Recap

Theorem 0.1 (Tutte-Berge Formula): For any graph G, $\nu(G) = \min_{U \subseteq V} (|V| + |U| - o(G - U))/2$.

Def: U is a Tutte-Berge witness if $\nu(G) = (|V| + |U| - o(G - U))/2$.

Def: The Edmonds-Gallai decomposition partitions the vertices V of a graph G into sets

- $D(G)$ – set of vertices v such that v is exposed by some maximum matching,
- $A(G)$ – set of neighbors of $D(G)$, and
- $C(G)$ – set of all remaining vertices.

Construction: vertices reachable by odd/even alternating paths from a vertex $v \in X$.

Let M be matching returned by Edmonds’ Algorithm, X be exposed vertices.

- Even := $\{v : \exists$ even alternating path from X to $v\} = D(G)$, odd compoents in $G - U$ and factor critical
- Odd := $\{v : \exists$ odd alternating path from X to v and no even one$\} = A(G)$

Claim: There is no edge between Even and Free.

Claim: There is no edge within Even in G_0.

Claim: $C(G)$ is even components.

Proof: We proved no edge between Even and Free, so M matches vertices of $C(G)$ to vertices of $C(G)$ so $|M \cap E(C(G))| = |C(G)|/2$.

Claim: $D(G)$ is odd components, each of which is factor-critical.

Proof: For every connected component H of $(G - U) \cap D(G)$, we show:

1. Either $|X \cap H| = 1$ and $|M \cap \delta(H)| = 0$, or $|X \cap H| = 0$ and $|M \cap \delta(H)| = 1$ (where $\delta(H)$ is edges with exactly one endpoint in H).
2. H is factor-critical.

Tutte-Berge Witnesses

Theorem 0.2 $U = A(G)$ is a Tutte-Berge witness.

Proof: Want to show

$$|M| \geq \frac{1}{2}(|V| + |A(G)| - o(G \setminus A(G)))$$

(other direction always holds). Note that

$$|M| \geq |M \cap E(C(G))| + |M \cap E(D(G))| + |M \cap \delta(A(G))|$$

and

- we showed $|M \cap E(C(G))| = |C(G)|/2$
- previous proof, first subclaim, showed $|M \cap E(D(G))| = \frac{1}{2}(|D(G)| - o(G \setminus A(G)))$ (each component leaves one unmatched or matched to outside)
- $|M \cap \delta(A(G))| = |A(G)|$ since all $v \in A(G)$ matched to vertices of $D(G)$ (if not can grow matching)

so have

$$\frac{1}{2} \left(|C(G)| + |D(G)| + 2|A(G)| - o(G \setminus A(G)) \right)$$

$$= \frac{1}{2} \left(|V| + |A(G)| - o(G \setminus A(G)) \right)$$

as claimed.

Matching Polytope

Def: For a matching $M \subseteq E$, define its incidence vector $\chi(M) \in \mathbb{R}^{|E|}$ to be $\chi(M)_e = 1$ if $e \in M$, 0 otherwise. The **matching polytope** \mathcal{P} is the convex hull of incidence vectors of matchings.

Goal: Represent \mathcal{P} by set of linear inequalities on variables $\{x_e\}$.

Question: Come up with some inequalities.

- $x_e \geq 0$
- $x(\delta(v)) = \sum_{e \in \delta(v)} x_e \leq 1$: each vertex has at most one adjacent edge

Call this polytope P_1.

Note: $\mathcal{P} \subseteq P_1$

Example: P_1 is not contained in \mathcal{P}: triangle

- $\mathcal{P} = \text{conv}\{(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0)\}$
- $(0.5, 0.5, 0.5) \in P_1$ but not in \mathcal{P}

Question: Additional constraint?

Def: The **blossom constraints** are

$$x(E(U)) = \sum_{e \in E(U)} x_e \leq \frac{|U| - 1}{2}, U \subseteq V, |U| \text{ odd.}$$

The polytop P_2 is P_1 together with the blossom constraints.

Theorem 0.3 (Edmonds, 1965): P_2 equals the matching polytope \mathcal{P}.

[[Edmonds gave algorithmic proof, we use TDI.]]
Total Dual Integrality

Recall primal/dual LPs:

Primal P:
max $c^T x$ s.t. $Ax \leq b$

Dual D:
min $b^T y$ s.t. $A^T y = c$ and $y \geq 0$

Def: A linear system $\{Ax \leq b\}$ is totally dual integral (TDI) if for any integral cost vector for the primal such that $c^T x, Ax \leq b$ is finite, there exists an integral optimal dual solution.

Theorem 0.4 (Edmonds-Giles, 1979): If a system $\{Ax \leq b\}$ is TDI and b is integral, then $\{Ax \leq b\}$ is integral (i.e., the extreme points are integral).

[[We will prove this later.]]

Note: We will show P_2 is TDI and hence is convex hull of all integral points contained in it, proving that $P_2 = \mathcal{P}$.

Polyhedral combinatorics:

- define $Ax \leq b$ and show integral with vertices corresponding to certain combinatorial objects.
- show system is TDI so dual has integral solution as well.
- find combinatorial interpretation for dual to get min-max theorem, or also helps design primal-dual alg by discretizing space.

[[Rational polyhedra have TDI representations.]]

Theorem 0.5 (Giles-Pullyblank, 1979): For a rational polyhedron \mathcal{P}, there exist A and b with A integral such that $\mathcal{P} = \{x : Ax \leq b\}$ and the system is TDI.

Note: b integral iff \mathcal{P} integral

Example:

$\mathcal{P} = \text{conv}\{(0,3), (2,2), (0,0), (3,0)\}$

Representation: $\{x, y : x \geq 0, y \geq 0, x + 2y \leq 6, 2x + y \leq 6\}$

Draw figure.

Suppose $c = (1,1)$. Primal opt is $(2,2)$ and tight constraints are $(1,2)$ and $(2,1)$.

[[Tight constraints are of A, i.e., normals of facets at $(2,2)$]]

Thus for $A^T y = c$ to have integer solution, must be able to write c as integer combination of $(1,2)$ and $(2,1)$.

[[Tight constraints in opt primal soln are non-zero variables in opt dual soln.]]

Question: Make TDI with new representation?

Representation: add inequalities $x + y \leq 4, x, y \leq 3$, becomes TDI.

Hilbert Basis

Question: When is a system TDI? Consider problem $\max\{cx : Ax \leq b\}$ with c integral and opt soln $\beta < \infty$.

- There’s opt soln x^* in some face F defined by $\{Ax \leq b\}$ and $cx = \beta$.
- Suppose F is an extreme point, let $A'x = b'$ be inequalities tight at x^* (i.e., $A'x^* = b'$).
- Dual is $\min\{b^T y : A^T y = c, y \geq 0\}$ so opt dual corresponds to c being expressible as non-neg combination of row vectors, i.e., the cone of row vectors of A'.
- For y to be integral, must be able to ex-
press points in cone as integer combinations.

Def: A set of vectors \(\{a_i : a_i \in \mathbb{Z}^n \} \) is a Hilbert basis if for any integral \(c \in \text{cone}(a_i) = \{ \sum_i \lambda_i a_i : \lambda_i \geq 0 \} \), there exist non-negative integers \(\mu_i \) such that \(c = \sum_i \mu_i a_i \).

Example: For vertex \((3, 0)\) above, tight constraints \(\{(1, 2), (-1, 0), (0, 1)\} \) form a Hilbert basis.

\[
\lambda_1 - \lambda_2 = c_1 \quad \text{and} \quad 2\lambda_1 + \lambda_3 = c_2
\]

so for \(\lambda_1 > 0, \ 2\lambda_1 + \lambda_3 \geq 2 \) and we can get all these. For \(\lambda_1 = 0, \lambda_2, \lambda_3 \) are non-neg integers if \(c \) integral, so we can get all these too.

Theorem 0.6 The rational system \(Ax \leq b \) is TDI iff for each face (actually sufficient to check for each extreme point), tight constraints form a Hilbert basis.

\[
\text{[F. by above observations, i.e., LP- duality.]} \]

We can always add constraints to make it TDI:

Theorem 0.7 Any rational polyhedral cone \(C = \{ \sum_i \lambda_i a_i : \lambda_i \geq 0, \lambda_i \in \mathbb{R} \} \) with \(\{a_i\} \) integral has a finite integral Hilbert basis.

Proof: Let \(Q = \{ \sum_i \lambda_i a_i : 0 \leq \lambda_i \leq 1 \} \) and note for any integral \(c \in C \),

\[
c = \sum_i \lambda_i a_i = \sum_i (\lambda_i - \lfloor \lambda_i \rfloor) a_i + \sum_i \lfloor \lambda_i \rfloor a_i
\]

Call this \(z + w \). Note

- \(w \) integral since \(a_i \) and \(\lfloor \lambda_i \rfloor \) are
- \(c \) integral by assumption hence \(z \) is too
- \(z \in Q \)
- \(a_i \in Q \)
- thus \(w \) integral combination of integral vectors in \(Q \)
- so \(c = z + w \) is also integral combination of integral vectors in \(Q \)

and therefore \(Q \cap \mathbb{Z}^n \) is a finite integral Hilbert basis for \(C \).

Note: In fact don’t need to assume \(\{a_i\} \) integral, follows from rationality of cone.

\[
\text{[[We are now ready to prove main theorem.]]}
\]

Claim: (Edmonds-Giles, 1979): If a system \(\{Ax \leq b\} \) is TDI and \(b \) is integral, then \(\{Ax \leq b\} \) is integral.

Proof: By contradiction.

- Consider extreme point \(x^* \) of \(P \) s.t. \(x^*_j \not\in \mathbb{Z} \) for some \(j \).
- Let \(c \) be integral vector s.t. \(x^* \) unique opt by picking rational vector in cone at \(x^* \) and scaling.
- Consider \(\hat{c} = c + \frac{1}{q} e_j \) (inside cone for large enough \(q \)).
- Since \(q\hat{c}^T x^* - qc^T x^* = x^*_j \not\in \mathbb{Z} \), either \(q\hat{c}^T x^* \) or \(qc^T x^* \) not integral.
- By duality and fact that \(b \) is integral, one of corresponding dual soln \(\hat{y} \) or \(y \) not integral.
- Contradicts TDI since both \(q\hat{c} \) and \(qc \) integral.