisms for auctioning flow be-
tween given nodes in a graph. Afirst-price auctionis any auc-
tion in which links on winning paths are paid their bid amount;
the designer has flexibility in specifying remaining details. We as-
sume edges are independent agents with fixed capacities and costs,
and their objective is to maximize their profit. We characterize all
strongǫ-Nash equilibriaof a first-price auction, and show that the
total payment is never significantly more than, and often less than,
the well known dominant strategy Vickrey-Clark-Groves mecha-
nism. We then present a randomized version of the first-priceauc-
tion for which the equilibrium condition can be relaxed toǫ-Nash
equilibrium. We next consider a model in which the amount of de-
mand is uncertain, but its probability distribution is known. For this
model, we show that a simpleex antefirst-price auction may not
have anyǫ-Nash equilibria. We then present a modified mechanism
with 2-parameter bids which does have anǫ-Nash equilibrium.
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General Terms
Economics, Theory
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In this paper, we study variants of thepath auctionproblem. The
basic problem can be described as follows: We are given a directed
graphG with two distinguished verticess andt. Each link in the
graph is a self-interested agent whom we assume to be risk-neutral.
All links have capacity1, but each linki also has a costci that is
known only to the link itself. A customer wants to buy1 (or more
generally, some integerk) paths froms to t. For this, she holds an
auction in which each link can bid; the auction should end with the
customer announcing a path, as well as the payments to each link.
The questions we are chiefly concerned with are: (1) What is the
form of bids, and how are the path and payments selected? (2) How
much does the customer end up paying, given that the links have an
informational advantage (the customer does not know the true link
costs)?

Previous work on path auctions has studied the Vickrey-Clarke-
Groves (VCG) mechanism [17, 12, 9, 2, 8]. Roughly speaking,
the VCG mechanism pays each edge on a winning path an amount
equal to the highest bid with which it could still have won, all other
bids being unchanged. The VCG mechanism has the attractive
property that each link’s dominant strategy is to bid exactly its cost.
Thus, no bargaining or communication between bidders is required
to stabilize on bids. Also the buyer does end up using the pathof
lowest true cost, which can be seen as optimizing social utility.

On the negative side, the VCG mechanism can lead to the cus-
tomer paying far more than the true cost of the cheapest path.The
tendency to overpay is exaggerated in path auctions (as compared
to simple auctions) because a bonus needs to be paid to every agent
on the path. Thus, the payment to the lowest-cost path may even
greatly exceed the cost of the second-cheapest path. For example,
in Figure 1, VCG selects the bottom path and pays4 to it, even
though the alternate path has cost3. Archer and Tardos showed
that a more general class of dominant strategy mechanisms can be
forced to make arbitrarily high overpayments [2]. Their result was
strengthened to hold for every truthful mechanism by Elkind, Sahai
and Steiglitz [8].
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Figure 1: Any ǫ-Nash equilibrium selects the lower path and
pays3 − ǫ while VCG pays4 for it.

In this paper, we are interested in finding techniques to reinin



the cost to the consumer, even when the information is completely
asymmetric—the links know the customer’s valuation, but the cus-
tomer does not know the links’ valuation. If we restrict ourselves
to dominant-strategy mechanisms, we cannot hope to do better than
the VCG mechanism. In this paper, we instead consider variants on
first-priceauctions and less restrictive solution concepts.1

First-price auctions open the possibility of paying less than VCG
auctions, but they do so by sacrificing valuable properties of the
VCG mechanism. In particular, in a first-price auction, a risk-
neutral edge may have incentive to lie, bidding a price higher than
its cost. Also, in the absence of a dominant strategy, it may be nec-
essary for bidders to communicate and bargain to achieve a stable
set of bids.

1.1 Our Results
We begin by exploring the sets of bids that are stable under a

first-price auction mechanism. The most natural solution concept
is that of a Nash equilibrium. We want to retain the property that
agents can see each others’ bids, so that the bidding could beper-
formed through posted prices. Thus, mixed-strategy equilibria are
not very meaningful for us. Unfortunately, we will not necessarily
have a Nash Equilibrium in pure strategies, as the followingsimple
example shows. Consider a network of two parallel links, oneof
cost 2 and another of cost 1. Also assume that ties are broken de-
terministically by assigning the flow to the link with cost 2.In this
case, the lower-cost edge would bid less than 2; however, forany
bid 2−ǫ, it could always do better by increasing its bid by a further
ǫ/2. Hence there is no pure Nash equilibrium in this case.

This motivates us to use the solution concept ofǫ-Nash equilib-
rium, in which no player can deviate in a way that improves his
payoff by at leastǫ. Unfortunately, there is a drawback to this so-
lution concept as well. In Figure 2, we see that the winning path
may have a price higher than the cost of the best competitor. This
defeats our goal of reducing customer overpayment. We mightar-
gue that this solution would not be sustained in practice, since the
edges on the second lowest-cost path are likely to each reduce their
price. This leads us to explore, in Section 3, the concept of astrong
ǫ-Nash equilibrium, in which there is nogroupof agents who can
deviate in a way that improves the payoff of each member by at
leastǫ. We prove that a strongǫ-Nash equilibrium always exists for
any ǫ > 0. We then prove an upper bound on the payment of any
such equilibrium and show that the payment is essentially not more
that of the corresponding VCG payment, and often it is much less
as shown by Figure 1.

Although strongǫ-Nash equilibria may solve some of the over-
payment problem, we cannot guarantee that bidders will reach one.
In particular, in the absence of knowledge about other bidders costs,
neither losing bidder in the example of Figure 2 may be willing to
“blink first” and lower the price. Thus, in Section 4, we present a
modified, randomized, first-price auction that explicitly drives the
first-price auction towards a strongǫ-Nash equilibrium.

Another drawback of first-price auctions is that, unlike theVCG
mechanism, an edge’s preferred bid may depend on the demand
(e.g., if demand is high, an edge can bid higher and still hopeto be
needed). It is unreasonable to expect edges to delay settingprices
until demands are made clear. Thus, in Section 5 we consider a
model in which bidders set prices according to adistribution of
possible demands. We show that, in this model, a simple first-price
auction may not have anǫ-Nash equilibrium. However, we design a

1By “first-price auction” we refer to any auction in which the links
on the winning path (or paths) are paid their bid amount. The de-
signer still has considerable flexibility in designing the details of
the auction mechanism.

first-price mechanism involvingtwo-parameterbids thatdoeshave
anǫ-Nash equilibrium. We then sketch a mechanism that combines
this two-parameter mechanism with the randomized mechanism of
Section 4. For this combined mechanism, we can characterizethe
set of allǫ-Nash equilibria, and thereby prove a bound on the total
payment in anyǫ-Nash equilibrium.

In order to maintain continuity, most proofs have been deferred
to the Appendix.
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Figure 2: Costs (left) and Prices (right) in anǫ-Nash equilib-
rium. The bottom edge wins and the price is higher than the
cost of the second best path.

1.2 Related Work
Path auctions are an instance of the more general class of com-

binatorial auctions, in which buyers bid for different collections of
goods. In path auctions, sellers (in our case, graph edges) bid to
attract consumer flow and consumers seek to buy a path of edges
of lowest price between a specified source and destination. Finding
the winners in general combinatorial auctions is NP-hard [17, 1],
for this reason researchers often add restricting assumptions such
as symmetric bidders, etc. Path auctions provide one such simple-
structured form of combinatorial auctions, which arises naturally
in network routing and more generally in any problems with an
underlying network structure, such as task allocation to teams of
agents.

Our work is also related to the literature on strong Nash and
strongǫ-Nash implementation of the core. In particular, the deter-
ministic first-price path auction we consider is similar to the game
introduced by Young [19] in the context of cost-sharing. Forthe
random demand path auction introduced in section 5.2, we use
techniques based on Curiel [5] to show the existence of the core.
We also note that Kalaiet al. [14] presented a strong Nash imple-
mentation of the core of any cooperative game. We could have
used this implementation in place of the2-parameter auction in
Section 5.2; however, the method in [14] is more complex and
communication-intensive, and in our case it would essentially re-
quire each bidder to report an entire flow.

There has also been some previous work on non-dominant strat-
egy mechanisms for path auctions. Elkindet al. [8] present and
analyze an optimal Bayes-Nash mechanism. Garget al. [7] study
use the core concept from cooperative game theory to bound the
payments of VCG mechanisms for a large class of problems that
includes path auctions. Czumaj and Ronen [6] propose a mecha-
nism which combines dominant and non-dominant strategy mech-
anisms, however they show that it has an arbitrary ratio between
the payment of different equilibria and say that overall, “finding a
natural and tractable measure of [non-dominant strategy] protocols
seems challenging and important.”

2. PROBLEM STATEMENT
In thepath auction game, there is a networkG of strategic links,

each with a privately-known true cost. All links have unit capacity.
A customer wants to buy routes from a sources to a sinkt in the



network to guarantee that her integral amount of demandk can be
routed. In order to do this, she defines a set of rules, ormechanism,
that elicits bids from each agent and then allocates flow to each
agent in a way that satisfies some natural incentive properties.

One plausible mechanism for this problem is the Vickrey-Clark-
Groves (VCG) mechanism [18, 4, 11]. This mechanism istruthful
dominant strategyor strategyproof, i.e. the strategically best bid for
an agent is his true cost, independent of others’ bids. Thus the bids
solicited by the mechanism are in fact the true cost of the agents
in an equilibrium. This enables the mechanism to allocate flow
to the lowesttrue costk-flow, a socially desirable goal in many
settings. However, in order to guarantee that this allocation rule
is truthful dominant strategy, the mechanism must pay a (possibly
large) premium to all edges on the selectedk-flow. One side effect
of dominant strategies is that all bargaining between the strategic
agents (links, in our case) is eliminated, and the overpayment to
edges on the selectedk-flow in the VCG mechanism can be thought
of as a side-effect of this fact.

We analyze approaches to reducing the total payment by usinga
weaker solution concept of a pure strategy equilibrium, thestrong
ǫ-Nash equilibriumfirst introduced by Aumann [3] and used by
Young [19].

DEFINITION 1. An ǫ-Nash equilibriumfor a game is a set of
strategies, one for each player, such that no player can unilaterally
deviate in a way that improves her payoff by at leastǫ.

A strongǫ-Nash equilibriumfor a game is a set of strategies, one
for each player, such that no group of players can deviate in away
that improves the payoff of each member by at leastǫ.

In particular, we show that in our models, for any strongǫ-Nash
equilibrium set of bids, there is another strongǫ-Nash equilibrium
set of bids with the same allocation and payment scheme in which
each agent bids withinǫ of his true cost unless he is allocated flow
(in expectation), and he never bids below his true cost.

Our mechanism is a simple first-price auction. It elicits bids from
each agent, computes the cheapestk-flow according to the bids, and
then allocates the demand to thatk-flow. We further assume that we
have a deterministic tie-breaking rule so that if there is more than
one cheapestk-flow, we take the lexographically first integral one.

We consider two specific path auction games. In thedeterminis-
tic path auction game, the user first announcesk, his total demand.
Then the edges announce bids and the user runs a first price auction
to buy the necessary flow. It is easy to imagine that the assumptions
of this model might be unrealistic in practice. Does a user really
know his total demand at the time he begins the auction? In our
second model, therandom path auction game, the user announces
a probability distribution onk. Then the edges announce bids. Fi-
nally, the user drawsk according to this distribution and buys flow
accordingly. In the rest of this paper, we analyze upper and lower
bounds on the overpayments in strongǫ-Nash equilibria for each of
these games.

Notation: For a graphG, let c be the vector of edge costs,b

be the vector of edge bids, andFw(k, G) be the set of edges in
the minimum weight integralk-flow2 in G with respect to edge
weightsw (if there is more than one minimum weightk-flow in
G with respect tow, let Fw(k, G) denote the set of edges in the
uniquek-flow that wins the deterministic tie-breaking rule of the
mechanism). We will refer toFc(k, G) as the minimum costk-
flow andFb(k, G) as the minimum pricek-flow with respect to bid

2The weight of this flow is equal to the weight of the minimum
weight k-flow, i.e., requiring integrality doesn’t change the value
of the optimal solution.

vectorb. Finally, for any flow or edge setF , we defineWw(F )
to be the weight ofF with respect to edge weightsw. We say
Wc(F ) is the cost of flowF andWb(F ) to be the price of flowF
with respect to bid vectorb. When the bids, costs, or graph is clear
from the context, we will sometimes drop them from the notation.
As a shorthand, we sometimes writeC(F ) instead ofWc(F ), as
well asC(k) for the (cost of the) lowest costk-flow. Finally, we
denote the number of agents, or edges inG, by n.

3. DETERMINISTIC PATH AUCTION GAME
Recall that in thedeterministic path auction game, the user first

announcesk, his total demand. Then the edges announce bids and
the user runs a first price auction to buy the necessary flow. We
would like to analyze the payment properties of this mechanism.
First, we prove that this mechanism has a strongǫ-Nash equilib-
rium.

THEOREM 1. Any deterministick-unit first price auction has a
strongǫ-Nash equilibrium.

PROOF. We construct a strongǫ-Nash equilibrium as follows.
Set the initial bid vectorbi = c, i.e. each edge bids its true cost
initially. Order the edges in the graph in an arbitrary way. For
each edgee in this order, ife is part of the current lowest price
k-unit flow Fb(k, G), let e raise its bid untilWb′(Fb′(k, G)) ≥
Wb(Fb(k, G − {e})) − ǫ/2 (whereG − {e} denotes the graph
G with edgee removed). Otherwise lete’s bid remain unchanged.
Call the final bid vectorbf .

We claimb
f is a strongǫ-Nash equilibrium for the deterministic

k-unit first price auction. To show this, suppose the contrary, i.e.,
there is a coalitionS of edges in which each edge can improve its
payoff by at leastǫ by changing its bid. Note that for any bid vector
constructed during this process, the auction always selects the same
k-flow. Therefore, the edges which are not on the winning flow in
b

f are bidding their true cost and cannot bid lower. Furthermore,
the edges which are on the winning flow will get smaller payoffif
they decrease their bid. Therefore no edge can benefit from lower-
ing its bid. Thus, the edges in the coalitionS can only raise their
bids. Suppose the edges inS ∩F

bf increase their bids by a total of
x units and the remaining edges in the coalition increase their bids
by a total ofy units (notex, y > 0). Call the new bid vectorb.
In order for all edges inS to increase their payoff,S ⊆ Fb. Thus
Wb(Fbf ) = Wbf (Fbf ) + x while Wb(Fb) = Wbf (Fb) + x + y.
But thenWb(Fb) > Wb(Fbf ) sinceWbf (Fbf ) ≤ Wbf (Fb) by
optimality ofF

bf . This contradicts the optimality ofFb.

Given the existence of strongǫ-Nash equilibria, we can bound
the payments in any such equilibrium. In order to develop some
intuition for the proof, it is useful to first consider sending 1 unit
of flow in a graph consisting of just two parallel edges from the
sources to the sinkt of costsa andb, a > b + ǫ. The lower true
cost edge must be allocated the flow in equilibrium since he can bid
just under the true cost of the higher cost edge and be guaranteed a
profit of at leastǫ. Therefore, by the conditions of a strongǫ-Nash
equilibrium, we can assume that the bid of the higher cost edge is
at mostǫ more than his true cost, and so the overpayment of any
equilibrium will be at mosta+ǫ−b. The crux of this argument was
to bound the bid of the winning path by the bid of an augmenting
path. Since the augmenting path does not receive flow, we could
show that without loss of generality the bid of this path should be
close to its true cost. This proof idea easily extends tok-flows in
general graphs as can be seen below.



THEOREM 2. The total payment of the deterministick-unit first
price auction in a strongǫ-Nash equilibrium is at most

k
ˆ

C(Fc(k + 1)) − C(Fc(k))
˜

+ knǫ,

wherec is the vector of true edge costs.

PROOF. Fix a strongǫ-Nash equilibrium vector of bidsb and
define edge sets

E+ = {e ∈ Fc(k + 1) − Fb(k)}

Eo = {e ∈ Fc(k + 1) ∩ Fb(k)}

E− = {e ∈ Fb(k) − Fc(k + 1)}

E+ is the subset of edges on an augmenting path that are not in the
original flow Fb(k). We show that without loss of generality we
may assume that these edges are bidding close to their true cost. To
show this, consider a bid vectorb′ such that

b′i =



min{bi, ci + ǫ} for i ∈ E+,
bi for i 6∈ E+.

We want to argue thatWb′(Fb′(k)) = Wb(Fb(k)). First we show
Fb(k) = Fb′(k). Suppose not. LetE′

+ = E+ ∩ Fb′(k) be the set
of edges in the new lowest price flow that are also inE+. We have
only changed the bids of the edges inE+, so if E′

+ is empty then
Fb(k) = Fb′(k) (this assumes some consistency properties of the
tie-breaking rule). IfE′

+ is nonempty, then we can consider a bid
vectorb′′ constructed fromb in which we only decrease bids of
edges inE′

+:

b′′i =



min{bi, ci + ǫ} for i ∈ E′
+,

bi for i 6∈ E′
+.

Since by our assumption the winning flow has changed, we must
haveb′′i = ci + ǫ < bi for a non-empty subsetE′′

+ of E′
+. Un-

der this new bid vector,Wb′′(F ) ≥ Wb′(F ) for any flow F
sinceb

′
i ≤ b

′′
i for all edgesi. By construction,Wb′′(Fb′(k)) =

Wb′(Fb′(k)) and so, by the consistency of the tie-breaking rule,
Fb′(k) = Fb′′(k). Thus, under the bid vectorb the set of edges
E′′

+ can form a coalition in which each member bidsǫ above its
true cost and all members profit byǫ. This contradicts the fact the
b was a strongǫ-Nash equilibrium.

Now, noting thatWb′(Fb′(k)) = Wb′(Fb(k)) = Wb(Fb(k)),
it suffices to boundWb′(Fb′(k)). Consider the (non-integral) flow
(k/(k+1))Fc(k+1), i.e. the flow which sendsk/(k+1) units of
flow along the flow paths determined byFc(k + 1). SinceFb′(k)
is a lowest pricek-flow,

„

k

k + 1

«

Wb′(Fc(k + 1)) − Wb′(Fb′(k)) ≥ 0.

This reduces to
„

k

k + 1

«

Wb′(E+) −

„

1

k + 1

«

Wb′(Eo) − Wb′(E−) ≥ 0

which, solving forWb′(Eo) + Wb′(E−), gives

Wb′(Fb′(k)) = Wb′(Eo) + Wb′(E−) (1)

≤ k(Wb′(E+) − Wb′(E−)) (2)

≤ k(Wc(E+) + nǫ − Wc(E−)) (3)

≤ k(Wc(Fc(k + 1)) − Wc(Fb′(k)) + nǫ)(4)

≤ k(Wc(Fc(k + 1)) − Wc(Fc(k)) + nǫ) (5)

where 3 follows from the fact that for any edgeb′i ≥ ci and for all
i ∈ E+, b′i ≤ ci + ǫ; and 5 follows from the optimality ofFc(k)
with respect toc.

In addition, it is easy to see that this bound is tight. Consider a
graph with(k + 1) parallel edges where the cost of the bottomk
edges isc and the cost of the remaining top edge isc′ > c. Let allk
lower cost edges bidc′−ǫ for a smallǫ > 0, so their bid is less than
the bid of the remaining higher cost edge (whose bid is at least c′).
The minimum pricek-flow with respect to this bid vector will use
the bottomk edges for a total price ofk(c′ − ǫ) which approaches
k(C(Fc(k + 1)) − C(Fc(k))).

Finally, we emphasize two properties of our mechanism. The
first property states that the total payment of our first pricemecha-
nism in a strongǫ-Nash equilibrium is at mostknǫ more than the
VCG payment for the same graph in a Nash equilibrium. The sec-
ond property states that the social welfare of the resultingsolution
is an additive approximation to the optimum social welfare.The
proof of Theorem 3 is deferred to an extended version of this pa-
per, due to space limitation.

THEOREM 3. Given a graphG with sourceS and sinkT , the
VCG payment fork units of flow fromS toT is at leastk(C(Fc(k+
1)) − C(Fc(k))).

THEOREM 4. In a strongǫ-Nash equilibriumb, C(Fb(k)) ≤
C(Fc(k)) + ǫn (i.e. the strongǫ-Nash equilibria of the first price
auction are approximately efficient).

4. IMPLEMENTATION IN ǫ-NASH
The simple first-price auction may have costlyǫ-Nash equilibria,

as shown in the example in Figure 2. In Section 3 we used theǫ-
strong Nash solution concept to get around this problem. However,
assuming that the bidders will reach anǫ-strong Nash equilibrium
is perhaps too strong an assumption: it requires extensive coor-
dination between agents. In this section, we present a variant of
the mechanism in which everyǫ-Nash equilibrium results in a low
price.

One idea to achieve this is to pay a bonus to edges that in-
creases as their bid decreases. This encourages edges to submit
low bids. However, this has the side-effect of incentivizing edges
to bid even below their true cost, as long as they remain off the
winning path. This would make the bargaining problem that links
must solve much more complex, as it would include bargains be-
tween off-path and on-path links. Alternatively, we could instead
send flow on each edge with some probability that increases asthe
bid decreases. Thus an edge will not bid below its true cost, but
it might be incentivized to bid very high. Using a combination of
these two ideas, we can construct a payoff function such thatan
edge will bid close to its true cost if it is not on the lowest true cost
flow. If the bonuses and probabilities are small enough, thenthese
bonus payments will not be very large, and we can prove a bound
on the total payment of the mechanism similar to that in Theorem 2.

We achieve this result by making the mechanism outcome alot-
teryover paths instead of a single path: Every edge is on a selected
path with at least a small probability, and edges off the shortest
path are given an incentive to bid their true cost. This is known as
virtual implementationin the economics literature (see,eg. Jack-
son [13]). We assume that there is a valueB such that no edge
bids more thanB. (Alternatively,B can be the maximum amount
that the buyer is willing to pay.) Further, we assume that theedges
are risk-neutral. The mechanism is given in Figure 3. The mech-
anism starts by computing a collection of paths{Pe}. We discuss
the computation of this collection in Section 4.1. The mechanism
then invites a bidbe from each edgee. The lowest-price path is
almost always picked; however, with a small probability, one of
the paths from the collection is picked instead. In addition, each



1. For each edgee, find Pe, a path froms to t throughe. Let P = {Pe}e∈G. Note that an edgee may appear in
multiple paths inP .

2. Invite bidsb = (b1, . . . , be, . . . , bn) from the edges.

3. For each pathP ∈ P , compute

σP = α − τ
X

e∈P

be

4. Select each pathP ∈ P with probabilityσP ; with probability(1 −
P

P∈P σP ), select the lowest price path. Call
the selected pathP ∗. Pay each edgee ∈ P ∗ its bid be.

5. Pay each edgee ∈ G the sumfe(b) =
P

P∈P,P∋e fP
e (b), where

fP
e (b) = α(B − be) + τbe

X

j∈P

bj − τ
b2
e

2

(This payment is in addition to any payment edgee may get in step 4.)

Figure 3: Mechanism FP2. The parametersα and τ are selected to be small positive constants such thatα < n−2B−1 and τ <
αn−1B−1.

edge is paid a small bonus that depends on the bids. The selec-
tion probability and bonus are chosen to ensure that it is optimal
for every edge, which isnot on the lowest-price path to bid its true
cost. For simplicity, we present the mechanism and analysisfor a
single unit flow; the results can easily be extended to any constant
k > 1 units of flow. First we note thatǫ-Nash equilibria exist in this
mechanism; indeed the same construction as in Theorem 1 yields
anǫ-Nash equilibrium.

LEMMA 1. For any cost vectorc and anyǫ > 0, an ǫ-Nash
equilibrium always exists.

Given existence ofǫ-Nash equilibria, we can bound the bid of the
edges not on the lowest true-cost path by examining their optimal
bid given their total payoff function (sum of bonus and expected se-
lection payoff). Note that the bonus increases as the bid decreases,
but the expected selection payment decreases as the bid decreases.
Intuitively, we design the bonus and selection probabilities so that
the total payoff function is maximized whenbi = ci. Note that if
an edge is selected, it incurs its true cost. In this way, the true cost
automatically enters his expected payoff function—the mechanism
does not need to know the cost in order to achieve the maximum at
bi = ci.

By evaluating the expected payoff of an off-path link in mecha-
nism FP2, we can show:

LEMMA 2. Let b be anǫ-Nash equilibrium bid vector in the
mechanism FP2. Then, for any edgee not on the lowest-price path
with bidsb, be ∈ [ce −

p

2ǫ/τ , ce +
p

2ǫ/τ ].

Now, we observe that the valuesα andτ can be chosen small
enough to make the probabilities{σP } and bonusesfP

e (b) arbi-
trarily small. Thus, the total payment to edges not on the shortest
path is very small. The bound on the payment of mechanism FP2
is more sensitive to the value ofǫ because edges not on the lowest-
price path get very small payments in expectation. However,we
can show that, in the limit asǫ → 0, the maximum expected pay-
ment in any Nash equilibrium is bounded by the same constant as
before.

Observing that asǫ → 0,
p

2ǫ/τ → 0, we get the following
result:

THEOREM 5. Choose anyα < n−2B−1, τ < αn−1B−1. For
these values ofα andτ ,

lim
ǫ→0

max
ǫ-NE b

{Total payments with bidsb} → C(2)−C(1)+3αn2B.

4.1 Computing the set of covering flows{Pe}

Recall that the mechanism FP2 needs to compute a set of paths
{Pe}, wherePe is a path froms to t that usese. If e is to be
relevant to the path auction, such a path must exist, however, it is
not always straightforward to compute. In particular, if the network
is a generaldirectedgraph, it is NP-hard to compute such a path,
since it reduces to the two disjoint paths problem, which is NP-
complete [10].

However, there are many interesting classes of graphs for which
it is possible to compute such a pathPe in polynomial time, includ-
ing undirected graphs and directed acyclic or planar graphs[10].
We can also modify the mechanism to ask each bidder to exhibit
such a path, thus transferring the computational burden on to the
bidders. Also, these paths may be precomputed and used in many
executions of the mechanism—they do not depend on the costs or
bids.

Another possibility is to use a set of covering paths that do not
all terminate att—this can be easily computed, even for general
directed graphs. Then, if the path is picked, some arbitrarytraffic
is sent along this path. After this ”audit” traffic has been delivered,
the lowest-price path is used for the intended traffic froms to t.
As long as the mechanism can verify that the traffic is correctly
delivered, the edges would still have an incentive to bid as specified.
Similarly, if we could verify the exact path that the traffic used, we
could use non-simple paths to cover the edges; again, a set ofnon-
simple covering paths can easily be found.

5. DISTRIBUTION ON DEMANDS
In the previous sections, we studied first-price auctions tomeet

a known demand, argued that they had stable Nash equilibria,and
showed how to adjust this mechanism so that the equilibria cho-
sen by the user had relatively small overpayments. In practice,
however, it may not be possible to defer the setting of pricesun-
til the demand is known. In this section, we examine the problem



of achieving stable prices without advance knowledge of thede-
mand. In particular, we assume that the edges know only of some
probability distributionover the possible demands.

Ideally, we would like our results for first-price auctions with
known demand to carry over. For example, we proved in Section3
that a first price auction fork units of demand led to a payment of
Pk = k[C(Fc(k + 1))−C(Fc(k))]. It is thus natural to hope that
the same mechanism operating overrandomk is also stable, with
expected paymentEk[Pk]. This turns out to be false—in fact, we
show in Section 5.1 that the simple first-price auction mechanism
described previously hasno ǫ-Nash equilibria. Intuitively, this is
because edges must tradeoff theprobability of receiving flow with
theprofit of receiving flow. With a high bid, the profit is large, but
the probability of winning the auction is low. If the other bids are
also high, an edge will prefer to lower its bid to win with a higher
probability. This will lead other edges to lower their bids so as
to restore their high winning probability. Now, however, the first
edge will increase its bid so as to increase its profit at the expense
of its winning probability, and so a cycle emerges in the bidding
strategies. So we turn to more complex mechanisms.

We exhibit a mechanism involvingtwo parameter bidsthat, un-
like the single-parameter first-price mechanism,doeshaveǫ-Nash
equilibria. Intuitively, a two-parameter mechanism gets around the
problem of a single-parameter mechanism by letting the edges ex-
press their preferences over the entire price-probabilityspace. It
allows to an edge to bid a “price” that depends on its winning
probability; this prevents the bidding cycles that occur with single-
parameter bids. Furthermore, using a indifference-breaking tech-
nique similar to that of Section 4, we are able to restrict theset
of equilibria to ones with bounded user payments. The bound is
not quite theEk[Pk] we hoped to achieve, but does bear a clear
resemblance to it.

5.1 No equilibrium with 1-parameter bidding
In this section, we analyze the scenario in which the demand

is random with a known distribution, and the bidders (links)have
to commit to a price before the demand is revealed, and there is
deterministic tie-breaking. Subsequently, the demand is revealed
to bek, and thek lowest-priced paths are picked. We show that
there is in general noǫ-Nash equilibrium in pure strategies for this
game.

Consider a graph with four parallel linksW, X, Y, and Z be-
tween the source and the sink, with true costsw, x, y, and z re-
spectively. The demand is either1, 2 or 3; for simplicity, let the
probability of each demand value be1

3
. Assign the costs such that

w + 50ǫ < x + 42ǫ = y + 12ǫ = z.

THEOREM 6. There is no pure-strategyǫ-Nash equilibrium for
this game.

The proof repeatedly uses theǫ-Nash conditions to show that, at
any bid vector, one of the following must hold: (1) There is an
agent who would gain by raising its bid, or, (2) There is an agent
who would gain by undercutting another agent to win with a higher
probability. The full proof will appear in an extended version of
this paper.

5.2 Equilibrium with 2-parameter bidding
In section 5.1, we saw that when the demand is a random vari-

able with a known distribution, a simple first-price auctionmay not
have anǫ-Nash equilibrium. In this section, we present a different
auction model, in which agents’ bids are pairs of values, andshow
that it has a nonempty set ofǫ-Nash equilibrium.

To prove that the bidding game induced by this auction has a
strongǫ-Nash equilibrium, we construct a cooperative game model

of the auction. We show that the cooperative game has a nonempty
core. We then connect the cooperative game to the actual bidding
game, and show that the path auction has anǫ-Nash equilibrium
corresponding to any core element.

The model is as follows: The demand can take any integral value
in the range[1, r], wherer is a positive integer. Further, there is a
known prior distribution on the demand values; say that the demand
is k with probabilitypk, for k = 1, 2 . . . , r. We assume for sim-
plicity thatpk > 0 for all k; our results easily extend to a situation
in which pk = 0 for some values ofk ∈ {1, . . . , r}. The agents’
bids are pairs of numbers: each agenti bids a pairã = (c̃i, ũi),
wherec̃i is interpreted asi’s reported cost, and̃ui is interpreted as
i’s demanded profit.

The mechanism receives the bids, and announces flowsF1, F2,
. . . , Fr for each possible demand value. We call the collectionF =
{F1, F2 . . . , Fr} a candidate solution or simply a flow. We also
identify a flowF with the set of links in the unionF1∪F2∪· · ·∪Fr,
and say thati ∈ F if i ∈ Fk for somek.

For eachi ∈ F , the mechanism calculates the probability thati
is in the lowest-price flow,ρi =

P

{k|i∈Fk} pk. Later, the actual
demand transpires; suppose that the demand turns out to bek. The
mechanism uses the links inFk to route the flow, and pays each link
i ∈ Fk a sum of̃ci +

ũi

ρi

. Consider any linki selected in some flow.
If c̃i = ci (i.e., if i bid its true cost), her expected profit would be
ũi. Given the input bid pairs, the mechanism selects a set of flows
F1, F2, . . . , Fr that minimizes the total expected payments. This
can be expressed in terms of solving an integer program.

As before, we useWc(F) or C(F) for short, to denote the total
expected cost of a solutionF = (F1, . . . , Fr) when the individual
link costs arec, and W̃a(F) to denote the price of the flowF when
the bids arẽa. We denote the mechanism output (i.e.,the min-price
flow) by F̂(ã).

5.2.1 The cooperative gameG
In this section, we define a cooperative game based on any spe-

cific instance of this mechanism, and prove that it has a non-empty
core. This cooperative game is introduced only for strategic analy-
sis of the mechanism. It is not explicitly played by the agents, but
helps to shed light on the agents’ strategies in the two-parameter
auction.

DEFINITION 2. Given a set of playersP , acooperative gameis
defined by acharacteristic functionv : 2P → ℜ≥0, with v(∅) = 0.
For anyS ⊆ P , v(S) is called thevalueof the setS.

Given a directed graphG with distinguished source and sink, and
a true costci for each linki ∈ G, we define the cooperative game
G as follows:

The set of players in the gameG is P = {0, 1, · · · , n}, where
eachi > 0 is the player corresponding to linki, and0 is a special
player corresponding to the customer. LetZ be the customer’s bud-
get, and assume thatZ is large enough to be irrelevant;Z > r×
cost of minimum-cost(r + 1)-flow is sufficient. For each setS ⊆
P, S 6= ∅, define the valuev(S) of S in G as follows:

If S does not contain ar-unit flow from s to t, v(S) = 0. If S
contains the customer0 as well as all edges on ak-unit flow from
the source to the sink,v(S) is defined to be the optimal value of the
linear program given below:

Defineδi,S to be the indicator ofi in S, i.e., δi,S = 0 if i /∈ S
andδi,S = 1 if i ∈ S. Also, for any nodeα in the network, we use
the notation In(α) to denote the set of incoming edges, and Out(α)



to denote the set of outgoing edges. Then,

v(S) = max
˘

Z −
Pr

k=1

ˆ

pk

P

i>0 cixik

˜¯

Subject to:
P

i∈Out(α)
xik −

P

i∈In(α) xik = 0 ∀k∀α 6= s, t
P

i∈Out(s) xik −
P

i∈In(s) xik − k = 0 ∀k

xik ≤ δi,S ∀k,∀i ≥ 0
xik ≥ 0 ∀k,∀i ≥ 0

(6)
This linear program is interpreted as follows: For any linki, and

any demand valuek, the variablexik indicates the flow alongi in
Fk. Intutitively, the value of a setS is related to the net surplus that
is created when only the agents in setS are involved in the flow. If
S does not contain the customer and ar-unit flow, v(S) is defined
to be0. Thus, only sets that contain at least one candidate solution
are assigned a positive value.

We also note that ifS = P , then the linear program has an
integral optimal solution, corresponding to an integral min-costk-
flow for eachk. In other words, there is a solution in whichxik is
either0 or 1 for all i andk. It is also clear thatv(S) ≤ v(P ) for
all S ⊆ P .

Thus, the functionv(S) defines a finite, nonnegative value for
each coalition setS, and hence it is the characteristic function of a
valid cooperative gameG.

Our analysis is centered on the concept of thecore of a coop-
erative game. Loosely speaking, the core of a cooperative game
consists of all ways to divide up the overall valuev(P ) among the
agents such that no groupS has reason to be unhappy –i.e., S
attains a combined utility of at leastv(S). Formally, the core is
defined as follows:

DEFINITION 3. A vectoru = (u0, u1, . . . , un) is in thecoreof
the gameG iff it satifies all of the following:

∀i ui ≥ 0 , and
P

i∈P ui = v(P ) , and

∀S ⊆ P
P

i∈S ui ≥ v(S).

In general, the core of a cooperative game might be the empty
set. However, we can prove that this is not the case for the gameG:

LEMMA 3. The gameG has a nonempty core.

PROOF. Consider any division ofv(P ) among the players. We
show that there is at least one such division that satisfies all the
core constraints. For any setS with v(S) = 0, the core constraint
is trivially satisfied. Now, consider a set setS with v(S) > 0.
The linear program definingv(S) can be summarized in the form
max{x · l} subject toxH = 0, xA ≤ bS , andx ≥ 0, wherex is a
vector of all the variables,H andA are matrices independent ofS,
andbS is a0-1 vector representing the capacity constraints for set
S. Then, the dual of the linear program (6) is the following linear
program:

v(S) = min
˘

bS · y
¯

Subject to:
Ay + Hz ≥ l
y ≥ 0

(7)

Now, consider the dual program that definesv(P ), i.e.,the value
of the set containing the customer and all the links. Let(ŷ, ẑ) de-
note an optimal solution to this problem. Now, defineui = b{i} · ŷ
for all i. Recall thatbS is a0-1 vector, with1s in precisely those
equations that involve somei ∈ S; thus,bS =

P

i∈S b{i}. Then,

asŷ ≥ 0, we haveui ≥ 0, and
X

i∈P

ui = bP · ŷ = v(P ).

Next, observe that for any setS ⊆ P , the solution(ŷ, ẑ) is also
feasible in the dual of the program (7) definingv(S). Thus, we
have

X

i∈S

ui = bS · ŷ ≥ v(S).

Thus, the vectoru is in the core of the gameG.

5.2.2 Existence of anǫ-Nash equilibrium
We now show that given any pointu in the core of this game,

we can perturb it slightly to get a vector of bid pairsã that is anǫ-
Nash equilibrium of the bidding game. We use the gameG to draw
conclusions about the bidding game induced by the mechanism.

THEOREM 7. Let u be any vector in the core ofG that mini-
mizes the value ofu0. Then, for anyǫ > 0, the bid profile defined
by

a−
i = (ci, u

−
i = max{0, ui −

ǫ

2n
})

for each linki is anǫ-Nash equilibrium.

PROOF. (Sketch) Supposea− is not anǫ-Nash equilibrium. Then,
there is somei such thati can change her bid to increase her payoff
by ǫ. Let (c′, u′) be i’s successful strategy, and leta′ denote the
bid profile given bya′

i = (c′, u′) anda′
j = a−

j for all j 6= i. Let

F ′ = F̂(a′); it must be the case thati ∈ F ′.
In the appendix, we show that there is a near-optimal flowF ′′

such thatF ′′ does not usei (Lemmas 5,7). More specifically,
Wa−(F ′′) ≤ Wa−(F ′) + ǫ/2. As i /∈ F ′′, we have Wa′(F ′′) =
Wa−(F ′′). However,i ∈ F ′, and so Wa′(F ′) ≥ Wa−(F ′) + ǫ.
Thus, we get Wa′(F ′) > Wa′(F ′′), which contradicts the assump-
tion thatF ′ = F̂(a′).

We are working on strengthening Theorem 7 to show that this bid
profile is indeed astrongǫ-Nash equilibrium. This seems plausible
given the results of Young [19]; however, the strategy spacein our
2-parameter game is richer than the strategy space in Young [19].

5.3 Randomized 2-parameter Auction
The mechanism presented in Section 5.2 has anǫ-Nash equilib-

rium corresponding to every core allocation, but we cannot guar-
antee that there are no otherǫ-Nash equilibria. As a result, it was
not possible to bound the total payoff to the edges. In this sec-
tion, we consider a slightly modified mechanism in which we add
a small random payment, as in Section 4. We prove that, with this
modification, it is possible to bound the total payment.

TheRandomized 2-parameter Auctionis constructed as follows.
As earlier, the edges’ bids are pairsãi = (c̃i, ũi). The mechanism
has two components:

1. The 2-parameter mechanism.This mechanism is conducted
exactly as described in Section 5.2 with parametersα, τ , and
B set as before.

2. The randomized audit. For edges on a random path source-
destination path, the payoff is based entirely on thec̃i com-
ponent of the bid, and is constructed as in Section 4. The
parametersα, τ , andB are as defined in Section 4. To sim-
plify the analysis, we assume that the randomized component
results in a payoff function of the following form: If an edge



has true costci and bids(c̃i, ũi), its expected payoff from

this component isg(c̃i) = τ [cic̃i −
c̃2

i

2
]. The exact form

of the payoff was derived in the proof of Lemma 2, and has
the same shape; the key aspect for us is that this function is
maximized at̃ci = ci.

We also need to ensure that, for all edgesi not in the winning
solution,ũi is 0 (or close to zero). We assume that the mechanism
simply rejects bid profiles that do not meet this condition. Alterna-
tively, we could impose a small tax on theũi component of the bid.
We can now prove a useful lemma, which shows thatall edges are
nearly truthful about their costs in equilibrium:

LEMMA 4. Letã = (c̃, ũ) be anǫ-Nash equilibrium of the Ran-
domized 2-parameter Auction. Then, for alli,

ci −
p

2ǫ/τ ≤ c̃i ≤ ci +
p

2ǫ/τ

Using the fact that the costs are nearly truthful, we can showthat
their utility values are nearly in the core, and hence, derive the fol-
lowing bound on the total payment.

THEOREM 8. Let ã = (c̃, ũ) be anyǫ-Nash equilibrium of the
Randomized 2-parameter Auction. LetF be a lowest-cost flow, and
let Fr+1 be a lowest-cost(r + 1)-flow. Then, the total price paid
by the customer in the randomized 2-parameter auction is at most

"

r
X

j=1

jpjC(Fr+1)

#

− rC(F) + nr
p

2ǫ/τ + 3αn2B.

The result of Theorem 8 stands in an interesting relation to that
of Theorem 2. We do not achieve the intuitively appealing bound of
the expectation of the bounds on the deterministic auction in Sec-
tion 3, i.e.,Ej [Pj ] =

Pr

j=1 jpj(C(Fj+1)−C(Fj)) (proving this
stronger bound is an interesting problem for future work). Instead
we achieve

Pr

j=1 rpj(C(Fr+1)(j/r) − C(Fj)). In other words,
the external multiplierj is replaced byr (a larger quantity), while in
the first term the quantityC(Fj+1) is replaced byC(Fr+1)(j/r),
which can also be larger because the cost ofj units of flow is a
convex function ofj. Our Theorem 8 is therefore weaker in two
important respects than Theorem 2, but it does have a similarover-
all structure.

6. CONCLUSION
The results in Section 3 show that for a fixedk-unit path auction,

the upper bound on total payments in strongǫ-equilibria is almost
the same as the lower bound on the VCG mechanism payments;
further, the bounds are the same in the limit asǫ tends to0. It is
apparent from the simple example in Section 1 and results in [2, 8]
that the VCG mechanism will often require payments considerably
higher than this lower bound (and hence, considerably higher than
the strongǫ-equilibria of the first-price auction).

In Section 5.1 and 5.2 we considered a model in which the de-
mand is a variable with a known distribution, and we need to select
pathsex ante. We showed that a simple first-price auction may not
even have anǫ-Nash equilibrium. However, we proved that a vari-
ant of the auction with2-parameter bids induces a surplus-sharing
game with a nonempty core, and that every core element can be
perturbed slightly to get anǫ-Nash equilibrium. We also proved
a bound on the total payment to links in a core allocation, which
suggests that in this domain too it may be possible to prove that the
VCG mechanism has higher expected payments.

This leads us to a comparison between first-price and VCG path
auctions similar to the comparison between the cost-sharing mech-
anisms [19]. First-price auctions entail potentially lower payments,

and have greater collusion resistance than VCG mechanisms.How-
ever, they suffer from one major drawback, in that the solution con-
cept (strongǫ-Nash equilibrium) requires agents to know all costs,
and coordinate on the choice of equilibrium. This is much more
demanding than the dominant-strategy mechanisms, which could
lead to inefficiency in practice. Thus, the auction models analyzed
here are not completely satisfying, as there is no mechanismpre-
scribed for the agents bids’ to reach equilibrium. This is true even
for the weaker concept ofǫ-Nash equilibrium.

However, the results in this paper shed new light on thefunc-
tionsof overpayment in VCG mechanisms. We can identify three
distinct functions of overpayment:

1. Cheaper paths have a competitive advantage and can thus
command a surplus.

2. The surplus paid to links eliminates the need for negotiation
between links, leading to a simple mechanism without delays
or expensive reasoning.

3. The surplus eliminates the externalities of one agent’s strat-
egy on other agents, leading to a mechanism that is fair in
the sense that uninformed agents can do as well as informed
agents.

The first source of overpayment is common to the first-price auction
and the VCG mechanism. However, our results show that for path
auctions, the VCG mechanism often winds up paying a premium
for functions 2 and 3. (In contrast, for single-item auctions, the
first-price auction always pays as much in the worst case as the
VCG mechanism.)

This premium can be viewed as the “cost of implementation”
of the dominant-strategy mechanism, particularly in situations in
which this form of fairness is not compelling. We believe that a
promising direction for future research is to find bargaining mech-
anisms to enable the bidders to converge to an equilibrium. When
the edges all know each others’ costs, ann-party bargaining pro-
tocol, such as the one in [15], could be used; when there is uncer-
tainty, the situation is more complex. Such a mechanism may be
subsidized; for example, the links may be given an additional pay-
ment that decays with time, to incentivize them to quickly reach an
agreement. As long as the subsidy is smaller than the VCG pre-
mium, it may be a better alternative.
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8. APPENDIX

8.1 Proof of Lemma 2

PROOF. With the bid vectorb, e’s expected payoff is

fe(b) +
X

P∋e

σP (be − ce) =
X

P∋e

[fP
e (b) + σP (be − ce)]

=
X

P∋e

[αB − τ
b2
e

2
+ τci

X

j∈P

bj − αce]

Let g(be) = [α(B − ce)− τ
b2
e

2
+ τce

P

j∈P bj ]. Then,g(be) is

a quadratic function ofbe. Observe that∂g(be)
∂be

= −τbe + τce = 0

whenbe = ce; at this point,∂2g(be)

∂2be
= −τ < 0. This is true for

all pathsP containinge, and thus,be = ce is the optimal bid for

playere. Further, for∆ > 0,

g(ce) − g(ce + ∆) = τce∆ + τ∆2/2 − τce∆ = τ∆2/2

Similarly, g(ce)− g(ce −∆) = τ∆2/2. Thus, by the condition of
ǫ-Nash equilibrium,∆ ≤

p

2ǫ/τ .

8.2 Proof of Lemma 1

PROOF. Construct a bid vectorb as in Theorem 1. By this con-
struction we havebe = ce for any edgee that is not on the lowest-
price path. Then, following the analysis ofg(be) expected payoff
in Lemma 2,be maximizese’s payoff. (Note thate can only get
onto the lowest-price path by bidding below its cost, which would
result in a loss.)

It remains to show that every edgei on the lowest-price path
would not significantly benefit by changing it’s bid. Note that if
i increased its bid by more thanǫ/2, it would no longer be on the
lowest-price path. Further, because of the shape of the bonus payoff
function, i’s expected gainsg(be) from the bonus and probability
of off-path selection would also drop. Thus,i cannot possibly gain
more thanǫ by raising its bid.

Finally, consider the possibility thati lowers its bid byx. Then,
i would still be on the lowest-price path. It would lose at least
(1 − nα)x in profits from being on the lowest-price path, and gain
at mostrBx in ge(be); thus, it could not gain overall.

8.3 Proof of Theorem 5

PROOF. Let b be anǫ-Nash equilibrium bid vector, for suffi-
ciently smallǫ. The total probability that the mechanism picks a
path other than the lowest-price path is bounded bynα. Any such
path can have at mostn edges on it, each with price at mostB.
Thus, the expected payment for using one of these paths is at most
αn2B.

Similarly, we can bound the bonusfe(b) paid to any edgee:
fe(b) ≤ n[αB + τnB2]. This is always less than2αnB.

Finally, using Lemma 2, we know that any edge not on the lowest-
price path bids at mostce +

p

2ǫ/τ . Combining this with a similar
argument to Theorem 2, we can bound the total payment to edges
on the lowest-price path by

Wb(F (1)) ≤ C(2) − C(1) + n
p

2ǫ/τ

In the limit asǫ → 0, the last term is negligible. Adding up all
three sources of payment, we get the required result.

8.4 Proofs for the 2-parameter mechanism

8.4.1 Positive payoffs in the core

LEMMA 5. Let F be a lowest-cost solution, andFr+1 be a
lowest-cost(r + 1)-flow. For any vectoru in the core ofG, we
haveu0 > Z − [C(F ′

r+1)
Pr

j=1 jpj − rC(F)].

PROOF. Let F be a minimum-cost flow. Then,v(P ) = Z −
C(F), and hence, by the core condition,

P

i∈P ui = Z − C(F).
Consider a lowest-cost integral(r+1)-flow Fr+1. Then,Fr+1 con-
sists of(r + 1) disjoint paths froms to t; call themP1, · · · , Pr+1.
For eachk ∈ {1, 2, · · · , r, r + 1}, defineF−k

r = Fr+1\Pk, i.e.,
, ther-flow obtained by dropping thekth path. ExtendF−k

r to a
collection of flowsF−k = (F−k

1 , F−k
2 , · · · , F−k

r ), whereF−k
j

consists of thej lowest-priced paths inF−k
r . Then, asF−k can



meet the demand, we have:v(F−k ∪ {0}) ≥ Z − C(F−k). Fur-
ther, noting thatF−k

j has cost at mostj
r

that ofF−k
r , we get:

C(F−k) ≤ C(F−k
r )

r
X

j=1

pj
j

r

Further, asu is in the core, we haveu0+
P

i∈F−k ui ≥ v(F−k∪
{0}). Now, adding over allk, we get:

r+1
X

k=1

v(F−k ∪ {0}) ≥
r+1
X

k=1

h

Z − C(F−k)
i

r+1
X

k=1

v(F−k ∪ {0}) ≥ (r + 1)Z −
r+1
X

k=1

"

C(F−k
r )

r
X

j=1

pj
j

r

#

Note that the left hand side includes each element ofFr+1 exactly
r times. Similarly, the flowsF−k

r in the right hand side coverFr+1

exactlyr times. Thus,

(r + 1)u0 + r
X

i∈Fr+1

ui ≥ (r + 1)Z − rC(Fr+1)

r
X

j=1

pj
j

r

Noting that
P

i∈Fr+1
ui ≤

P

i∈P ui = Z − C(F), we get:

u0 + r(Z − C(F)) ≥ (r + 1)Z − C(Fr+1)
r

X

j=1

jpj

u0 ≥ Z − [C(Fr+1)
r

X

j=1

jpj − rC(F)]

LEMMA 6. Given a network and a cost vectorc, and some ele-
mentu in the core ofG, define the bid profilẽa by

ãi = (ci, ui) ∀i > 0

Then, the lowest-price flow output by the mechanism with input ã
has a total price ofZ−u0. Further, any minimum-cost flowF is an
optimal (minimum-price) flow, and includes all linksi with ui > 0.

PROOF. First, letF be an optimal integral solution to the lin-
ear program definingv(P ). Then, an examination of the objective
function of LP 6 shows thatC(F) = Z − v(P ) = Z −

Pn

i=0 ui

Now,

Wã(F) ≤ C(F) +
n

X

i=1

ui = Z − u0 (8)

We now show that this is also a lower bound on the cost. Suppose
there was some flowF ′ such that W̃a(F ′) < Z−u0. It follows that
C(F ′) < Z − u0 −

P

i∈F′ ui. Now, consider the linear program
determining the value of the coalitionS = F ′ ∪ {0}. The flowF ′

is a feasible solution for this set, and hence

v(S) ≥ Z − C(F ′) > u0 +
X

i∈F′

ui =
X

i∈S

ui

But this contradicts the assumption thatu is in the core ofG. Hence
every flow (includingF) has price at leastZ−u0. Thus, W̃a(F) =
Z − u0 andF includes alli such thatui > 0.

8.4.2 Optimal flow without using playeri

LEMMA 7. Letu be a vector in the core ofG that minimizes the
value ofu0, and define the bid vector̃a by ãi = (ci, ui) ∀i > 0.
Then, ifu0 > 0, for anyi there is a flowF(i) such that W̃a(F(i)) =

Wã(F̂(ã)), i.e.,F(i) is an optimal solution.

PROOF. Let F = F̂(ã). Assume there is ani such that the
statement is not true. LetF(i) be the lowest-price flow that does
not includei, and assume that W̃a(F(i)) = D > Wã(F) + δ for
someδ > 0. Define a vectoru′ by u′

0 = u0 − δ, u′
i = ui + δ,

andu′
j = uj∀j 6= 0, i. We now claim thatu′ is in the core. If not,

there would be some setS such thatv(S) >
P

j∈S u′
j . We must

have0 ∈ S, or elsev(S) would be0. Similarly, S must contain
a k-flow, or else it’s value would be0. It follows that i /∈ S, or
else we would have

P

j∈S u′
j =

P

j∈S uj ≥ v(S). LetF ′′ be the
lowest-cost flow inS. Then,v(S) = Z − Wc(F

′′) and so we get

0 < v(S) −
P

i∈S u′
i = Z − Wc(F

′′) −
X

j∈S

uj + δ

0 < Z − u0 + δ − Wã(F ′′) < Z − u0 − Wã(F)

But, using Lemma 6,Z − u0 − Wa(F) = 0 becauseF is a
minimum-price flow with bidsã, and so this is a contradiction.
Thus,u′ must be in the core; but this contradicts the assumption
thatu is an element of the core that minimizedu0.

8.4.3 Proof of Lemma 4

PROOF. We argue that playeri can always do better by bidding
his true cost; the bounds follow from theǫ-Nash equilibrium con-
dition and the expected-payoff graph of the randomized pathaudit.
Let ρi be the probability ofi being included in the lowest price
solution in theǫ-Nash equilibrium̃a. If ρi = 0, theni’s entire ex-
pected payoff is due to her expectation of winning in the random-
ized path audit, and the bounds onc̃i follow directly. The same
argument holds ifρi > 0 but i receives a negative expected payoff
from the 2-parameter auction (because her bidc̃i was too low).

Now, supposeρi > 0, and, further,i receives a positive payoff
from the2-parameter auction in theǫ-Nash equilibrium. Consider
the strategya′

i = (ci, u
′
i) with u′

i = ũi + ρi[c̃i − ci]. (i received a
non-negative profit under̃a, so it follows thatu′

i is non-negative.)
Let F be the solution chosen in the 2-parameter part of the mech-
anism when the bids arẽa. Note that if i were to deviate from
ãi to a′

i, the price ofF would not change: the change in the utility
component would exactly cancel the change in the cost component.
Also, for any other flowF ′ that did not usei, the price ofF ′ would
not change withi’s deviation; thus, using the consistency of the
tie-breaking rule,F ′ would not be chosen aboveF . Thus, we con-
clude thati remains in the winning solution (which need not beF)
under the bidsa′

i.
Next, observe thati’s expected payoff from the2-parameter auc-

tion (with bid a′
i) is u′

i, becausei bids her cost truthfully and is
in the winning solution. This is exactly the same asi’s payoff
ρi[c̃i − ci] + ũi from the2-parameter auction in theǫ-Nash equi-
librium ã.

To prove the bounds oñci, we comparei’s payoff from the ran-
domized part of the mechanism with bidsãi anda′

i. The bounds
follow directly from the form of the randomized audit payoffs.


