Sets Review

Universe $U = \{0, 1, 2, 3\}$ with bit vector $x = x_0 x_1 x_2 x_3$.

Sets $A = \{1, 2\}, x_A = 0110$, and $B = \{2, 3\}, x_B = 0011$.

Set concepts:

- union $A \cup B = \{1, 2, 3\}, x_{A \cup B} = 0111$
- intersection $A \cap B = \{2\}, x_{A \cap B} = 0010$
- complement $A^c = \{0, 3\}, x_{A^c} = 1001$

Induction Review

Basic Induction:

Want to prove $P(n)$.

- Prove base case $P(1)$.
- Prove $P(n) \rightarrow P(n+1)$ (by direct proof).
 - Inductive hypothesis: assume $P(n)$.
 - Inductive step: using hypothesis, derive $P(n+1)$.

Invariants by Induction

[[Useful to prove algorithm is correct.]]

Example: Robot moves on diagonals of grid, starting at $(0, 0)$.

Claim: Robot never steps on flower at $(0, 1)$.

States after

- 1 move: $(1, 1), (1, -1), (-1, 1), (1, 1)$
- 2 moves: $(0, 0), (0, 2), (2, 2), (2, 0), \ldots$
- etc.

Sum of coordinates always even!

Predicate $P(t)$: After t steps, if robot is at (x,y), then $x+y$ is even.

Claim: Sum of coordinates always even.

Proof: By induction.

- Base case: $P(0)$ is true since starting position $(0, 0)$ is $0 + 0 = 0$ is even.
- Inductive hypothesis: after t steps, robot is at (x,y) where $x + y$ is even.
- Inductive step: by cases.
 - Robot moved northwest. New position is $(x-1, y+1)$. Sum is $x + y$, even by hypothesis.
 - Robot moved northeast. New position is $(x+1, y+1)$. Sum is $x+y+2$, even.
Since $1 + 0 = 1$ is odd, robot never steps on flower.

Example: The 8-puzzle: slide tiles to convert

```
A B C
D E F
H G .
```

into

```
A B C
D E F
G H .
```

Claim: Not possible.

Note: Row moves don’t change order.

Note: Column moves change order of two pairs.

Def: Tiles T_1 and T_2 are inverted if out-of-alphabetical order.

```
A B C
D E F
E H .
```

Has three inversions: (D, F), (E, F), (E, G).

Claim: Moves change number of inversions by 2 or 0.

Proof:

- Row move doesn’t change number.

- Column moves switch exactly two pairs:
 - If both pairs originally inverted, total number of inversions decreases by 2.
 - If just one pair originally inverted, it gets sorted and other gets inverted, total doesn’t change.

Claim: In every configuration reachable by legal moves, parity of number of inversions is odd (i.e., sum is an odd number).

Proof: By induction.

- Base case: initial configuration has 1 inversion.

- Inductive hypothesis: after t moves, odd parity.

- Inductive step: by above claim, number changes by 2 or 0, so $t + 1$’th move has odd parity by inductive hypothesis.

Sorted board not reachable since parity is even.

Strong Induction

Useful when predicate $P(n + 1)$ naturally depends on some $m < n$.

Suppose you want to prove $P(n)$.

- Prove base case $P(1)$.

- Inductive hypothesis: assume $P(m)$ for all $1 \leq m \leq n$.

- Inductive step: using hypothesis, derive $P(n + 1)$.

Example: Prime factorization.

Claim: Every integer $n > 1$ is product of primes.

Proof: By strong induction.

- Base case $P(2)$: $2 = 1 \times 2$ is product of primes.
• Inductive hypothesis: \(m \) is product of primes for all \(2 \leq m \leq n \).

• Inductive step:
 - If \(n + 1 \) prime, done.
 - If not, then \(n + 1 = km \) for some integers \(k, m \in \{2, 3, \ldots, n\} \).
 - By inductive hypothesis, \(k, m \) are products of primes, and thus so is \(n + 1 \).

Example: Making change.

Claim: Every amount of postage of 12 cents or more can be formed using just 4 and 5 cent stamps.

Proof: By strong induction

- \(P(n) = n \) cents of postage formed with 4, 5 cent stamps
- \(P(n) \) true for \(n \in \{12, 13, 14, 15\} \)
- assume \(P(k) \) for all \(k \leq n \)
- \(P(n + 1) \): use IH to get \(n - 3 \) cents of postage and add a 4 cent stamp

\[\square \]

Claim: It takes at most \(nm - 1 \) breaks to divide an \(n \)-by-\(m \) chocolate bar.

Proof:

- By strong induction on number \(k \) of squares in bar.
- Base case: With 1 square, need \(1 \cdot 1 - 1 = 0 \) breaks.
- Inductive hypothesis: Assume any bar with at most \(k \) squares can be divided with \(k - 1 \) breaks.

Inductive step:

- Given a bar with \(k + 1 \) squares, use one break to get two bars with \(s_1 \) and \(s_2 \) squares respectively where \(s_1 + s_2 = k + 1 \).
- Use inductive hypothesis to break these with \(s_1 - 1 \) and \(s_2 - 1 \) breaks respectively.

So used \(1 + (s_1 - 1) + (s_2 - 1) = s_1 + s_2 - 1 = (k + 1) - 1 \) breaks.

\[\square \]

Structural Induction

Induction on recursively-defined data types.

Example: parentheses.

Def: Set \(M \) of matched parenthetical statements:

- empty string \(\lambda \) is in \(M \)
- if \(s, t \in M \), then \((s)t \in M \)
- etc.

Template:

- Prove for base cases of definition.
- Prove for constructor case assuming holds for component types.
Claim: \(\forall s \in M, s \) has equal number of open and close parantheses.

Proof: By induction.

- Base case: \(\lambda \) has zero open and zero close parantheses.

- Constructor case: must show \(P(r) \) for \(r = (s)t \) assuming \(P(s) \) and \(P(t) \).

 - Let \(n_s, n_t \) be of open parantheses (= number close parantheses by hypothesis) in \(s, t \) respectively.

 - Then number of open parantheses in expression is \(n_s + n_t + 1 \).

- Similarly for close parantheses.