
Two-Sided Matching with Partial Information

BAHARAK RASTEGARI, University of British Columbia
ANNE CONDON, University of British Columbia
NICOLE IMMORLICA, Northwestern University
KEVIN LEYTON-BROWN, University of British Columbia

The traditional model of two-sided matching assumes that all agents fully know their own preferences.

As markets grow large, however, it becomes impractical for agents to precisely assess their rankings over
all agents on the other side of the market. We propose a novel model of two-sided matching in which

agents are endowed with known partially ordered preferences and unknown true preferences drawn from

known distributions consistent with the partial order. The true preferences are learned through interviews,
revealing the pairwise rankings among all interviewed agents, performed according to a centralized interview

policy, i.e., an algorithm that adaptively schedules interviews. Our goal is for the policy to guarantee both
stability and optimality for a given side of the market, with respect to the underlying true preferences of the

agents. As interviews are costly, we seek a policy that minimizes the number of interviews. We introduce

three minimization objectives: (very weak) dominance, which minimizes the number of interviews for any
underlying true preference profile; Pareto optimality, which guarantees that no other policy dominates the

given policy; and optimality in expectation with respect to the preference distribution. We formulate our

problem as a Markov decision process, implying an algorithm for computing an optimal-in-expectation policy
in time polynomial in the number of possible preference orderings (and thus exponential in the size of the

input). We then derive structural properties of dominant policies which we call optimality certificates. We

show that computing a minimum optimality certificate is NP-hard, suggesting that optimal-in-expectation
and/or Pareto optimal policies could be NP-hard to compute. Finally, we restrict attention to a setting in

which agents on one side of the market have the same partially ordered preferences (but potentially distinct

underlying true preferences), and in which agents must interview before matching. In this restricted setting,
we show how to leverage the idea of minimum optimality certificates to design a computationally efficient

interview-minimizing policy. This policy works without knowledge of the distributions and is dominant (and
so is also Pareto optimal and optimal-in-expectation).

Categories and Subject Descriptors: J.4 [Social and Behavioral Sciences]: Economics

Additional Key Words and Phrases: Matching; Market design; Partial information

1. INTRODUCTION
Two-sided matching markets model many practical settings, such as corporate hiring, marriage, and
university admission. In such markets, participants are partitioned into two disjoint sets—e.g., men
and women in a marriage market. Each participant on one side of the market wishes to be matched
to a candidate from the other side of the market, and has preferences over potential matches. A
matching is called stable if no pair of participants would prefer to leave their assigned partners to
pair with each other. A matching is optimal for one side of the market if each participant on the
given side prefers the matching to any other stable matching. Gale and Shapley [1962] proposed a
tractable algorithm for identifying optimal, stable matchings. A rich literature has developed since.
See e.g., Roth and Sotomayor [1992] for an excellent survey; there is also a wealth of work that takes
a more computational perspective [Manlove et al. 2010; Knuth 1997; Gusfield 1987; Bansal et al.
2010; Ashlagi et al. 2011; Hatfield and Kominers 2011; Manlove 1999, 2013; Gent et al. 2002; Irving
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and Leather 1986; Irving et al. 1987; Manlove et al. 2002; Ashlagi et al. 2006; Bansal et al. 2010].
Overall, the study of matching has made contributions in both descriptive and prescriptive senses.
Descriptively, computational models have enriched our understanding of existing social systems; e.g.,
Gale and Shapley’s work helps us to understand marriage markets. Prescriptively, algorithmic tools
proposed in the literature are practical enough to be used directly in applications, and indeed have
transformed several matching markets. Perhaps most famously, the National Residency Matching
Program (NRMP)—see, e.g., Roth [1996]—matches American medical students to internships at
hospitals, using a method quite similar to the Gale–Shapley algorithm.

Much of the matching literature makes the key assumption that all market participants know their
full (and often strict) preference orderings. This assumption is often reasonable, as demonstrated by
the practical impact just described. However, as markets grow large it quickly becomes impractical for
participants to assess their precise preference rankings. Returning to the NRMP, in practice students
typically interview at only 10–15 hospitals out of about a thousand.The NRMP considers residents to
have ranked as unacceptable all hospitals at which they did not interview, allowing the algorithm to
proceed as though a full preference ordering had been declared. Prescribing the use of this system is
clearly suboptimal: students who make the wrong decisions about where to interview can remain
unmatched or be matched badly. There are likewise drawbacks from a descriptive perspective: such
models shed little light on how matching works when participants are unsure about their preferences.

In this paper, we propose a novel model of two-sided matching in which participants are endowed
with partially ordered preferences over candidates, but can refine these preferences through interviews.
For example, these initial preferences might be ranked equivalence classes, with the property that
candidates in higher-ranked equivalence classes are preferred to those in lower-ranked classes. Each
participant’s true (but unknown) preferences are a strict ordering over candidates, consistent with
the known partial order and drawn from a known distribution. Participants can learn about their
preferences through interviews. For a given participant, the first interview is uninformative; each
subsequent interview reveals pairwise rankings among all previously interviewed candidates. Our
goal is to design an adaptive, centralized interviewing policy which, given any partial information
state, either selects an interview to perform or terminates with an optimal stable matching.

As interviews are costly, we would like our policy to minimize the number of interviews performed.
We propose three criteria according to which the effectiveness of a policy can be assessed. First,
a (very weakly) dominant policy performs a minimal number of interviews for all underlying true
preference profiles consistent with the partial information. Second, a Pareto optimal policy may
not be minimal for all underlying preference profiles, but is guaranteed not to be dominated by any
other policy. Finally, an optimal-in-expectation policy minimizes the expected number of interviews
with respect to the known distribution of strict preference orders. Note that the first two of these
notions are prior free: i.e., such policies are independent of the preference distribution, and so are
also applicable in more general settings where there is no common prior. Note also that, as dominant
policies are Pareto optimal and optimal in expectation, the ideal is to compute a dominant policy.
However, as we show, dominant policies may not exist.

Pareto optimal and optimal-in-expectation policies are guaranteed to exist; we show how to
leverage a Markov Decision Process (MDP) encoding of our problem to find such policies in time
polynomial in the number of possible preference orderings, which is exponentially faster than a
naive algorithm, but still exponential in the size of the input. The key question we investigate in the
rest of the paper is whether we can do better. We introduce the notion of an optimality certificate,
which is a matching and a set of interviews whose outcomes can be used to prove that the matching
is stable and optimal for a given side of the market. We show that in general, finding an optimality
certificate involving the minimum number of interviews is NP-hard, providing evidence that finding
an optimal-in-expectation and/or a Pareto dominant policy may be NP-hard. We next consider a
restricted setting in which participants on one side of the market start out with the same equivalence
classes structures, and in which pairs of agents must interview before they can match. We show
that in this setting, minimum optimality certificates—and hence optimal policies—can be computed
efficiently. Indeed, our policy is optimal in the strongest sense: it is dominant, meaning that it is also



prior free, Pareto optimal, and optimal in expectation with respect to any prior distribution that has
full support. Lastly, we present preliminary investigations into extending this result to more general
settings.

Related Work. We are aware of three threads of related work. The first augments the preference
model to include indifference between candidates. For example, consider a school choice domain
in which high school students are matched to public schools. Schools have some preferences over
students based on geography and legacy considerations, but many students are equivalent according
to these measures and hence it is reasonable to say that the school is indifferent between them.
However, this literature (e.g., [Pathak and Sethuraman 2011; Abdulkadiroglu and Smez 2003]) is not
intended to fully address the problem of incomplete preferences, and indeed it does not. Furthermore,
even this simple extension to the standard model is quite tricky; for example, depending on how
stability is defined, stable matchings are not always guaranteed to exist. There is an extensive body
of work (see, e.g., Irving [1994], Irving and Manlove [2002], Irving et al. [2000], Manlove [1999],
and Manlove [2002]) on studying three versions of stability that can be defined when indifference
is permitted. Of these, the one most closely related to our work is that of super-stability. Loosely
speaking, super-stable matchings are those that are stable no matter how the ties in the preference
orderings are broken. In fact there is a relation between optimality certificates and super-stable
matchings, which we discuss in Section 3. Polynomial time algorithms have been proposed for
finding such matchings in various two-sided matching markets [Irving et al. 2000, 2003; Manlove
1999]).

A second thread of related work sets up the matching problem as a Bayesian game, assuming that
participants have strict preferences drawn according to a commonly known probability distribution
over preference orderings, and that all participants know their own preferences once the draw has
taken place. Work in this vein typically seeks to design Bayes–Nash incentive compatible mechanisms
or to describe the Bayes–Nash equilibria of standard mechanisms (see e.g. Roth and Sotomayor
[1992]). One recent paper augments such Bayesian models with interviews, which are costly and
chosen in a decentralized fashion [Lee and Schwarz 2009]. The authors investigate equilibrium
interviewing behavior and observe that “clustered interviews” yield high social welfare. However,
they do not insist that the final matching be stable with respect to agents’ true preferences.

A third thread of work tries to derive properties of the market based on the available partial
information. In recent work, Echenique et al. [2013] study settings in which agents’ preferences are
unobserved. They characterize matchings that are rationalizable—i.e., stable w.r.t. some underlying
(unobserved) preference, as well as those that are rationalizable and optimal for one side of the
market. An assumption crucial to most of their results is that the agents on each side of the market
have different (unobserved) preference orderings, and it is known how many agents in the market
have each possible preference ordering. Their work differs from ours in several ways; notably, we
allow for preferences to be partially observed, and look for matchings that are stable and optimal
for a given side of the market w.r.t. all possible underlying preference orderings (as opposed to only
one). In a recent working paper, Haeringer and Iehle [2012] study matching markets in which the
preferences of one side of the market are known, but the agents on the other side of the market only
known whom they find acceptable. Haeringer and Iehle provide a technique for identifying pairs
that are not matched in any stable matching for any underlying preference ordering, and hence for
identifying unstable matchings.

2. OUR MODEL
Let A = {a1, . . . , an} be a set of applicants and let E = {e1, . . . , em} be a set of employers. We
use the term agents when making statements that apply both to applicants and employers, and the
term candidates to refer to agents on the side of the market opposite to that of an agent currently
being considered. We assume that each employer can hire at most one applicant, and each applicant
can be hired by at most one employer, hence focusing on one-to-one matching markets. Agents
start out only partially aware of their preferences. Formally, each agent is initially aware of a strict



partial preference ordering over (a subset of) the candidates. We denote by pei and paj
the strict

partial preference ordering of ei and aj , respectively. We let pE,A = (pe1 , . . . , pem , pa1
, . . . , pan

)
and call pE,A a partial preference ordering profile. For example, agents might start out by assigning
candidates to equivalence classes, and having a strict preference ordering over these equivalence
classes. This equivalence class ordering is a natural model for scenarios in which each agent knows
that some candidates are her top-tier candidates, that others are her second-tier candidates, and so
on. Figure 1 of Example 2.4 depicts such a setting, with each agent’s partial preference ordering
partitioning the candidates into strictly ranked equivalence classes.

Agents’ true preferences are strict total orders: each applicant a has a strict preference ordering
�a over E ∪ {∅}, and each employer e has a strict preference ordering �e over A ∪ {∅}. If an
agent i prefers ∅ to candidate j, we say j is unacceptable to i; all other candidates are acceptable
to i.1 We let �E,A = (�e1 ,�e2 , . . . ,�em ,�a1

,�a2
, . . . ,�an

). The preference orderings �E,A are
drawn according to a distribution whose support is consistent with the partial preference ordering
profile. That is to say, for each agent i, total order � is in the support of the distribution, and for
every pair of candidates j and k: (i) if i prefers j to k according to the partial preference ordering
profile then i strictly prefers j to k under �; and (ii) candidate j appears in i’s partial preference
ordering if and only if j is acceptable to i under �. Throughout the paper, we assume that the partial
preference ordering profile pE,A is known and that the strict total order profile �E,A is unknown.
Furthermore, most of our definitions and results do not assume knowledge of the distributions, and
are thus prior free; i.e., the definitions and results apply regardless of the preference distribution.

2.1. Optimal stable matchings
The goal of our work is to construct a matching for agents that is stable with respect to the underlying
preferences, and optimal for one side of the market. We now define these notions mathematically.

Definition 2.1 (Matching). A matching µ : A∪E 7→ A∪E∪{∅} is an assignment of applicants
to employers such that each applicant is assigned to at most one employer and vice versa. More
formally, µ(aj) = ei if and only if µ(ei) = aj , ∀aj ∈ A either ∃ei ∈ E,µ(aj) = ei or µ(aj) = ∅
(the applicant is unmatched), and likewise ∀ei ∈ E either ∃aj ∈ A,µ(ei) = aj or µ(ei) = ∅.

Definition 2.2 (Blocking pair). A pair (aj , ei) is a blocking pair in matching µ if aj and ei are
not matched together in µ, ei�ajµ(aj), and aj�eiµ(ei).

Definition 2.3 (Stable matching). A matching µ is stable if it has no blocking pair and if no
agent is matched to an unacceptable partner.

Example 2.4. Consider the setting with 2 employers and 2 applicants depicted in Figure 1. The
column corresponding to each agent i gives that agent’s strict partial preference ordering, which is
in fact an equivalence class ordering, with the most preferred equivalence class at the top. In this
example applicants have full knowledge of their preferences, while employers have no knowledge
of their preferences. Table 2 gives all four possible strict preference orderings for the employers. In
every case, matching µ1, µ1(e1) = a1 and µ1(e2) = a2, is stable. Matching µ2, µ2(e1) = a2 and
µ2(e2) = a1, is also stable under (c). µ2 is not stable in the other cases: (e1, a1) blocks µ2 under (a)
and (b), while (e2, a2) blocks µ2 under (d).

Employer-optimal and applicant-optimal matchings are particularly interesting: these are the
matchings most preferred by all employers (resp., applicants), as compared to all other stable
matchings. When agents have strict preferences, as in our model, such matchings always exist and
are unique [Gale and Shapley 1962]. These matchings can be used to build mechanisms in which
truthtelling is a dominant strategy for the side of the market favored by the matching [Dubins and
Freeman 1981; Roth 1982]. For example, if the employer-optimal matching is always picked, it is
a dominant strategy for employers to reveal their preference orderings truthfully. In what follows

1We assume that agents have strict preferences over unacceptable candidates only to simplify notation.
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Fig. 1. A setting with 2 employers and 2
applicants. Applicants have full knowledge
of their preferences; employers don’t.

e1 e2
a1 a1
a2 a2

(a)

e1 e2
a1 a2
a2 a1

(b)

e1 e2
a2 a1
a1 a2

(c)

e1 e2
a2 a2
a1 a1

(d)
Fig. 2. The four possible underlying preference profiles for the employers
in the setting of Figure 1

we restrict our attention to the problem of finding employer-optimal matchings rather than arbitrary
stable matchings.2

Definition 2.5 (Employer-optimal matching). A matching is employer-optimal if it is stable and
weakly preferred by all employers to every other stable matching.

Example 2.6. Continuing Example 2.4, µ1 is the employer-optimal matching under cases (a),
(b), and (d), and µ2 is the employer-optimal matching under case (c).

2.2. Policies
We have defined stability of a matching in terms of agents’ true preferences (as distinct from Lee
and Schwarz [2009]); thus, it will generally not be possible to find a stable matching based on
agents’ initial knowledge. To find and certify a stable matching, employers and applicants must
gather additional information about each other through interviews. Each interview pairs a single
applicant a with a single employer e; we denote such an interview e:a. After interview e:a, both e
and a are able to strictly order the acceptable candidates interviewed so far.

Informally, a policy describes how to conduct interviews: it starts with input I = (E,A, pE,A),
performs a sequence of interviews, and then outputs a matching. Interviews can be selected based on
the results of previous interviews and the whole procedure is centralized. More formally, a policy
maps information states to subsequent interviews or to a matching that is stable and employer-optimal
for the underlying preference profile. To reduce notation, from this point on we assume that the input
I = (E,A, pE,A) is given and fixed.

Definition 2.7 (Information State). The information state Ii of agent i after interviews with
` ≥ 0 candidates is a list of these ` candidates, ordered according to the underlying true preference
profile. When ` = 0, we let Ii = ∅. The global information state after a sequence of interviews is
I =

⋃
i∈E∪A Ii.

We say that information state I refines partial preference ordering profile pE,A, which we write as
I � pE,A, if I is consistent with pE,A: for all agents i and all candidates j and k, i preferring j to k
under pE,A implies i also preferring j to k under I . Given a fixed pE,A and information states I and
I ′ that refine pE,A, we say that I ′ refines I when it contains strictly more information: when for all
agents i, all candidates who were interviewed in Ii were also interviewed in I ′i, and for all candidates
j and k who were interviewed in both Ii and I ′i, i preferring j to k under Ii implies i preferring j to
k under I ′i. We say that a preference profile � refines an information state I, and write � � I, if �
is consistent with both pE,A and I. We write � � pE,A to denote that � is consistent with pE,A.

Definition 2.8 (Policy). A policy is a mapping from a global information state I � pE,A either
to an interview to perform or to a matching. A policy is sound if it is guaranteed to return an
employer-optimal matching, regardless of the true preference order � � pE,A.

Notice that a sound policy is allowed to return a matching in which a pair of agents e and a are
matched even without e having interviewed a. In practice, employers may face the requirement of

2Of course, all of our technical results can be made to apply instead to applicant-optimal matchings by swapping every use of
the terms “employer” and “applicant.” Furthermore, all of our results except those in Section 5 also hold for the problem of
finding any stable matching; however, we make the restriction throughout for consistency and clarity.



interviewing an applicant before offering her a job. We capture this additional requirement through
the notion of a diligent policy.

Definition 2.9 (Diligent policy). A policy is diligent if it is sound and, furthermore, it maps from
I to µ only if e ∈ Ia and a ∈ Ie for all (e, a) ∈ µ.

Example 2.10. Continuing Example 2.6, a sound policy follows: given an information state I , if
e1 has not interviewed a1, schedule that interview; else if e1 has not interviewed a2, schedule that
interview. Otherwise, if e1 prefers a2 to a1: if e2 has not interviewed a1 schedule that interview; else
if e2 has not interviewed a2, schedule that interview. These interviews are sufficient to distinguish
between the underlying preference orderings that give rise to different employer-optimal matchings;
hence, for the remaining information states, the policy can simply output a matching. If e1 prefers a1
to a2, the true underlying ordering is (a) or (b), and so return µ1. If e1 prefers a2 to a1 and e2 prefers
a2 to a1, the true underlying ordering is (d), and so again return µ1. Otherwise, the true underlying
ordering is (c), and so return µ2.

The above sound policy can be made into a diligent policy by the following modification: If e1
prefers a1 to a2, have e2 interview a2 first and then return µ1.

2.3. Minimizing the number of interviews
It is not hard to identify a sound policy: e.g., simply instruct all employers to interview all applicants
and then run the Gale–Shapley algorithm to find the employer-optimal matching. However, this
policy is likely to perform unnecessary interviews. We are motivated by the intuition that in reality,
interviews are very costly; thus, we seek sound policies that minimize their number. However, there
is a problem. Because policies select interview schedules dynamically, the number of necessary
interviews may depend not only on the policy’s input, but also on the true underlying preference
orderings. What does it mean, then, to say that a sound policy performs the minimal number of
interviews given an input I?

One straightforward answer is to say that we should minimize the expected number of interviews
with respect to the prior distribution over preference orderings. Let θ(f,�, pE,A) denote the number
of interviews that policy f performs when the true underlying preference profile is � � pE,A.

Definition 2.11 (Optimal in expectation). A policy f is optimal in expectation if it is sound and
it minimizes the expected number of interviews performed, given the prior Pr. That is, for all sound
policies g,

∑
��pE,A

Pr(�) · θ(f,�, pE,A) ≤
∑
��pE,A

Pr(�) · θ(g,�, pE,A).

This objective has a major drawback: optimal-in-expectation policies are not robust with respect
to changes in the setting, i.e., they are not prior-free. We would prefer a sound policy that performs
no more interviews than any other sound policy, regardless of the underlying preference profile.

Definition 2.12 (Very weak domination). A policy f very weakly dominates another sound pol-
icy g if and only if f performs no more interviews than g for any underlying preference profile. That
is, θ(f,�, pE,A) ≤ θ(g,�, pE,A) for all � � pE,A.

This dominance notion is called “very weak” because two algorithms can very weakly dominate each
other by always performing the same number of interviews for every �.

Definition 2.13 (Very weakly dominant policy). A policy f is very weakly dominant if it is sound
and it very weakly dominates any other sound policy g.

We would like to find a very weakly dominant policy. Unfortunately, such policies do not always
exist.

THEOREM 2.14. There exist inputs for which no very weakly dominant policy exists.

PROOF. Consider the setting given in Figure 1. To certify that µ1 is employer-optimal for (a)
or (b), we only need e1 to interview both candidates a1 and a2, to distinguish (a) from (c). To



certify that µ1 is employer-optimal for (b) or (d), we only need e2 to interview both candidates, to
distinguish (d) from (c). Thus any policy that instructs e1 to interview first—e.g. the policy described
in Example 2.10—is Pareto dominated in case (d), and any policy that instructs e2 to interview first
is Pareto dominated in case (a).

Motivated by this impossibility result, we consider the weaker, but still prior-free, notion of Pareto
optimality.

Definition 2.15 (Pareto domination). A policy f Pareto dominates another policy g if and only
if both policies are sound, f very weakly dominates g and, furthermore, ∃� � pE,A such that
θ(f,�, pE,A) < θ(g,�, pE,A).

Definition 2.16 (Pareto optimal policy). A policy f is Pareto optimal3 if there does not exist
another policy g that Pareto dominates f .

For example, the policy described in Example 2.10 is Pareto optimal. Because of the strict inequality,
Pareto domination is an asymmetric relation. Thus we can not have cycles in Pareto domination, and
so

PROPOSITION 2.17. A Pareto optimal policy always exists.

Now we briefly survey relationships between our solution concepts. Very weak dominance is the
strongest guarantee we can hope for: if we can find such a policy, it will also be Pareto optimal and
optimal in expectation. Furthermore, every optimal-in-expectation policy is guaranteed to be Pareto
optimal when the prior distribution has full support.

PROPOSITION 2.18. If a policy f is optimal in expectation and Pr has full support, then f is
Pareto optimal.

PROOF. Assume for contradiction that f is not Pareto optimal. Thus there exists a policy
g that Pareto dominates f . Therefore, θ(g,�, pE,A) ≤ θ(f,�, pE,A) for all � � pE,A and
θ(g,�, pE,A) < θ(f,�, pE,A) for at least one� � pE,A. Since Pr has full support, Pr(�) > 0 for
all� � pE,A. Therefore,

∑
��pE,A

Pr(�)·θ(f,�, pE,A) >
∑
��pE,A

Pr(�)·θ(g,�, pE,A), which
implies that f does not minimize the expected number of interviews performed, a contradiction.

All of the definitions in this section are stated in terms of sound policies. All of this section’s
definitions and results can be extended to diligent policies simply by replacing every occurrence of
“sound” with “diligent”. For example, f is a very weakly dominant, diligent policy if it is diligent
and it very weakly dominates any other diligent policy g. Unfortunately, the nonexistence result of
Theorem 2.14 can be extended to very weakly dominant, diligent policies.4

THEOREM 2.19. There exist inputs for which no very weakly dominant, diligent policy exists.

PROOF. Consider the same setting that we analyzed in the proof of Theorem 2.14, given in
Figure 1. Note that at least one employer has to interview both applicants, or we can not distinguish
between the four possible cases. Furthermore, all matched agents should interview each other, hence
the other employer must interview at least one applicant. Therefore, any diligent policy performs at
least three interviews before returning a matching.

To certify that µ1 = {(e1, a1), (e2, a2)} is employer-optimal for (a), we need e1 to interview both
candidates a1 and a2, to distinguish (a) from (c). Then, to have all matched agents interviewed each

3Pareto optimality is an extension of the standard concept of optimality to multiobjective settings. In game theory, the notion
is traditionally used to reason about settings in which there is one objective function for each agent’s utility function. We
apply the notion differently: we do not have an objective function per agent, but rather an objective function (counting the
number of interviews performed) per strict preference profile that refines the given partial information.
4Indeed, in what follows we will often observe that results that hold for sound policies also hold for diligent policies. However,
important differences between the two kinds of policies emerge in Section 5.



other, we only need to additionally have e2 to interview a2. To certify that µ1 is employer-optimal for
(d), we need e2 to interview both candidates, to distinguish (d) from (c). Then, to have all matched
agents interviewed each other, we only need to additionally have e1 interview a1. Thus any diligent
policy that instructs e1 to interview first is Pareto dominated in case (d) and any diligent policy that
instructs e2 to interview first is Pareto dominated in case (a).

3. FINDING OPTIMAL POLICIES
To compute an optimal-in-expectation (or Pareto optimal) policy, we can perform a brute-force
search, considering every policy in turn. If S denotes the set of global information states, then the
number of distinct policies is Θ((n2)|S|)—w.l.o.g., we assume that n ≥ m. Thus, brute-force search
requires time exponential in the number of information states, or O((n2)((n!)

n)). In this section we
show how to do better.

We begin by identifying information states in which a sound policy can terminate and return
a matching; i.e., in which enough information has been gathered that a policy can be sure of the
employer-optimal matching.

Definition 3.1 (Optimality certificate). A triple (I, µ, pE,A) is an optimality certificate if µ is
employer-optimal w.r.t. all � � I.

In other words, an optimality certificate is an information state that admits a super-stable matching
that is employer-optimal for all total orders consistent with the information state.

Define the size of an optimality certificate (I, µ, pE,A) as the number of interviews performed
in I. A minimal optimality certificate is an optimality certificate that cannot be made smaller by
dropping an interview.

Definition 3.2 (Minimal optimality certificate). A triple (I, µ, pE,A) is a minimal optimality
certificate if µ is employer-optimal w.r.t. all � � I, and if there is no smaller optimality certificate
(I ′, µ, pE,A) such that I � I ′.

Notice that a triple (I, µ, pE,A) could be an optimality certificate even if a pair of agents, say e
and a, are matched in µ but have not interviewed together according to I. To certify the outputs of
diligent policies, we also define diligent optimality certificates.

Definition 3.3 (Diligent optimality certificate). A triple (I, µ, pE,A) is a diligent optimality cer-
tificate if µ is employer-optimal w.r.t. all � � I and, furthermore, e ∈ Ia and a ∈ Ie for all
(e, a) ∈ µ.

Paralleling our earlier definitions, a diligent minimal optimality certificate is a diligent optimality
certificate of minimal size.

THEOREM 3.4. An optimal-in-expectation policy can be computed in time polynomial in |S|.
PROOF. We leverage the planning paradigm of MDPs [see, e.g., Puterman 1994]. An MDP is

a tuple (S,A, C, T, s0, F ), where S is a finite set of states; A is a finite set of actions; C is a cost
function where C(s, i, s′) represents the cost of taking action i in state s and transitioning to state
s′; T is a transition function where T (s, i, s′) denotes the probability that action i in state s leads
to state s′; s0 denotes the system’s initial state; and F denotes a set of terminal states. Intuitively,
our MDP encoding will work as follows. We start at an empty global information state and take
actions corresponding to interviews, paying a cost of 1 for every interview performed. The effect of
an action is to transition to a new information state that refines the previous state in the appropriate
way, with new rankings being revealed according to conditional probabilities derived from the prior.
We reach a terminal state when we have gathered enough information to stop conducting interviews.
Formally, let S denote the set of global information states, A denote the set of all possible interviews,
and C(I, e:a, I ′) = 1 for all e:a, I and I ′. Let T (I, e:a, I ′) = Pr(I′)

Pr(I) if I ′ refines I and has
exactly one more interview than I , that interview being e:a, and T (I, e:a, I ′) = 0 otherwise, where



Pr(I) =
∑
��I Pr(�). Let s0 be the empty global information state: I where Ii = ∅ for all i.

Finally, we will define F as the set of information states such that I ∈ F if all preference profiles
that refine I have the same employer-optimal matching, and there is no I ′, I � I ′ for which the
same property holds.

We compute F as follows. We will iteratively refine a mapping h from information states to
matchings, which will store all information states that we know to be safe stopping points for a
sound policy. (In fact, h stores minimal optimality certificates.) Initially, let h map every information
state to the null matching, in which no agent is matched. A sound policy can clearly stop when all
interviews have been performed. Thus, for all information states I in which all interviews have been
performed—including even interviews with unacceptable candidates—let h(I) = µI , where µI is
the employer-optimal matching for the preference profile induced by I. Initialize Q to be the set
of all such information states, and initialize F to be the empty set. We repeat the following until
Q is empty. Select an arbitrary information state I from Q such that h(I) does not map to the null
matching. Now, make a linear pass over Q, asking whether there exists a second information state I ′
such that h(I) = h(I ′) and there exists a pair (e, a) where removing e from Ia and I ′a and removing
a from Ie and I ′e yields the same global information state I∗. If so, remove both I and I ′ from
Q, add I∗ to Q and let h(I∗) = h(I). If no such I ′ exists, remove I from Q and add it to F . The
computation of F takes polynomial time in the number of states since initializing Q can be done in
polynomial time, each pass over Q takes time O(n ·m · |S|), and at least one information state is
removed from Q in each pass.

Our MDP is finite horizon because we always reach a terminal state within n ·m actions (i.e.,
performing all interviews). Therefore, a standard result from the literature on MDPs applies: a policy
that minimizes expected cost can be computed in time linear in the number of states via the backward
induction algorithm (see, e.g., [Puterman and Patrick 2010]). This policy is sound by the construction
of F , and hence is optimal in expectation.

An optimal-in-expectation diligent policy can be computed in time polynomial in |S|. The proof is
almost identical to the one given for Theorem 3.4 with the modifications that (1) h stores minimal
diligent optimality certificates, and (2) we remove I and I ′ from Q and add I∗ if, in addition to the
constraints stated in the proof, the pair (e, a) does not belong to h(I) = µI .

Overall, our MDP formulation yields an exponential time algorithm for identifying an optimal-in-
expectation policy, because the size of S is O(n!)n. While this is an exponential improvement over
brute-force search, we would prefer a polynomial-time guarantee. (We do note, however, that one
advantage of MDP formulations—in our domain and elsewhere—is that well-structured problem
instances can be solved tractably even when the problem is intractable in the worst case.) Our MDP
formulation made little use of the structure of the matching problem, so we have reason to hope
that better worst-case performance might be possible. One hurdle is that explicitly stating a policy
requires exponential space, and hence at least exponential time, as the number of information states is
exponential. However, one could hope to do better simply by executing an optimal policy rather than
stating it explicitly. The rest of this paper asks whether there are provably better ways of executing
optimal policies.

4. FINDING MINIMUM OPTIMALITY CERTIFICATES
We now turn to the computational problem of finding an optimality certificate (recall Definition 3.1)
that certifies the employer-optimal matching for a given preference profile in as few interviews as
possible. (Contrast with Definition 3.2, which only required the local property that an optimality
certificate could not be reduced by dropping an interview.) Such an optimality certificate would
have to be identified by any very weakly dominant policy, and would likely be useful for optimal-in-
expectation policies as well.

Definition 4.1 (Minimum optimality certificate for �). (I, µ, pE,A) is a (diligent) minimum op-
timality certificate for a preference profile � if µ is employer-optimal w.r.t. �, � � I, and if there
does not exist a smaller (diligent) optimality certificate (I ′, µ, pE,A) such that � � I ′.



THEOREM 4.2. A sound (or diligent) policy f is very weakly dominant (and diligent) if and only
if it computes a (diligent) minimum optimality certificate for every preference profile � � pE,A.

PROOF. First, consider the case of sound policies. To prove the first direction, assume for contra-
diction that f is not very weakly dominant. Then there must exist a policy g and a preference profile
� such that θ(g,�, pE,A) < θ(f,�, pE,A). Let µ be �’s employer-optimal matching and I be the
information state after performing interviews that g performs under�. For g to be sound, (I, µ, pE,A)
must be an optimality certificate. Thus f does not compute a minimum optimality certificate for �, a
contradiction. To prove the second direction, assume for contradiction that a minimum optimality
certificate is not computed for some preference profile �. Let (I, µ, pE,A) be a minimum optimality
certificate for �. Take the set of interviews corresponding to I, Z, and order them arbitrarily. Let
the policy g be as follows: if no interview has taken place, schedule the first interview in Z; else if
the first interview has taken place, schedule the second interview, and so on until all interviews in Z
has taken place; if all the interviews in Z has taken place and the current global information state is
I, return µ, else perform all possible interviews and return the employer-optimal matching of the
corresponding total order. Clearly g is sound and computes the minimum optimality certificate for �.
Thus θ(g,�, pE,A) < θ(f,�, pE,A) and therefore g dominates f on �, a contradiction. Exactly the
same argument suffices for diligent policies.

Unfortunately, the problem of computing a minimum optimality certificate is NP-hard.

Definition 4.3 (Optimality Certificate (OC) decision problem). Given (E,A, pE,A), a prefer-
ence profile � that refines pE,A and a bound K, decide whether there exists an optimality certificate
(I, µ, pE,A) of size at most K where µ is employer-optimal w.r.t. �.

THEOREM 4.4. The optimality certificate decision problem is NP-hard, even if the partial
preference ordering is an equivalence class ordering.

PROOF. The proof is by reduction from the feedback arc set (FAS) problem [Karp 1972]. Let
G = (V,D) be a directed graph with no self-loops or multiple arcs. The feedback arc set problem
is to decide whether there exists a set of arcs C of size ≤ K such that C contains at least one arc
from every directed cycle in G; i.e., such that removing all arcs in C breaks all directed cycles of
G. We construct an instance of the optimality certificate (OC) problem from (G,K) as follows.
For each vertex i in G, create employers ei and e′i and applicants ai and a′i. For each employer
ei, create a single equivalence class of acceptable candidates, containing applicant ai and every aj
where (i, j) is an arc in D. For each employer e′i, create a single equivalence class of acceptable
candidates containing applicants ai and a′i. For each applicant ai, create two equivalence classes
of acceptable candidates. Let the top class contain ei and e′i, and let the second class contain any
ej where (j, i) is an arc in D. For each applicant a′i, create a single equivalence class of acceptable
candidates containing only e′i. Finally, let � be any preference profile under which each ei most
prefers the corresponding ai, each employer e′i most prefers a′i, each applicant ai ranks ei at top,
and each applicant a′i most prefers e′i. Observe that matching µ where µ(ei) = ai and µ(e′i) = a′i is
employer-optimal w.r.t. �. To complete the proof we show that G has a FAS of size at most K if and
only if there exists an optimality certificate of size at most K + 2n for �. The proof has two parts:

(1) Let (I, µ, pE,A) be an optimality certificate of sizeK ′. Let S be a set of arcs such that (vi, vj) ∈ D
iff ei :aj ∈ I. We claim that S is of size at most K ′ − 2n and removing all the arcs in S breaks
all the cycles in G.

(2) Let S be a solution of size K to the feedback arc set problem. Let I be an information state
consistent with � under which each ei, 1 ≤ i ≤ n, has interviewed ai and all applicants aj such
that (vi, vj) ∈ S, and furthermore, each employer e′i, ∀1 ≤ i ≤ n, has interviewed ai. We claim
that (I, µ, pE,A) is an optimality certificate of size K + 2n for �.

Proof of (1): by contradiction. First note that I must include either both interviews ei :ai and
e′i :ai, or both interviews e′i :ai and e′i :a

′
i, ∀1 ≤ i ≤ n. As otherwise, an arbitrary total ordering



� � I exists under which ai and e′i rank each other at the top and hence must be matched in the
employer-optimal matching; contradicting that (I, µ, pE,A) is an optimality certificate. Thus, there
are at most K ′ − 2n interviews in I that are of type (ei, aj). So S is of size at most K ′ − 2n.

Assume that removing S does not break all the cycles in G. Let C be an unbroken cycle. For
each edge (vi, vj) in C it must be the case that ei :aj 6∈ I. Let µ′ be a matching in which µ′(ei) =
µ(e′i) = a′i if ei is not in C, and µ′(ei) = µ(ej) if (ei, ej) is in C. Let �′ be a strict ordering under
which each employer e′i likes a′i the best and each employer ei not in C likes ai the best (as in �),
and each ei in C likes aj the best, where (ei, ej) is in C. Note �′ is consistent with I. Furthermore,
employers not in C have the same applicant on the top of their list as in� (which should be consistent
with the outcome of the interviews in I), and for employers in C their true preferences between their
partners in µ and µ′ haven’t been revealed yet (since no interview between such an employer and his
match under µ′ has taken place). Note that µ′ is the employer-optimal matching for �′ and so µ is
not the employer-optimal matching for �′. Thus (I, µ, pE,A) is not an optimality certificate for �, a
contradiction.

Proof of (2): By contradiction. First note that it is easy to see, from the construction of I, that
|I| = K + 2n. Assume that (I, µ, pE,A) is not an optimality certificate for �. Thus, there exists a
preference ordering�′ consistent with I for which µ is not the employer-optimal matching. We know
that µ is a stable matching under any preference ordering consistent with I (it is the applicant-optimal
matching indeed). Thus, it should be the case that there is some other stable matching µ′ that the
employers collectively prefer to µ (some are indifferent and some prefer µ′). Therefore, there has
to be a set of employers ec1 , . . . , ecl such that µ′(eci) = µ(eci+1) for i < l and µ′(ecl) = µ(ec1).
If not, then there exists an unmatched employer and unmatched applicant who both prefer to be
matched together than stay unmatched, thus µ′ is not stable. Note that eci must prefer his match
in µ′ to his match in µ, aci , under �′. Thus eci has µ(eci+1

) in his one and only equivalence class
and therefore (vci , vci+1

) ∈ D. Furthermore (vcl , vc1) ∈ D. Thus, ec1 , . . . , ecl form a cycle in G, a
contradiction.

We can analogously define the diligent optimality certificate (DOC) decision problem. A corre-
sponding hardness claim also holds for DOC. This proof is quite similar to the proof just given; we
omit it to save space.

An optimal-in-expectation or a Pareto optimal policy need not compute optimality certificates
for every input. Nevertheless, we consider the hardness of computing optimality certificates to be
discouraging evidence about the tractability of the problem of identifying such policies.

5. IDENTICAL EQUIVALENCE CLASS ORDERINGS ON ONE SIDE OF THE MARKET
In many two-sided matching markets, there is some degree of positive correlation between agents’
preferences. Taken to the extreme, this means that agents on at least one side of the market may have
common a priori information, though perhaps different underlying preferences. In this section we
focus on such a setting, and furthermore consider the special case of partial preference orderings that
we introduced earlier in Section 2 (as “equivalence class orderings”).

Specifically, we now assume that each agent has an equivalence relation over (a subset of) the
candidates and a strict ordering over the equivalence classes. We denote the equivalence classes of
employer ei and applicant aj that are ranked `th in this strict ranking by cei,` and caj ,`, respectively.
We let cE,A denote the equivalence class profile for all employers and applicants. We assume that the
applicants are endowed with identical equivalence class orderings. Thus, formally we assume that
cai,k = caj ,k for all pairs of applicants ai and aj and all k; we allow applicants to have different
distributions and different underlying preference orderings, i.e., �ai 6= �aj . We do not restrict
employers’ preferences in any way. Irving et al. [2008] study a similar setting in which the preference
orderings of one or both sides of the market are derived from a common ranking of all the candidates
into strictly ranked equivalence classes. They refer to this common ranking as a master list. They
assume that each agent’s preference ordering is then derived from the common ranking by eliminating
his or her unacceptable partners, thus preserving the indifferences if they exist in the master list. They



were motivated in this work by how the applicants were ranked in the hospitals–residents matching
market in England in 2005–2006. Their setting differs from ours in the sense that we allow, and even
require, the agents to break ties.

We will obtain positive results in this restricted setting under the additional restriction to diligent
policies. (We demonstrate the necessity of our restriction to diligent policies at the end of the section.)
Even with all these restrictions, observe that a tabular representation of an optimal-in-expectation,
diligent policy requires exponential space, since there are an exponential number of information
states. As discussed earlier, we get around this problem by supplying an algorithm that executes such
a policy rather than specifying it explicitly. Specifically, we present a polynomial-time algorithm that
executes a very weakly dominant, diligent policy, and hence both an optimal-in-expectation and a
Pareto optimal, diligent policy.

Our algorithm for identifying a very weakly dominant, diligent policy works like Gale–Shapley
except that it is interleaved with another procedure that instructs agents to interview. It is described
formally as Algorithm 1; an informal description follows. We say that employer e ranks applicant
a in class ` if a is in the `th equivalence class of e. Similarly, we say that the applicants rank e in
class ` if e is in the `th equivalence class of the applicants. Algorithm 1 alternates between two main
stages, an interview stage and a tentative matching stage.

— In the interview stage, the algorithm chooses an unmatched employer e that satisfies two properties.
First, e has achievable applicants that he has not yet interviewed. An achievable applicant is one
that is acceptable to e, and has not yet received better offers. Second, if applicants rank e in class
`, then they rank any other employer e′ that satisfies the first property in a class below or equal
to `. Employer e then interviews all achievable applicants that he has not yet interviewed in his
equivalence class that is highest-ranked among those containing his achievable applicants.

— In the tentative matching stage, unmatched employers propose to their most preferred achievable,
interviewed applicant, if any. Each applicant a tentatively accepts her best proposal, say e. When
there is no unmatched employer with an achievable interviewed applicant, the tentative matching
stage ends.

If there are still unmatched employers with achievable applicants that they have not yet interviewed,
the algorithm returns to the interview stage. Otherwise, the algorithm halts and returns the final
tentative matching. The next example shows how the algorithm works.

Example 5.1. Consider the setting with 3 employers and 3 applicants depicted in Figure 3.
Notice that the applicants are endowed with identical equivalence classes. Assume that the true
strict preference ordering of the agents is �1, depicted in Figure 4. Running Algorithm 1 on this
setting returns the employer-optimal stable matching µ1 = {(e1, a1), (e2, a3), (e3, a2)} after 3 runs
of the main loop and 5 interviews. Assume, for the sake of this example, that in the interview stage,
Algorithm 1 chooses the lowest indexed employer that satisfies the two required properties. Then,
the execution of Algorithm 1 on �1 will be as follows.

(1) e1 is instructed to interview both a1 and a2. e1 proposes to his most favorite candidate a1 and is
matched to her. a1 is no longer achievable for e3 and so is removed from his list.

(2) e2 is instructed to interview both a1 and a3. e2 proposes to his most favorite candidate a3 and is
matched to her. a3 is no longer achievable to e3 and so is removed from his list.

(3) e3 is instructed to interview a2, the only applicant still achievable for him. e3 proposes to a2 and
is matched to her.

If the true ordering was �2, depicted in Figure 5, then running Algorithm 1 would return the
employer-optimal stable matching µ2 = {(e1, a2), (e2, a1), (e3, a3)} after 3 runs of the main loop
and 5 interviews.

(1) e1 is instructed to interview both a1 and a2. e1 proposes to his most favorite candidate a1 and is
matched to her. a1 is no longer achievable to e3 and so is removed from his list.



Algorithm 1: Lazy Gale-Shapley
Input: E, A, cE,A

Output: Matching µ
Initialize

` = 1 ; // Current equivalence class number of applicants
µ(ei)← ∅, µ(aj)← ∅,∀ei ∈ E, ∀aj ∈ A ;
χei ← ∅, ∀ei ∈ E ; // ei’s set of achievable interviewed applicants

repeat
Interview

Stage
foreach ei ∈ E do

if µ(ei) = ∅ then
Pei ← The set of achievable applicants in the highest-ranked equivalence class of ei among those with
his achievable applicants, whom he has not interviewed yet ;

Eu,` ← the set of unmatched employers ed in equivalence class ` of the applicants with nonempty Ped ;
while Eu,` = ∅ do

`← `+ 1 ;
Eu,` ← the set of unmatched employers ed in equivalence class ` of the applicants with nonempty Ped ;

ei ← an arbitrary employer in Eu,` ;
foreach aj ∈ Pei do

ei interviews aj ;

χei = Pei ;
Pei ← ∅ ;

Tentative
Matching Stage

repeat
foreach ei ∈ E do

if µ(ei) = ∅ and χei 6= ∅ then
ei offers a position to the achievable applicant it prefers the most; she is removed from χei ;

Each applicant who has received one or more job offers tentatively accepts the offer from the employer she
most prefers and rejects the rest; matching µ is updated accordingly ;
Each tentatively matched applicant aj is no more achievable to those employers that are in the equivalence
classes ranked lower than the one µ(aj) belongs to; she is removed from the lists of such employers; χei is
updated accordingly for all ei ∈ E ;

until there is no unmatched employer ei with χei 6= ∅;
until each employer is either tentatively matched or has no achievable applicants;
return µ ;

e1 e2 e3
a1 a1 a1
a2 a3
a3 a2 a2

a3
pE

a1 a2 a3
e1 e1 e1
e2 e2 e2
e3 e3 e3

pA

Fig. 3. A setting with 3 employers and 3 applicants. Applicants are endowed with identical equivalence classes.

(2) e2 is instructed to interview both a1 and a3. e2 proposes to his most favorite candidate, a1. a1
accepts e2’s proposal and rejects e1 whom she likes less than e2. e2 is matched to a1 and a1 is
removed from e1’s list. a1 proposes to a2 who is now at the top of his list, and is matched to her.
a2 is no longer achievable to e3 and so is removed from his list.

(3) e3 is instructed to interview a3, the only applicant still achievable to him. e3 proposes to a3 and is
matched to her.

Note that �2 is almost identical to �1, depicted in Figure 4, except that e2’s top choices are reversed.

Our main claim in this section is that Algorithm 1 executes a very weakly dominant, diligent
policy. Key to the proof is to show that, regardless of the underlying preference profile, Algorithm 1
always identifies a diligent minimum optimality certificate.



e1 e2 e3
a1 a3 a1
a2 a1 a2
a3 a2 a3

a1 a2 a3
e2 e1 e1
e1 e2 e2
e3 e3 e3

Fig. 4. Agents’ preferences under total order �1 that
refines the setting depicted in Figure 3.

e1 e2 e3
a1 a1 a1
a2 a3 a2
a3 a2 a3

a1 a2 a3
e2 e1 e1
e1 e2 e2
e3 e3 e3

Fig. 5. Agents’ preferences under total order �2 that
refines the setting depicted in Figure 3.

THEOREM 5.2. Algorithm 1 executes a very weakly dominant, diligent policy in time polynomial
in the input size.

PROOF. The proof proceeds in four steps.

Step 1: Algorithm 1 terminates in time polynomial in the input size. Note that Algorithm 1 halts
once each employer is matched or has no more achievable applicants to propose to or interview.
Hence, the algorithm is guaranteed to perform at least at least one interview in the interview stage of
each iteration. Furthermore, in each invocation of the tentative matching stage, at least one employer
proposes to an applicant and is then either rejected by that applicant or is tentatively matched.
There are n ·m possible interviews and hence n ·m possible proposals. Thus the algorithm halts in
polynomial time.

Step 2: Algorithm 1 executes a diligent policy. Recall that the employer-proposal variant of the Gale–
Shapley algorithm yields the employer-optimal stable matching. The algorithm is robust w.r.t. varying
the order in which the employers propose, as long as no tentatively matched employer proposes,
and employers always propose to their top choice among achievable candidates. In Algorithm 1, no
employer interviews an applicant unless all the applicants he ranks in higher equivalence classes
are unachievable, no employer proposes when he is tentatively matched, and unmatched employers
always propose to the most-preferred achievable, interviewed applicant. The algorithm only halts
when each employer is matched or has no more achievable applicants to propose to or interview. Thus
Algorithm 1 returns the same matching that Gale–Shapley would have returned for any preference
profile that refines the global information state that holds at the moment Algorithm 1 terminates.
Because Gale–Shapley is sound, Algorithm 1 is sound. Since no employer proposes to an applicant
he has not interviewed, Algorithm 1 is also diligent.

Step 3: Algorithm 1 only ever instructs an employer in applicants’ equivalence class ` to interview
applicants, or to make offers, when all employers in applicants’ higher-ranked equivalence classes
are matched to their employer-optimal matches or have been rejected by all applicants they find
acceptable. By the interview stage, if e in applicants’ equivalence class ` is chosen to perform
interviews, all employers in higher-ranked equivalence classes must either be tentatively matched
or have no more achievable applicants. If none of the matched employers makes a new offer, their
tentative matches become final, and so must be, by Step 2, their employer-optimal matches. If any of
the matched employers makes a new offer, it can only be because he has been rejected by his current
tentative match. Let e∗ be the first employer in applicants’ equivalence class ` − 1 or higher that
gets rejected by his current match in a round in which employers in applicants’ equivalence class
ranked ` or lower are interviewing. Then e∗’s tentative match must have received an offer from a
more-preferred employer, e′∗, in applicants’ equivalence class `− 1 or higher. This is only possible if
e′∗ was rejected by his match in an earlier round, contradicting our definition of e∗.

Step 4: Algorithm 1 computes a diligent minimum optimality certificate (I, µ, cE,A) for any prefer-
ence profile � such that � � cE,A. Given that Algorithm 1 is diligent, it is sufficient to show that
all interviews performed by Algorithm 1 on preference profile � are in I. We show this in two steps.
For a given employer e that applicants rank in class `, let Ω be the set of all applicants in equivalence
classes of e that are above or equal to the equivalence class containing µ(e), unless those applicants
are matched by µ to employers that applicants rank in a class above `. We first show that I includes
all interviews in Ω. We then show that Algorithm 1 performs only interviews in Ω.



— I includes all interviews in Ω. By our requirement that matched agents must interview each other,
any diligent policy must require e to interview µ(e). Furthermore, for each a, a 6= µ(e), who is
ranked by e in the same equivalence class as µ(e) or higher, and who is not matched to an employer
she ranks in a higher equivalence class than `, there exists a preference ordering �′ that is the same
as � except that e and a promote each other to the highest possible position in their respective
rankings. Under �′, (e, a) blocks µ; thus µ is not employer-optimal under �′. However, unless e
interviews a, preference profile �′ refines I and thus (I, µ, cE,A) is not an optimality certificate.

— Algorithm 1 performs only interviews in Ω. We need to show that e does not interview applicant a
if applicants rank µ(a) in a class above ` (recall that ` is the applicants’ class containing e), and
also if e ranks a in a class below the class containing µ(e). By Step 3, any a who ranks µ(a) in an
equivalence class ranked higher than ` must be matched to him when e is chosen and thus is not
achievable to e and so is not interviewed by e. If e ranks a in a class below µ(e), then e also does
not interview a in Algorithm 1 because e does not interview applicants in an equivalence class
unless he is rejected by all applicants in higher ranked equivalence classes. Since µ(e) does not
reject e, we can conclude that e does not interview a.

Finally, the desired result follows by Theorem 4.2.

Recall that to get a polynomial-time result, we not only restricted our partial information setting, but
also turned to diligent policies as opposed to sound policies. We have already seen, in Theorem 2.19,
that without any restriction on the given partial preference ordering, we can not guarantee the
existence of a very weakly dominant, diligent policy. The next theorem shows that even in our
restricted setting, we can not guarantee the existence of a sound policy that very weakly dominates
every other sound policy.

THEOREM 5.3. There exist equivalence class orderings in which applicants are endowed with
identical equivalence classes, for which no very weakly dominant policy exists.

PROOF. Consider a setting with 2 employers and 2 applicants where all agents initially rank both
candidates in the same equivalence class. Let I1, I2, I3, and I4 be four information states that can
be reached after a sequence of three interviews with the properties that:

— under I1, e1 and a1 prefer each other the most,
— under I2, e2 and a2 prefer each other the most,
— under I3, e2 and a1 prefer each other the most, and
— under I4, e1 and a2 prefer each other the most.

The reader can easily verify that these four information states are indeed all reachable after three inter-
views in the setting described. It is also easy to verify that µ1 = {(e1, a1), (e2, a2)} is the employer-
optimal matching for any preference ordering that refines I1 and/or I2, and µ2 = {(e1, a2), (e2, a1)}
is the employer-optimal matching for any preference ordering that refines I3 and/or I4.

Let �i � Ii, 1 ≤ i ≤ 4, be the four strict preference orderings depicted in Figure 6. The
minimum optimality certificate for �1 is (I1, µ1, pE,A). To see this, note that to certify µ1 as the
employer-optimal matching for �1, e1 needs to have interviewed both applicants, to distinguish
between �1 and �′ � I4, e1�′a1

e2 and a1�′e2a2. In addition, e2 has to interview a1 in order to
distinguish between �1 and �′′ � I3, where � and �′′ are the same except that a1’s preferences are
reversed. Similarly, we can prove that the minimum optimality certificate for �2 is (I2, µ1, pE,A),
for �3 is (I3, µ2, pE,A), and for �4 is (I4, µ2, pE,A). Notice that each of these minimum optimality
certificates are reached by three interviews. Any policy that performs the interview e1 :a1 (respectively
e2 :a2, e1 :a2, e2 :a1) is Pareto dominated under �2 (respectively under �1, �3, �4). Hence, no very
weakly dominant policy exists.

The reader may wonder whether we can recover our positive result if we restrict the setting
such that the employers, as opposed to applicants, are endowed by identical equivalence classes.
(Observe that the restriction is not symmetric because in both cases we are concerned with identifying
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a1 a1 e1 e1

�2

e1 e2 a1 a2
a1 a1 e2 e2
a2 a2 e1 e1

�3

e1 e2 a1 a2
a2 a2 e1 e1
a1 a1 e2 e2

�4

Fig. 6. Four of the possible strict preference orderings that refine a setting with 2 employers and 2 applicants with empty
initial information.
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e1 e2 e3 e4
a1 a2 a2 a2
a2 a1 a1 a1

Employers’ partial preference orderings
Fig. 7. A setting with 4 employers and 2 applicants. Employers have full knowledge of their preferences as shown in the
table on right. Applicants’ partial preference ordering is as depicted on the left: they both prefer e1 to e3 and e4.

e1 e2 e3 e4
a1 a2 a2 a2
a2 a1 a1 a1

a1 a2
e1 e2
e2 e1
e3 e3
e4 e4

Fig. 8. Agents’ preferences under total order �.

e1 e2 e3 e4
a1 a2 a2 a2
a2 a1 a1 a1

a1 a2
e1 e1
e2 e2
e3 e3
e4 e4

Fig. 9. Agents’ preferences under total order �′.

employer-optimal matchings.) It turns out that we can not; instead, this new restricted setting leads
us back to the nonexistence result of Theorem 2.19.

THEOREM 5.4. There exist equivalence class orderings in which employers are endowed with
identical equivalence classes, for which no very weakly dominant, diligent policy exists.

The proof follows immediately from the proof of Theorem 2.19. Lastly, we show that our restriction
to equivalence class orderings was also important for getting us around the nonexistence of very
weakly dominant, diligent policies.

THEOREM 5.5. There exist inputs for which no very weakly dominant diligent policy exists, even
when applicants are endowed with identical, strict partial preference orderings.

PROOF SKETCH. Consider a setting with 4 employers and 2 applicants where the agents’ partial
preference orderings are as depicted in Figure 7. That is, the employers initially have full knowledge
of their preferences and the applicants’ identical partial preference orderings reveal that they both
prefer e1 to e3 and e4. Let the agents’ preferences under total orders � and �′ be as depicted
in Figure 8 and Figure 9. Note that � and �′ are the same except that a2’s top two choices are
interchanged.

Matching µ, µ(e1) = a1 and µ(e2) = a2, is the employer-optimal matching under both �
and �′. The minimum diligent optimality certificate for �, (I, µ), consists of the interviews Z =
{e1 :a1, e2 :a2, e1 :a2}, whereas the minimum diligent optimality certificate for�′, (I ′, µ), consists of
the interviews Z ′ = {e1 :a1, e2 :a2, e3 :a2, e4 :a2}. Note that Z and Z ′ only share the two interviews
e1 :a1 and e2 :a2, and that both � and �′ refine the information state resulting from these two
interviews. Thus, a policy that computes a minimum diligent optimality certificate for � cannot
compute one for �′ (and vice versa): a policy that performs e1 :a2 is Pareto dominated under �′, and
a policy that performs e3 :a2 and/or e4 :a2 is Pareto dominated under �. Therefore, no very weakly
dominant diligent policy exists for the given setting.



6. CONCLUSIONS
We have introduced a model of two-sided matching markets in which agents begin with partially
ordered preference information, and can refine these preferences through interviews. We defined
three optimization criteria to capture the idea of minimizing the number of interviews required to
find a stable matching that is optimal for a given side of the market. We showed that among these
criteria, very weakly dominant policies do not always exist, and that in general settings it is NP-hard
to find such a policy if it does exist. In contrast, optimal-in-expectation and Pareto-optimal policies
do always exist; they can be found in exponential time via an MDP encoding. We can do better in
the setting where one side of the market is endowed with identical equivalence class orderings; here,
we can leverage the notion of minimum optimality certificates to execute a very weakly dominant,
diligent policy in polynomial time.

Our paper raises many questions. A particularly important open problem is the hardness of finding
optimal-in-expectation policies (or Pareto optimal policies) in general settings. One could also
consider approximating these objectives. It would be interesting to identify settings under which
we can bound the number of interviews our proposed algorithm performs (e.g., w.r.t. the number of
equivalence classes and the number of agents in each equivalence class). In this vein, it would be
particularly useful to understand when we only need a linear number of interviews, as this mimics
the setting in the NRMP where applicants can only list a constant number of hospitals. Another
interesting direction is to forgo the employer-optimality of the matching, and look for approximately
employer-optimal matchings, in exchange for fewer interviews. Conversely, it is also interesting
to investigate whether one can guarantee the employer-optimal matching by performing at most
boundedly more than the minimum number of interviews required by an optimal policy. It is also
important to investigate how and when our results could be extended to the many-to-one matching
markets. This would of course depend on the employers’ preferences over groups of applicants, as
well as the differences in the number of applicants each employer intends to hire. For example, if
employers have different number of spots available, it may be beneficial to have employers with larger
numbers of spots interview first. Finally, it would be worthwhile to investigate the computational
impact of committing to decentralized policies.
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