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ABSTRACT

We study first-price auction mechanisms for auctioning flaw b
tween given nodes in a graph. fikst-price auctionis any auc-
tion in which links on winning paths are paid their bid amqunt
the designer has flexibility in specifying remaining detalVe as-
sume edges are independent agents with fixed capacitieoats] ¢
and their objective is to maximize their profit. We characzeall
stronge-Nash equilibriaof a first-price auction, and show that the
total payment is never significantly more than, and oftes than,
the well known dominant strategy Vickrey-Clark-Groves meec
nism. We then present a randomized version of the first-aiice
tion for which the equilibrium condition can be relaxedetdlash
equilibrium. We next consider a model in which the amountesf d
mand is uncertain, but its probability distribution is kmawFor this
model, we show that a simpkx antefirst-price auction may not
have any-Nash equilibria. We then present a modified mechanism
with 2-parameter bids which does haveaNash equilibrium.
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General Terms
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In this paper, we study variants of thath auctiorproblem. The
basic problem can be described as follows: We are given atdite
graphG with two distinguished vertices and¢. Each link in the
graph is a self-interested agent whom we assume to be rigkahe
All links have capacityl, but each linki also has a cost; that is
known only to the link itself. A customer wants to bliyor more
generally, some integédr) paths froms to ¢. For this, she holds an
auction in which each link can bid; the auction should endhhe
customer announcing a path, as well as the payments to e#ch li
The questions we are chiefly concerned with are: (1) Whates th
form of bids, and how are the path and payments selected?o(2) H
much does the customer end up paying, given that the links &av
informational advantage (the customer does not know teelitnic
costs)?

Previous work on path auctions has studied the Vickreykglar
Groves (VCG) mechanism [17, 12, 9, 2, 8]. Roughly speaking,
the VCG mechanism pays each edge on a winning path an amount
equal to the highest bid with which it could still have worl,aher
bids being unchanged. The VCG mechanism has the attractive
property that each link’s dominant strategy is to bid exgit$l cost.
Thus, no bargaining or communication between bidders isired|
to stabilize on bids. Also the buyer does end up using the iath
lowest true cost, which can be seen as optimizing sociatyutil

On the negative side, the VCG mechanism can lead to the cus-
tomer paying far more than the true cost of the cheapest path.
tendency to overpay is exaggerated in path auctions (asaehp
to simple auctions) because a bonus needs to be paid to ey a
on the path. Thus, the payment to the lowest-cost path may eve
greatly exceed the cost of the second-cheapest path. Fopéxa
in Figure 1, VCG selects the bottom path and paye it, even
though the alternate path has c8stArcher and Tardos showed
that a more general class of dominant strategy mechanismiseca
forced to make arbitrarily high overpayments [2]. Theiulesvas
strengthened to hold for every truthful mechanism by ElkBahai
and Steiglitz [8].

1 1

()
N\

Figure 1. Any e-Nash equilibrium selects the lower path and
pays3 — e while VCG pays 4 for it.

In this paper, we are interested in finding techniques toirein



the cost to the consumer, even when the information is caeiple
asymmetric—the links know the customer’s valuation, betc¢hs-
tomer does not know the links’ valuation. If we restrict aives
to dominant-strategy mechanisms, we cannot hope to da kiedie
the VCG mechanism. In this paper, we instead consider \gr@m
first-price auctions and less restrictive solution concepts.

First-price auctions open the possibility of paying lessitCG
auctions, but they do so by sacrificing valuable propertfethe
VCG mechanism. In particular, in a first-price auction, &-is
neutral edge may have incentive to lie, bidding a price highan
its cost. Also, in the absence of a dominant strategy, it neayez-
essary for bidders to communicate and bargain to achievabest
set of bids.

1.1 Our Results

We begin by exploring the sets of bids that are stable under a

first-price auction mechanism. The most natural solutiamcept

is that of a Nash equilibrium. We want to retain the propeligt t
agents can see each others’ bids, so that the bidding coyldrbe
formed through posted prices. Thus, mixed-strategy ddialiare
not very meaningful for us. Unfortunately, we will not nesasly
have a Nash Equilibrium in pure strategies, as the follovgingple
example shows. Consider a network of two parallel links, ohe
cost 2 and another of cost 1. Also assume that ties are braken d
terministically by assigning the flow to the link with costI®.this
case, the lower-cost edge would bid less than 2; howevegrfpr
bid 2 — ¢, it could always do better by increasing its bid by a further
€/2. Hence there is no pure Nash equilibrium in this case.

This motivates us to use the solution concept-dfash equilib-
rium, in which no player can deviate in a way that improves his
payoff by at least. Unfortunately, there is a drawback to this so-
lution concept as well. In Figure 2, we see that the winninth pa
may have a price higher than the cost of the best competitis T
defeats our goal of reducing customer overpayment. We naight
gue that this solution would not be sustained in practiggesthe
edges on the second lowest-cost path are likely to eacheetair
price. This leads us to explore, in Section 3, the concepstibag
e-Nash equilibrium, in which there is rgroup of agents who can
deviate in a way that improves the payoff of each member by at
leaste. We prove that a strongNash equilibrium always exists for
anye > 0. We then prove an upper bound on the payment of any
such equilibrium and show that the payment is essentiatiynuoe
that of the corresponding VCG payment, and often it is mush le
as shown by Figure 1.

Although stronge-Nash equilibria may solve some of the over-

payment problem, we cannot guarantee that bidders wilhreae.
In particular, in the absence of knowledge about other bildests,
neither losing bidder in the example of Figure 2 may be wdllin
“blink first” and lower the price. Thus, in Section 4, we prasa
modified, randomized, first-price auction that explicitiyves the
first-price auction towards a stromgNash equilibrium.

Another drawback of first-price auctions is that, unlike ¥@G

first-price mechanism involvingyvo-parametebids thatdoeshave
ane-Nash equilibrium. We then sketch a mechanism that combines
this two-parameter mechanism with the randomized mecimois
Section 4. For this combined mechanism, we can charactéwze
set of alle-Nash equilibria, and thereby prove a bound on the total
payment in any-Nash equilibrium.

In order to maintain continuity, most proofs have been daetér
to the Appendix.

(27PN L7

Figure 2: Costs (left) and Prices (right) in ane-Nash equilib-
rium. The bottom edge wins and the price is higher than the
cost of the second best path.

1.2 Related Work

Path auctions are an instance of the more general class ef com
binatorial auctions, in which buyers bid for different eations of
goods. In path auctions, sellers (in our case, graph edges$p b
attract consumer flow and consumers seek to buy a path of edges
of lowest price between a specified source and destinatiodirig
the winners in general combinatorial auctions is NP-haid [,
for this reason researchers often add restricting assangpsuch
as symmetric bidders, etc. Path auctions provide one sogbiesi
structured form of combinatorial auctions, which arisesiraly
in network routing and more generally in any problems with an
underlying network structure, such as task allocation & of
agents.

Our work is also related to the literature on strong Nash and
stronge-Nash implementation of the core. In particular, the deter-
ministic first-price path auction we consider is similarhe game
introduced by Young [19] in the context of cost-sharing. Ho
random demand path auction introduced in section 5.2, we use
techniques based on Curiel [5] to show the existence of the. co
We also note that Kalaét al. [14] presented a strong Nash imple-
mentation of the core of any cooperative game. We could have
used this implementation in place of tReparameter auction in
Section 5.2; however, the method in [14] is more complex and
communication-intensive, and in our case it would esskytia-
quire each bidder to report an entire flow.

There has also been some previous work on non-dominant strat
egy mechanisms for path auctions. Elkiedal. [8] present and
analyze an optimal Bayes-Nash mechanism. @am. [7] study
use the core concept from cooperative game theory to bound th
payments of VCG mechanisms for a large class of problems that

(e.g., if demand is high, an edge can bid higher and still o
needed). Itis unreasonable to expect edges to delay sptizes

nism which combines dominant and non-dominant strategyhmec
anisms, however they show that it has an arbitrary ratio &etw

until demands are made clear. Thus, in Section 5 we consider athe payment of different equilibria and say that overalipdfhg a

model in which bidders set prices according talistribution of
possible demands. We show that, in this model, a simplefiise
auction may not have anNash equilibrium. However, we design a

1By “first-price auction” we refer to any auction in which thieks
on the winning path (or paths) are paid their bid amount. Tée d
signer still has considerable flexibility in designing thetalls of
the auction mechanism.

natural and tractable measure of [non-dominant strateggbpols
seems challenging and important.”

2. PROBLEM STATEMENT

In the path auction gamethere is a network: of strategic links,
each with a privately-known true cost. All links have unipeaity.
A customer wants to buy routes from a sousc® a sink¢ in the



network to guarantee that her integral amount of deniandn be
routed. In order to do this, she defines a set of ruleme&chanism
that elicits bids from each agent and then allocates flow th ea
agent in a way that satisfies some natural incentive pregserti

One plausible mechanism for this problem is the VickreyriGla
Groves (VCG) mechanism [18, 4, 11]. This mechanisrmughful
dominant strateggr strategyproofi.e. the strategically best bid for
an agent is his true cost, independent of others’ bids. Theibids
solicited by the mechanism are in fact the true cost of theage
in an equilibrium. This enables the mechanism to allocat flo
to the lowesttrue costk-flow, a socially desirable goal in many
settings. However, in order to guarantee that this allocatule
is truthful dominant strategy, the mechanism must pay asfpbs
large) premium to all edges on the seleckefiow. One side effect
of dominant strategies is that all bargaining between tregesiic
agents (links, in our case) is eliminated, and the overpayne
edges on the selectéeflow in the VCG mechanism can be thought
of as a side-effect of this fact.

We analyze approaches to reducing the total payment by asing
weaker solution concept of a pure strategy equilibrium stineng
e-Nash equilibriumfirst introduced by Aumann [3] and used by
Young [19].

DEFINITION 1. An e-Nash equilibriumfor a game is a set of
strategies, one for each player, such that no player caratenially
deviate in a way that improves her payoff by at least

A stronge-Nash equilibriunfor a game is a set of strategies, one
for each player, such that no group of players can deviatewag
that improves the payoff of each member by at least

In particular, we show that in our models, for any straniyash
equilibrium set of bids, there is another stranjash equilibrium
set of bids with the same allocation and payment scheme iohwhi
each agent bids withiaof his true cost unless he is allocated flow
(in expectation), and he never bids below his true cost.

Our mechanism is a simple first-price auction. It elicitssficom
each agent, computes the cheapeffow according to the bids, and
then allocates the demand to thaflow. We further assume that we
have a deterministic tie-breaking rule so that if there isertban
one cheapest-flow, we take the lexographically first integral one.

We consider two specific path auction games. Indéterminis-
tic path auction gamehe user first announcés his total demand.
Then the edges announce bids and the user runs a first priberauc
to buy the necessary flow. Itis easy to imagine that the asonsp
of this model might be unrealistic in practice. Does a usallye
know his total demand at the time he begins the auction? In our
second model, theandom path auction gaméhe user announces
a probability distribution ork. Then the edges announce bids. Fi-
nally, the user draws according to this distribution and buys flow
accordingly. In the rest of this paper, we analyze upper aneil
bounds on the overpayments in strealyash equilibria for each of
these games.

Notation: For a graphG, let c be the vector of edge costb,
be the vector of edge bids, add, (k, G) be the set of edges in
the minimum weight integrak-flow? in G with respect to edge
weightsw (if there is more than one minimum weightflow in
G with respect tow, let Fi (k, G) denote the set of edges in the
unique k-flow that wins the deterministic tie-breaking rule of the
mechanism). We will refer td.(k, G) as the minimum cosk-
flow and Fy, (k, G) as the minimum pricé-flow with respect to bid

2The weight of this flow is equal to the weight of the minimum
weight k-flow, i.e., requiring integrality doesn’t change the value
of the optimal solution.

vectorb. Finally, for any flow or edge sef’, we definelV., (F)

to be the weight off’ with respect to edge weights. We say
We(F) is the cost of flowF' andW (F') to be the price of flowr’
with respect to bid vectds. When the bids, costs, or graph is clear
from the context, we will sometimes drop them from the notati
As a shorthand, we sometimes wri{t§ F') instead ofiW.(F'), as
well asC/(k) for the (cost of the) lowest codtflow. Finally, we
denote the number of agents, or edge&jrby n.

3. DETERMINISTIC PATH AUCTION GAME

Recall that in thedeterministic path auction gamghe user first
announceg, his total demand. Then the edges announce bids and
the user runs a first price auction to buy the necessary flow. We
would like to analyze the payment properties of this medmani
First, we prove that this mechanism has a stresdash equilib-
rium.

THEOREM 1. Any deterministic-unit first price auction has a
stronge-Nash equilibrium.

PROOF We construct a strong-Nash equilibrium as follows.
Set the initial bid vectob! = c, i.e. each edge bids its true cost
initially. Order the edges in the graph in an arbitrary wayr F
each edge: in this order, ife is part of the current lowest price
k-unit flow Fy, (k, G), let e raise its bid untilWy, (Fy (k, G)) >
Wi (Fo(k,G — {e})) — ¢/2 (whereG — {e} denotes the graph
G with edgee removed). Otherwise lets bid remain unchanged.
Call the final bid vectob.

We claimbf is a strong:-Nash equilibrium for the deterministic

k-unit first price auction. To show this, suppose the confriagy,
there is a coalitiors of edges in which each edge can improve its
payoff by at least by changing its bid. Note that for any bid vector
constructed during this process, the auction always selleetsame
k-flow. Therefore, the edges which are not on the winning flow in
bf are bidding their true cost and cannot bid lower. Furtheenor
the edges which are on the winning flow will get smaller payfoff
they decrease their bid. Therefore no edge can benefit froverio
ing its bid. Thus, the edges in the coalitiShcan only raise their
bids. Suppose the edgesSm Fi ¢ increase their bids by a total of
2 units and the remaining edges in the coalition increase Ites
by a total ofy units (notex,y > 0). Call the new bid vectob.
In order for all edges ir$ to increase their payoffy’ C Fy. Thus
W (Fye) = Wy (Fye) + @ while Wy (Fp) = Wye (Fb) + 2 + v.
But thenWy (Fp) > Wh(Fye) sinceWye (Fye) < Wye(Fp) by
optimality of Fi¢. This contradicts the optimality df,. [

Given the existence of strongNash equilibria, we can bound
the payments in any such equilibrium. In order to developesom
intuition for the proof, it is useful to first consider sengih unit
of flow in a graph consisting of just two parallel edges frore th
sources to the sinkt of costsa andb, a > b + e. The lower true
cost edge must be allocated the flow in equilibrium since hebid
just under the true cost of the higher cost edge and be gesdat
profit of at leask. Therefore, by the conditions of a stroadNash
equilibrium, we can assume that the bid of the higher cose éslg
at moste more than his true cost, and so the overpayment of any
equilibrium will be at most: 4 ¢ —b. The crux of this argument was
to bound the bid of the winning path by the bid of an augmenting
path. Since the augmenting path does not receive flow, welcoul
show that without loss of generality the bid of this path dtdae
close to its true cost. This proof idea easily extendg-ftows in
general graphs as can be seen below.



THEOREM 2. The total payment of the deterministieunit first
price auction in a strong-Nash equilibrium is at most

k[C(Fe(k + 1)) — C(Fe(k))] + kne,
wherec is the vector of true edge costs.

PROOF Fix a stronge-Nash equilibrium vector of bide and
define edge sets

Ey = {e€Fu(k+1)— Fo(k)}
B, = {e€ Fe(k+1)nFo(k)}
E- = {e€ Fy(k)— Fo(k+1)}

E. is the subset of edges on an augmenting path that are not in the,

original flow Fy, (k). We show that without loss of generality we
may assume that these edges are bidding close to their sti€lco
show this, consider a bid vectbf such that

min{b;, ¢; + €}

/_

We want to argue that,, (Fy (k) = Ws(Fb(k)). First we show
Fy(k) = Fy (k). Suppose not. LeE’, = E. N Fy, (k) be the set

of edges in the new lowest price flow that are alsdin. We have
only changed the bids of the edgesAn, so if E’, is empty then

Fy, (k) = Fy (k) (this assumes some consistency properties of the
tie-breaking rule). IfE’, is nonempty, then we can consider a bid
vectorb” constructed fronb in which we only decrease bids of
edges inF’, :

b;':{

Since by our assumption the winning flow has changed, we must
haveb; = ¢; + ¢ < b; for a non-empty subsef’ of E/.. Un-
der this new bid vectoriWy (F) > Wy (F) for any flow F
sinceb; < by for all edgesi. By construction Wy, (Fy/ (k))
Wy (Fyw (k)) and so, by the consistency of the tie-breaking rule,
Fy/ (k) = Fyr (k). Thus, under the bid vectds the set of edges
E! can form a coalition in which each member bidabove its
true cost and all members profit ly This contradicts the fact the
b was a strong-Nash equilibrium.

Now, noting thatVy, (Fy (k) = Wy (Fb(k)) = W (Fb(k)),
it suffices to boundVy, (Fy (k)). Consider the (non-integral) flow
(k/(k+1))Fe(k+1),i.e. the flow which sends/(k + 1) units of
flow along the flow paths determined B%(k + 1). SinceFy (k)
is a lowest pricé:-flow,

(

This reduces to

( i )Wb/(E+)_<k+1

which, solving foriy, (E,) + Wy (E-), gives

fori € E4,
fori & E.

min{bi, ci + E}
b;

fori e EY,
fori ¢ E,.

b+ 1) Wb’(Fc(k + 1)) - Wb/(Fb/(k)) > 0.

1
(L) — H(E_) >
s ) oo () = W (B-) 2 0

Wy (Fyr (k) = Wy (Eo) + Wy (E-) 1)
k(W (Ey) = Wi (E-)) 2
k(We(Ey) +ne — We(E-)) 3)

k(We(Fe(k +1)) — We(Fiy (k) + ne)4)
k(We(Fe(k + 1)) — We(Fe(k)) 4 ne) (5)
where 3 follows from the fact that for any edge> ¢; and for all

i € By, b < ¢ + ¢ and 5 follows from the optimality of . (k)
with respect tac. [

INININ TN

In addition, it is easy to see that this bound is tight. Comsal
graph with(k + 1) parallel edges where the cost of the bottbm
edges is and the cost of the remaining top edge’is> c. Letall k
lower cost edges bid — e for a smalle > 0, so their bid is less than
the bid of the remaining higher cost edge (whose bid is at i€ps
The minimum pricek-flow with respect to this bid vector will use
the bottomk edges for a total price df(¢’ — ¢) which approaches
k(C(Fe(k+1)) — C(Fc(k))).

Finally, we emphasize two properties of our mechanism. The
first property states that the total payment of our first pneeha-
nism in a strong:--Nash equilibrium is at mogtne more than the
VCG payment for the same graph in a Nash equilibrium. The sec-
ond property states that the social welfare of the resuftoigtion
is an additive approximation to the optimum social welfaide
proof of Theorem 3 is deferred to an extended version of tais p
per, due to space limitation.

THEOREM 3. Given a graphG with sourceS and sinkT', the
VCG payment fok units of flow fromS to 7' is at leastk(C'( Fe (k+
1)) = C(Fe(K)))-

THEOREM 4. In a stronge-Nash equilibriumb, C(Fy (k) <
C(Fc(k)) + en (i.e. the strong:-Nash equilibria of the first price
auction are approximately efficient).

4. IMPLEMENTATION IN «NASH

The simple first-price auction may have costlilash equilibria,
as shown in the example in Figure 2. In Section 3 we used-the
strong Nash solution concept to get around this problem. évew
assuming that the bidders will reach astrong Nash equilibrium
is perhaps too strong an assumption: it requires extensive ¢
dination between agents. In this section, we present antaoia
the mechanism in which everyNash equilibrium results in a low
price.

One idea to achieve this is to pay a bonus to edges that in-
creases as their bid decreases. This encourages edgegrtid sub
low bids. However, this has the side-effect of incentiviggdges
to bid even below their true cost, as long as they remain @ff th
winning path. This would make the bargaining problem thaltdi
must solve much more complex, as it would include bargains be
tween off-path and on-path links. Alternatively, we coutdtead
send flow on each edge with some probability that increastseas
bid decreases. Thus an edge will not bid below its true cast, b
it might be incentivized to bid very high. Using a combinatiof
these two ideas, we can construct a payoff function suchahat
edge will bid close to its true cost if it is not on the lowestgrcost
flow. If the bonuses and probabilities are small enough, these
bonus payments will not be very large, and we can prove a bound
on the total payment of the mechanism similar to that in Taeo2.

We achieve this result by making the mechanism outcoihogé a
tery over paths instead of a single path: Every edge is on a sdlecte
path with at least a small probability, and edges off the t&sbr
path are given an incentive to bid their true cost. This isskkmas
virtual implementatiorin the economics literature (seeg. Jack-
son [13]). We assume that there is a valBesuch that no edge
bids more tharmB. (Alternatively, B can be the maximum amount
that the buyer is willing to pay.) Further, we assume thakiihges
are risk-neutral. The mechanism is given in Figure 3. Thelmec
anism starts by computing a collection of pa{tiz }. We discuss
the computation of this collection in Section 4.1. The medi$a
then invites a bicb. from each edge. The lowest-price path is
almost always picked; however, with a small probabilitye af
the paths from the collection is picked instead. In addijtieach



. Select each patR € P with probability o »; with probability (1 — 3~ .. opr), select the lowest price path. Cpl

1. For each edge, find P., a path froms to ¢ throughe.

multiple paths irP.
2. Invite bidsb = (b1, ..., be,...,b,) from the edges.
3. For each patl® € P, compute

op=Qa—T Z be
ecP

4

the selected patF*. Pay each edge € P* its bid b..
5. Pay each edge€ G the sumfe(b) = > pcp ps, fE(»), where

fE®) =a(B - b.)
(This payment is in addition to any payment edg®ay get in step 4.)

Let P = {P.}ecc. Note that an edge may appear in

2
-‘rTbeij—T%

JEP

Figure 3: Mechanism FP2. The parametersy and 7 are selected to be small positive constants such that < n 2B~ ! and r <

an~ !B~

edge is paid a small bonus that depends on the bids. The selec- THEOREM 5. Choose anyx < n 2B~ 7 < an ' B~!. For

tion probability and bonus are chosen to ensure that it isnabt
for every edge, which iaoton the lowest-price path to bid its true
cost. For simplicity, we present the mechanism and anafgsia
single unit flow; the results can easily be extended to angteon

k > 1 units of flow. First we note thatNash equilibria exist in this
mechanism; indeed the same construction as in Theoremdsyiel
ane-Nash equilibrium.

LEMMA 1. For any cost vectok and anye > 0, ane-Nash
equilibrium always exists.

Given existence of-Nash equilibria, we can bound the bid of the
edges not on the lowest true-cost path by examining theimapt
bid given their total payoff function (sum of bonus and expdce-
lection payoff). Note that the bonus increases as the bitkdses,
but the expected selection payment decreases as the bahdesr
Intuitively, we design the bonus and selection probab#itso that
the total payoff function is maximized whén = ¢;. Note that if
an edge is selected, it incurs its true cost. In this way, rine ¢ost
automatically enters his expected payoff function—the metsm
does not need to know the cost in order to achieve the maxintum a
bi = Cj.

By evaluating the expected payoff of an off-path link in m&ch
nism FP2, we can show:

LEMMA 2. Letb be ane-Nash equilibrium bid vector in the
mechanism FP2. Then, for any edgroton the lowest-price path
with bidsb, be € [ce — \/2¢/T,ce + \/2¢/T].

Now, we observe that the valuesand~ can be chosen small
enough to make the probabilitigs » } and bonuseg? (b) arbi-
trarily small. Thus, the total payment to edges not on thetekb

path is very small. The bound on the payment of mechanism FP2

is more sensitive to the value ebecause edges not on the lowest-
price path get very small payments in expectation. Howewer,
can show that, in the limit as — 0, the maximum expected pay-
ment in any Nash equilibrium is bounded by the same constant a
before.

Observing that as — 0, \/2¢/7 — 0, we get the following
result:

these values af andr,

lim max {Total payments with bidb} — C(2)-C(1)+3an’B.

e—0e-N

4.1 Computing the set of covering flowsr.}

Recall that the mechanism FP2 needs to compute a set of paths
{P.}, whereP. is a path froms to ¢ that uses. If e is to be
relevant to the path auction, such a path must exist, howa\sr
not always straightforward to compute. In particular, & tietwork
is a generatlirectedgraph, it is NP-hard to compute such a path,
since it reduces to the two disjoint paths problem, which B N
complete [10].

However, there are many interesting classes of graphs fimhwh
itis possible to compute such a pdthin polynomial time, includ-
ing undirected graphs and directed acyclic or planar gr§bdlk
We can also modify the mechanism to ask each bidder to exhibit
such a path, thus transferring the computational burdero dhet
bidders. Also, these paths may be precomputed and used y man
executions of the mechanism—they do not depend on the costs o
bids.

Another possibility is to use a set of covering paths that db n
all terminate at—this can be easily computed, even for general
directed graphs. Then, if the path is picked, some arbitiraffic
is sent along this path. After this "audit” traffic has beefivdzed,
the lowest-price path is used for the intended traffic frono ¢.

As long as the mechanism can verify that the traffic is colyect
delivered, the edges would still have an incentive to bigasiied.
Similarly, if we could verify the exact path that the traffisad, we
could use non-simple paths to cover the edges; again, a senef
simple covering paths can easily be found.

5. DISTRIBUTION ON DEMANDS

In the previous sections, we studied first-price auctionsi¢et
a known demand, argued that they had stable Nash equildéh,
showed how to adjust this mechanism so that the equilibréa ch
sen by the user had relatively small overpayments. In mmcti
however, it may not be possible to defer the setting of priges
til the demand is known. In this section, we examine the bl



of achieving stable prices without advance knowledge ofdife
mand. In particular, we assume that the edges know only oésom
probability distributionover the possible demands.

Ideally, we would like our results for first-price auctionsthw
known demand to carry over. For example, we proved in Setion
that a first price auction fok units of demand led to a payment of
P, = E[C(F.(k+1)) — C(F.(k))]. Itis thus natural to hope that
the same mechanism operating ov@ndomk is also stable, with
expected payment[Px]. This turns out to be false—in fact, we
show in Section 5.1 that the simple first-price auction maigm
described previously ha ¢-Nash equilibria. Intuitively, this is
because edges must tradeoff grebability of receiving flow with
the profit of receiving flow. With a high bid, the profit is large, but
the probability of winning the auction is low. If the otherdiare
also high, an edge will prefer to lower its bid to win with a héy
probability. This will lead other edges to lower their bids as
to restore their high winning probability. Now, howeveretfirst
edge will increase its bid so as to increase its profit at tipeese
of its winning probability, and so a cycle emerges in the bigd
strategies. So we turn to more complex mechanisms.

We exhibit a mechanism involviniyvo parameter bidshat, un-
like the single-parameter first-price mechanisioeshavee-Nash
equilibria. Intuitively, a two-parameter mechanism getsiad the
problem of a single-parameter mechanism by letting the ®dge
press their preferences over the entire price-probalsligce. It
allows to an edge to bid a “price” that depends on its winning
probability; this prevents the bidding cycles that occuthvgingle-
parameter bids. Furthermore, using a indifference-brepiech-
nique similar to that of Section 4, we are able to restrict sbe
of equilibria to ones with bounded user payments. The boand i
not quite theE[Px] we hoped to achieve, but does bear a clear
resemblance to it.

5.1 No equilibrium with 1-parameter bidding

of the auction. We show that the cooperative game has a napemp
core We then connect the cooperative game to the actual bidding
game, and show that the path auction has-&tash equilibrium
corresponding to any core element.

The model is as follows: The demand can take any integraévalu
in the rang€1, r], wherer is a positive integer. Further, there is a
known prior distribution on the demand values; say that #raahd
is k with probability py, for k = 1,2...,r. We assume for sim-
plicity thatp,, > 0 for all k; our results easily extend to a situation
in which p, = 0 for some values ok € {1,...,r}. The agents’
bids are pairs of numbers: each agehids a paira = (¢, u;),
whereg; is interpreted as's reported cost, and; is interpreted as
7's demanded profit.

The mechanism receives the bids, and announces flowss,

..., F, for each possible demand value. We call the collecfios
{F1, F»...,F.} a candidate solution or simply a flow. We also
identify a flow F with the set of links in the uniof} UF>U- - -UF),
and say that € F if i € F}, for somek.

For eachi € F, the mechanism calculates the probability that

is in the lowest-price flowp; = 3, ;c | P& Later, the actual
demand transpires; suppose that the demand turns outitoThee
mechanism uses the links i, to route the flow, and pays each link
i € Fy asum ofg; + %“- Consider any link selected in some flow.
If & = ¢ (i.e.,if i bid its true cost), her expected profit would be
u;. Given the input bid pairs, the mechanism selects a set osflow
Fy, F», ..., F, that minimizes the total expected payments. This
can be expressed in terms of solving an integer program.

As before, we usé&V.(F) or C(F) for short, to denote the total
expected cost of a solutioRl = (F1, ..., F;) when the individual
link costs are:, and W; (F) to denote the price of the flow when
the bids arei. We denote the mechanism outpug  the min-price
flow) by F(a).

In this section, we analyze the scenario in which the demand 5.2.1 The cooperative gange

is random with a known distribution, and the bidders (linkaye

to commit to a price before the demand is revealed, and tisere i
deterministic tie-breaking. Subsequently, the deman@vsaled

to bek, and thek lowest-priced paths are picked. We show that
there is in general ne-Nash equilibrium in pure strategies for this
game.

Consider a graph with four parallel linké/, X, Y, and Z be-
tween the source and the sink, with true casts,y, and z re-
spectively. The demand is eithéy 2 or 3; for simplicity, let the
probability of each demand value ée Assign the costs such that
w ~+ H0e < x4+ 42¢ =y + 12¢ = 2.

THEOREM 6. There is no pure-strategy*Nash equilibrium for
this game.

The proof repeatedly uses theéNash conditions to show that, at
any bid vector, one of the following must hold: (1) There is an
agent who would gain by raising its bid, or, (2) There is annage
who would gain by undercutting another agent to win with déhbig
probability. The full proof will appear in an extended versiof
this paper.

5.2 Equilibrium with 2-parameter bidding

In section 5.1, we saw that when the demand is a random vari-

able with a known distribution, a simple first-price auctioay not
have arc-Nash equilibrium. In this section, we present a different
auction model, in which agents’ bids are pairs of values, simaiv
that it has a nonempty set efNash equilibrium.

In this section, we define a cooperative game based on any spe-
cific instance of this mechanism, and prove that it has a mopte
core. This cooperative game is introduced only for stratagaly-
sis of the mechanism. It is not explicitly played by the agebtit
helps to shed light on the agents’ strategies in the tworpeter
auction.

DEFINITION 2. Given a set of player®, acooperative gamis
defined by aharacteristic functiom : 27 — R0, withv(0) = 0.
Forany S C P, v(S) is called thevalueof the setS.

Given a directed grap@ with distinguished source and sink, and
a true cost; for each linki € G, we define the cooperative game
G as follows:

The set of players in the ganteis P = {0,1,--- ,n}, where
eachi > 0 is the player corresponding to linkando is a special
player corresponding to the customer. Zabe the customer’s bud-
get, and assume that is large enough to be irrelevant;, > rx
cost of minimum-cogtr + 1)-flow is sufficient. For each set C
P, S # 0, define the value(S) of S in G as follows:

If S does not contain a-unit flow from s to ¢, v(S) = 0. If S
contains the customéras well as all edges oniaunit flow from
the source to the sink(.S) is defined to be the optimal value of the
linear program given below:

Defined;,s to be the indicator of in S, i.e.,d;,s = 0if i ¢ S

To prove that the bidding game induced by this auction has a andé; s = 1if ¢ € S. Also, for any nodey in the network, we use
stronge-Nash equilibrium, we construct a cooperative game model the notation Ifi«) to denote the set of incoming edges, and(@uit



to denote the set of outgoing edges. Then, asy > 0, we haveu; > 0, and

v(S) = max {Z = 325, [pr Ziso ciwin] } Y ui=b"g=u(P).
Subject to: ieP
2icOUt(a) ik ~ Licln(a) Tik = 0 kYo 5,1 Next, observe that for any sétC P, the solution(g, 2) is also
ZieOut(s) Lik — Zié'ﬂ(S) zik —k=0 vk feasible in the dual of the program (7) definingS). Thus, we
Zik < i, Vk,Vi >0 have
x> 0 Vk,Vi >0
(6) Zui:bS-QZU(S).
This linear program is interpreted as follows: For any linknd ies
any demand valug, the variabler;;, indicates the flow alongin Thus, the vectou is in the core of the gamg. [
Fy.. Intutitively, the value of a sef is related to the net surplus that ] o
is created when only the agents in Seare involved in the flow. If 5.2.2 Existence of artNash equilibrium
S does not contain the customer ang-anit flow, v(.S) is defined We now show that given any point in the core of this game,
to be0. Thus, only sets that contain at least one candidate solutio \ye can perturb it slightly to get a vector of bid pairthat is ane-
are assigned a positive value. Nash equilibrium of the bidding game. We use the gghte draw

~ We also note that ifS = P, then the linear program has an  conclusions about the bidding game induced by the mechanism
integral optimal solution, corresponding to an integrah+oostk-

flow for eachk. In other words, there is a solution in whiaky, is THEOREM 7. Letu be any vector in the core @ that mini-
either0 or 1 for all 7 andk. Itis also clear that(S) < v(P) for mizes the value afo. Then, for any > 0, the bid profile defined
all S C P. by

Thus, the functionv(S) defines a finite, nonnegative value for ‘
each coalition se§, and hence it is the characteristic function of a a; = (ci,u; = max{0,u; — 2—})
valid cooperative gamé. o o "

Our analysis is centered on the concept of ¢bee of a coop- for each linki is ane-Nash equilibrium.

erative game. Loosely speaking, the core of a cooperativeega

consists of all ways to divide up the overall valugP) among the PROOF. (Sketch) Suppose  is not anc-Nash equilibrium. Then,

agents such that no group has reason to be unhappyi.e., S there is somé such that can change her bid to increase her payoff
o ;o "
attains a combined utility of at leas{,S). Formally, the core is b)/ €. L(?t (C.,u ) bezls Suclces,sful str/ategy,_and let qethe the
defined as follows: bid profile given bya; = (¢',u') anda); = a; forall j # i. Let
F' = F(a'); it must be the case thate F'.
DEFINITION 3. Avectoru = (ug, u1, . . ., u,) i in thecoreof In the appendix, we show that there is a near-optimal fiéiv
the gameg iff it satifies all of the following: such thatF” does not use (Lemmas 5,7). More specifically,
W,— (F") < W, (F')+¢/2. Asi ¢ F', we have W, (F"') =
vi ui 20 »and W, - (F"). However,i € F', and so W/ (F') > W,- (F') + e
Yiepui =v(P) ,and Thus, we get W, (F') > W, (F"), which contradicts the assump-
VSCP Y. .qui>v(S). tion thatF' = F(a’). O

We are working on strengthening Theorem 7 to show that this bi
profile is indeed &tronge-Nash equilibrium. This seems plausible
given the results of Young [19]; however, the strategy spacir
2-parameter game is richer than the strategy space in Yo®jg [1

In general, the core of a cooperative game might be the empty
set. However, we can prove that this is not the case for thegam

LEMMA 3. The gamej has a nonempty core. 5.3 Randomized 2-parameter Auction

PROOF. Consider any division of () among the players. We The mechanism presented in Section 5.2 hasldash equilib-
show that there is at least one such division that satisfiethel rium Corresponding to every core allocation, but we canneirg
core constraints. For any s8twith v(S) = 0, the core constraint  antee that there are no otheNash equilibria. As a result, it was
is trivially satisfied. Now, consider a set s§twith v(S) > 0. not possible to bound the total payoff to the edges. In this se
The linear program defining(S) can be summarized in the form  tion, we consider a slightly modified mechanism in which wd ad
max{z - I} subjecttarH = 0, zA < b°, andz > 0, wherez is a a small random payment, as in Section 4. We prove that, wigh th
vector of all the variabled/ and A are matrices independent 8f modification, it is possible to bound the total payment.
andb® is a0-1 vector representing the capacity constraints for set  TheRandomized 2-parameter Auctitnconstructed as follows.

S. Then, the dual of the linear program (6) is the followingetn As earlier, the edges’ bids are pairs= (¢;, @;). The mechanism
program: has two components:
v(S) = min {bs : y} 1. The 2-parameter mechanismThis mechanism is conducted
Subject to: @) exactly as described in Section 5.2 with parameters, and
Ay+Hz>1 B set as before.
y=>0
2. The randomized audit. For edges on a random path source-

Now, consider the dual program that defing®), i.e.,the value destination path, the payoff is based entirely ondheom-
of the set containing the customer and all the links. (et) de- ponent of the bid, and is constructed as in Section 4. The
note an optimal solution to this problem. Now, define= 61" - § parametersy, 7, and B are as defined in Section 4. To sim-
for all i. Recall thath® is a0-1 vector, with1s in precisely those plify the analysis, we assume that the randomized component

equations that involve somiec S; thus,b® = Yics b, Then, results in a payoff function of the following form: If an edge



has true cost; and bids(¢;, u;), its expected payoff from

this component igj(¢;) = 7[ciéi — é] The exact form
of the payoff was derived in the proof of Lemma 2, and has

and have greater collusion resistance than VCG mechani$ovg.
ever, they suffer from one major drawback, in that the soiution-
cept (strong:-Nash equilibrium) requires agents to know all costs,

the same shape; the key aspect for us is that this function is and coordinate on the choice of equilibrium. This is much enor

maximized af; = ¢;.

We also need to ensure that, for all edgewt in the winning
solution, @; is 0 (or close to zero). We assume that the mechanism
simply rejects bid profiles that do not meet this conditioftema-
tively, we could impose a small tax on the component of the bid.
We can now prove a useful lemma, which shows #ibedges are
nearly truthful about their costs in equilibrium:

LEMMA 4. Leta = (¢, @) be ane-Nash equilibrium of the Ran-
domized 2-parameter Auction. Then, forall

ci —\2¢/7 <& <ci++2€/T
Using the fact that the costs are nearly truthful, we can stiaw

their utility values are nearly in the core, and hence, @ettive fol-
lowing bound on the total payment.

THEOREM 8. Leta = (¢, @) be anye-Nash equilibrium of the
Randomized 2-parameter Auction. [Z2be a lowest-cost flow, and
let 1 be a lowest-cosfr + 1)-flow. Then, the total price paid
by the customer in the randomized 2-parameter auction isost m

[ijjC(F7'+l)

The result of Theorem 8 stands in an interesting relatiomab t
of Theorem 2. We do not achieve the intuitively appealingriabof
the expectation of the bounds on the deterministic auctidBec-
tion 3,i.e., E;[P;] = 3", jp; (C(Fj+1) — C(Fj;)) (proving this
stronger bound is an interesting problem for future workjstéad
we achieved ", p;(C(Fr41)(j/r) — C(F})). In other words,
the external multipliey is replaced by (a larger quantity), while in
the first term the quantity’(F;+1) is replaced byC (F41)(5/7),
which can also be larger because the cosj ahits of flow is a
convex function ofj. Our Theorem 8 is therefore weaker in two
important respects than Theorem 2, but it does have a sioviar
all structure.

—7C(F) + nr\/2¢/7 + 3an®B.

6. CONCLUSION

The results in Section 3 show that for a fixedinit path auction,
the upper bound on total payments in strepgquilibria is almost

the same as the lower bound on the VCG mechanism payments

further, the bounds are the same in the limiteasnds to0. It is

apparent from the simple example in Section 1 and resul, ig][
that the VCG mechanism will often require payments consiolgr
higher than this lower bound (and hence, considerably itz
the strong:=-equilibria of the first-price auction).

In Section 5.1 and 5.2 we considered a model in which the de-
mand is a variable with a known distribution, and we need lecse
pathsex ante We showed that a simple first-price auction may not
even have am-Nash equilibrium. However, we proved that a vari-
ant of the auction witl2-parameter bids induces a surplus-sharing

game with a nonempty core, and that every core element can be

perturbed slightly to get an-Nash equilibrium. We also proved
a bound on the total payment to links in a core allocation,cvhi
suggests that in this domain too it may be possible to prosfthie
VCG mechanism has higher expected payments.

This leads us to a comparison between first-price and VCG path
auctions similar to the comparison between the cost-shaniech-
anisms [19]. First-price auctions entail potentially loypayments,

demanding than the dominant-strategy mechanisms, whiald co
lead to inefficiency in practice. Thus, the auction modekslyzed
here are not completely satisfying, as there is no mechapiem
scribed for the agents bids’ to reach equilibrium. This iteven
for the weaker concept @fNash equilibrium.

However, the results in this paper shed new light onfthee-
tions of overpayment in VCG mechanisms. We can identify three
distinct functions of overpayment:

1. Cheaper paths have a competitive advantage and can thus
command a surplus.

. The surplus paid to links eliminates the need for negotiat
between links, leading to a simple mechanism without delays
or expensive reasoning.

. The surplus eliminates the externalities of one agetreg-s
egy on other agents, leading to a mechanism that is fair in
the sense that uninformed agents can do as well as informed
agents.

The first source of overpayment is common to the first-prictian

and the VCG mechanism. However, our results show that fdr pat
auctions, the VCG mechanism often winds up paying a premium
for functions 2 and 3. (In contrast, for single-item aucsipthe
first-price auction always pays as much in the worst case s th
VCG mechanism.)

This premium can be viewed as the “cost of implementation”
of the dominant-strategy mechanism, particularly in situe in
which this form of fairness is not compelling. We believettha
promising direction for future research is to find bargagnmech-
anisms to enable the bidders to converge to an equilibriumneww
the edges all know each others’ costs,raparty bargaining pro-
tocol, such as the one in [15], could be used; when there isrunc
tainty, the situation is more complex. Such a mechanism neay b
subsidized; for example, the links may be given an additipag-
ment that decays with time, to incentivize them to quicklgate an
agreement. As long as the subsidy is smaller than the VCG pre-
mium, it may be a better alternative.
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8. APPENDIX
8.1 Proof of Lemma 2

PROOF With the bid vecto®, e's expected payoff is

fe(b) + ZUP(be_Ce) = Z[ff(b)—!—ap(be—ce)]

P>e P3e
62
= Z[ozB—T?e +761~ij — ace]
P3e JEP

2
Letg(be) = [a(B —ce) — 7% +7ce 32, p by]. Then,g(be) is
a quadratic function of.. Observe tha%< = —rb. + rc. = 0

whenb. = c.; at this point,% = —7 < 0. This is true for

all pathsP containinge, and thusp. = c. is the optimal bid for

playere. Further, forA > 0,
glce) — glce + A) = T A+ T7A* /2 — e A = TA? /2

Similarly, g(ce) — g(ce — A) = 7A%/2. Thus, by the condition of
e-Nash equilibriumA < /2¢/7. O

8.2 Proof of Lemma 1

PROOF Construct a bid vectds as in Theorem 1. By this con-
struction we havé. = c. for any edgee that is not on the lowest-
price path. Then, following the analysis gfb.) expected payoff
in Lemma 2,b. maximizese’s payoff. (Note that can only get
onto the lowest-price path by bidding below its cost, whiabuld
result in a loss.)

It remains to show that every edgeon the lowest-price path
would not significantly benefit by changing it's bid. Note tlifa
¢ increased its bid by more thati2, it would no longer be on the
lowest-price path. Further, because of the shape of thesquayoff
function, i's expected gaing(b.) from the bonus and probability
of off-path selection would also drop. Thus;annot possibly gain
more thare by raising its bid.

Finally, consider the possibility thatowers its bid byz. Then,
¢ would still be on the lowest-price path. It would lose at teas
(1 — na)z in profits from being on the lowest-price path, and gain
at mostr Bz in ge(be ); thus, it could not gain overall. (]

8.3 Proof of Theorem 5

PROOF. Let b be ane-Nash equilibrium bid vector, for suffi-
ciently smalle. The total probability that the mechanism picks a
path other than the lowest-price path is boundediby Any such
path can have at most edges on it, each with price at maBt
Thl.QJS, the expected payment for using one of these paths iesit m
an”B.

Similarly, we can bound the bonys (b) paid to any edge:
fe(b) < n[aB + ™nB?]. This is always less thatunB.

Finally, using Lemma 2, we know that any edge not on the lowest
price path bids at most. + y/2¢/7. Combining this with a similar
argument to Theorem 2, we can bound the total payment to edges
on the lowest-price path by

Wy(F(1)) < C(2) — C(1) + n+/2¢/T

In the limit ase — 0, the last term is negligible. Adding up all
three sources of payment, we get the required resul.

8.4 Proofs for the 2-parameter mechanism

8.4.1 Positive payoffs in the core

LEMMA 5. Let F be a lowest-cost solution, anf,+; be a
lowest-cost(r + 1)-flow. For any vectoru in the core ofG, we
haveuo > Z — [C(Fry1) 325y jp; — rC(F)]-

PROOF Let F be a minimum-cost flow. Then(P) = Z —
C(F), and hence, by the core condition;,. , ui = Z — C(F).
Consider alowest-cost integri@+1)-flow F,1. Then,F,; con-
sists of(r + 1) disjoint paths froms to ¢; call themP:, - - -, Pryq.
For eachk € {1,2,--- ,r,7 + 1}, defineF, * = F. .1\ Py, i.e.,
, ther-flow obtained by dropping théth path. Extends, " to a
collection of flowsF~* = (Fy*, Fy* .- | F%), whereF; *
consists of thej lowest-priced paths iF,~*. Then, asF~* can



meet the demand, we have(F " U {0}) > Z — C(F%). Fur-
ther, noting that”;* has cost at most that of F;~*, we get:

CF ) <CEM) Y pit
j=1

Further, as is in the core, we haveo+3 ;. -« ui > v(FFU
{0}). Now, adding over alk, we get:

r+1 r+1

SuFEtuiy > Y [z-cFEh)

k=1 k=1

r+1 r+1 T .
e R ML) o
k=1 k=1 j=1

Note that the left hand side includes each elemerit.of; exactly
r times. Similarly, the flows”~* in the right hand side covef, 1
exactlyr times. Thus,

~ J
(r+Duo+r Y w > (T+1)Z_TC(FT+1);pj;
=

i€F, 41
Noting thaty ", o ui < >2icpui = Z — C(F), we get:

wotr(Z—CF) > (07— CFn)S jms

j=1

Z —[C(Fr+1) ijj -rC(F) O

j=1

A\

uo

LEMMA 6. Given a network and a cost vectgrand some ele-
mentu in the core ofG, define the bid profilé by

a; = (ci,ui) Vi >0

Then, the lowest-price flow output by the mechanism withtiépu
has atotal price o —uo. Further, any minimum-cost flof is an
optimal (minimum-price) flow, and includes all linksith u; > 0.

PROOF. First, letF be an optimal integral solution to the lin-
ear program defining(P). Then, an examination of the objective
function of LP 6 shows thal(F) = Z —v(P) = Z — 1" i
Now,

Wfl(}-)SC(]‘-)—‘rzn:ui:Z—UQ (8)

PROOF. Let 7 = F(a). Assume there is an such that the
statement is not true. LeE™ be the lowest-price flow that does
not includei, and assume that WF) = D > W5 (F) + § for
somed > 0. Define a vecton' by uy, = uo — 6, u; = u; + 4,
anduj = u;Vj # 0,4. We now claim that is in the core. If not,
there would be some sétsuch thaw(S) > 37, g uj. We must
have0 € S, or elsev(S) would be0. Similarly, S must contain
a k-flow, or else it's value would bé. It follows that: ¢ S, or
else we would hav®_ ;g uj = 3, g u; > v(S). Let 7" be the
lowest-cost flow inS. Then,v(S) = Z — W.(F") and so we get

Sies Ui =Z-We(F") =D uj+4

JES
0< Z—uo+6—W5(f") <Z—uO—Wa(.7:)

0< v(S) —

But, using Lemma 67 — up — Wo(F) = 0 becauseF is a
minimum-price flow with bidsa, and so this is a contradiction.
Thus,u” must be in the core; but this contradicts the assumption
thatu is an element of the core that minimizegd. [

8.4.3 Proof of Lemma 4

PROOF We argue that playercan always do better by bidding
his true cost; the bounds follow from theNash equilibrium con-
dition and the expected-payoff graph of the randomized patit.
Let p; be the probability ofi being included in the lowest price
solution in thee-Nash equilibriuma. If p; = 0, theni’s entire ex-
pected payoff is due to her expectation of winning in the cand
ized path audit, and the bounds &nfollow directly. The same
argument holds ip; > 0 buti receives a negative expected payoff
from the 2-parameter auction (because herchidias too low).

Now, supposey; > 0, and, further; receives a positive payoff
from the2-parameter auction in theNash equilibrium. Consider
the strategy:; = (¢, uj) with uj = @; + p;[¢; — ¢;]. (i received a
non-negative profit undet, so it follows thatu; is non-negative.)
Let F be the solution chosen in the 2-parameter part of the mech-
anism when the bids are@. Note that if; were to deviate from
a; to a;, the price ofF would not change: the change in the utility
component would exactly cancel the change in the cost coemon
Also, for any other flowF’ that did not use, the price of¥" would
not change withi's deviation; thus, using the consistency of the
tie-breaking rule,F” would not be chosen abovE. Thus, we con-
clude that remains in the winning solution (which need notBg
under the bids:;.

Next, observe thats expected payoff from the-parameter auc-
tion (with bid a}) is u;, because bids her cost truthfully and is

We now show that this is also a lower bound on the cost. Supposeij, the winning solution. This is exactly the same s payoff

there was some flow’ such that W (F") < Z—u. It follows that
C(F') < Z —uo — Y, 5 ui. Now, consider the linear program
determining the value of the coalitigh= F’ U {0}. The flowF’

is a feasible solution for this set, and hence

V(S) > Z—C(F)>uo+ Y wi=)Y u
i€ F! €S

But this contradicts the assumption thds in the core ofZ. Hence
every flow (includingF) has price at least —uo. Thus, W; (F) =
7 — uo andF includes alli such that,; > 0. [

8.4.2 Optimal flow without using player

LEMMA 7. Letu be avector in the core @ that minimizes the
value ofug, and define the bid vectarby a; = (¢;,u;) Vi > 0.
Then, ifug > 0, for anyi there is a flowF ) such that W(F?) =
W;(F(a)), i.e., 7 is an optimal solution.

pil¢i — ¢i] + @; from the2-parameter auction in theNash equi-
librium a.

To prove the bounds oft, we compare’s payoff from the ran-
domized part of the mechanism with bidsanda;. The bounds
follow directly from the form of the randomized audit paysff (]



