Recap

5. b) Many-to-one markets: substitutable preferences

6. a) Large market results: empirical evidence
Outline

6. b) **Large market results**: incentives, couples
Part 6: Large Market Results.
Theoretical Result

Theorem. Even allowing women *arbitrary* preferences, the fraction of agents with more than one stable mate tends to zero as n tends to infinity (holding k fixed).

[Immorlica-Mahdian ‘05, Kojima-Pathak ‘09]
Intuition

Doctors

Hospitals

$q_1 > 3$
q_2
$q_3 = 1$
One-to-One Markets

Proof Sketch:

1. An algorithm that counts the number of stable husbands of a given woman.
2. Bounding probability of having > 1 stable husband in terms of the number of singles.
3. Bounding the number of singles by the solution of the occupancy problem.
Step 1: Finding Stable Husbands of g

- Use men-proposing to find stable matching
- Whenever algorithm finds stable matching,
 - have g divorce husband and truncate preference
 - continue men-proposing algorithm
- Terminate whenever
 - previously married man runs through his list, or
 - previously single woman receives a proposal
Question. If each woman has an arbitrary complete preference list, and each man has a random list of k women, what is the probability that this algorithm returns more than one stable husband for g?

The main tool that we will use to answer this question is the *principle of deferred decisions*:

Men do not pick the list of their favorite women in advance; Instead, every time a man needs to propose, he picks a woman at random and proposes to her. A man remains single if he gets rejected by k different women.
Step 2: Bounding the Probability

• Consider first stable matching μ found by alg.
• Let $A_\mu = \{\text{single women in } \mu\}$, and $X_\mu = |A_\mu|$.
• Conditioning on random choices made before algorithm finds μ,

\[
 \Pr[g \text{ has } > 1 \text{ stable mate } | \mu] < \frac{1}{(X_\mu+1)}
\]

\[
 \Pr[g \text{ gets another proposal } | \mu] = \frac{1}{(X_\mu+1)}
\]

• Removing conditioning, prob. < $E_\mu \left[\frac{1}{(X_\mu+1)} \right]$
Step 3: Number of Singles

- Want to compute $E_\mu \left[\frac{1}{(X_\mu + 1)} \right]$
- Note probability woman remains single is at least probability she’s never named by a man.
- Let $Y_{m,n} = \#$ empty bins when m balls thrown randomly into n bins.

Lemma. $E_\mu \left(\frac{1}{(X_\mu + 1)} \right) \leq E_\mu \left(\frac{1}{(Y_{(k+1)n,n} + 1)} \right) + \frac{k^2}{n}$
The Occupancy Problem

Lemma. \[E_\mu \left(\frac{1}{(Y_{m,n}+1)} \right) \leq \frac{e^{m/n}}{n} \]

Proof Sketch.

• Use the principle of inclusion and exclusion to compute \(E[1/(Y_{m,n}+1)] \) as a summation.

• Compare this summation to another (known) summation term-by-term.
Putting it all together...

Theorem. In the model where women have arbitrary complete preference lists and men have random lists of size k, the probability that a fixed woman has more than one stable husband is at most

$$\frac{e^{k+1} + k^2}{n}.$$
Extensions

Arbitrary IID distributions?
Extensions

Women: n hospital positions, preference is a uniform random permutation of all men

Men: n applicants, preference chosen by:
 • distribution D over women
 • construct list iteratively by selecting from D
Extension

Theorem. In the above model, the probability that a fixed woman has more than one stable husband is at most:

\[
\frac{16k}{\ln(n)} + \frac{3\ln(n)}{4k \sqrt{n}} = O\left(\frac{k}{\ln(n)}\right)
\]
Many-to-One Extension

Theorem. Truthfulness is almost surely a best response when others are truthful.

Proof Sketch:

- Argue “dropping strategies” comprehensive
- Modify alg counting stable husbands to study rejection chains of dropping strategies
- Argue rejection chains don’t return to college w/high prob. when market large