Expectation

Expectation of Products

Example: \(R \) outcome of 6-sided die

\[E[R] = \frac{7}{2} = 3.5 \]
\[E[R^2] = \frac{49}{4} = 12.25 \]
\[E[R^2]? \]

\[E[R^2] = \sum_{w \in S} R^2(w) \Pr[w] \]
\[= \sum_{i=1}^{6} i^2 \Pr[R(w) = i] \]
\[= \sum_{i=1}^{6} i^2 / 6 \]
\[= \frac{15}{2} = 7.5 \]

Note: \(E[R_1 R_2] \neq E[R_1] E[R_2] \) for arbitrary r.v. \(R_1, R_2 \).

Claim: If \(R_1, R_2 \) independent then

\[E[R_1 R_2] = E[R_1] E[R_2]. \]

Proof:

\[\text{Event } R_1 R_2 = r \text{ is } \{w | R_1(w) R_2(w) = r\}. \]
\[\text{Equivalently, } \{w | R_1(w) = r_1, R_2(w) = r_2 \}. \]
\[E[R_1 R_2] = \sum_{r_1} \sum_{r_2} r_1 r_2 \Pr[R_1 = r_1 \cap R_2 = r_2] \]
\[= \sum_{r_1} \sum_{r_2} r_1 r_2 \Pr[R_1 = r_1] \Pr[R_2 = r_2] \]
\[= \sum_{r_1} r_1 \Pr[R_1 = r_1] \sum_{r_2} r_2 \Pr[R_2 = r_2] \]
\[= E[R_1] E[R_2] \]

[[Does converse hold? See end of lecture...]]

Conditional Expectation

Def:

\[E[R|A] = \sum_{w \in S} R(w) \cdot \Pr[w|A] \]

[[derived from definitions]]

Example: 6-sided die

Question: Expected number given its even?

\[\text{• } R = \text{number rolled} \]
\[\text{• } A = \text{event that number is even} \]
\[\text{Then } E[R|A] = \sum_{i=1}^{6} i \Pr[i|A] \]
\[= 2 \cdot (1/3) + 4 \cdot (1/3) + 6 \cdot (1/3) = 4 \]

Note: \(E[R|A] \) just expectation w.r.t. prob. measure \(\Pr_A[\cdot] \) (from pset).

Claim: (total expectation): If events \(A_i \) partition sample space, then

\[E[R] = \sum_i E[R|A_i] \Pr[A_i]. \]
Applications of Probability

Birthday Paradox

Question: Probability two of us have same birthday?
Variables: \(m \) people, \(N \) days
Assumptions:

- for each person, all bdays equally likely
 - actually more likely to be born on a weekday; most common birthday Oct. 5th; least common May 22nd.
- bdays mutually indep
 - [not if there are twins, for example]

Four-step method:

1. sample space: map people \(i \) to bdays \(b_i \)

\[S = \{(b_1, \ldots, b_m) | b_i \in \{1, \ldots, N\}\}\]

2. events:

\[A = \text{event } \geq 2 \text{ people have same bday}\]
\[A^c = \text{event no two people have same bday}\]

3. outcome prob.: uniform

4. event prob.:

\[\text{Pr}[A^c] = \frac{N!}{N^m(N-m)!}\]

Claim: Stirling approx: \(n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n\)
a lot of math... \(\text{Pr}[2 \text{ of } 23 \text{ share bday}] > 1/2 \).

- 0.4 for \(n = 20 \)
- 0.7 for \(n = 30 \)
- 0.9999998876 for \(n = 100 \)

Alternatively:

1. sample space: \(S = \{(b_1, \ldots, b_m)\} \)

2. events:

\[B_i = \text{event } b_i \notin \{b_1, \ldots, b_{i-1}\}\]

\[\text{Pr}[A^c] = \text{Pr}[B_1 \cap \ldots \cap B_m] = \text{Pr}[B_1] \ldots \text{Pr}[B_n | B_1, \ldots, B_{n-1}]\]

3. outcome prob.: uniform

4. event prob.:

\[\text{Pr}[B_i | \cap_{j<i} B_j] = 1 - \text{Pr}[B_i^c | \cap_{j<i} B_j] = 1 - (i - 1)/N\]
Claim: \((1 - x) \leq e^{-x}\) for all \(x\) (good approx. if \(x\) close to 0)

\[
\Pr[A^c] = \Pr[B_1] \ldots \Pr[B_m|B_1, \ldots, B_{m-1}]
\leq (1 - 0/d)(1 - (n - 1)/d)
\leq e^{-0/d}e^{-1/d} \ldots e^{-(m-1)/N}
= e^{-m^2/2N}
\]

Note: Constant prob. of collision for \(m \geq \sqrt{2N}\).

Hashing (Balls and Bins)

- want to store \(m\) records
- using \(N\) keys
- function \(h\) maps record to key
- if \(h\) maps randomly, need \(N = m^2\)-sized array to avoid collisions
- resolve collisions with linked list (want to bound max bin size)

Question: suppose choose \(N = m\), then how long are the linked lists?

- let \(n\) be number records/keys (\(n = N = m\))
- let \(X\) be rand. var. equal to max size.
- find smallest \(k\) s.t. \(P[X \geq k] \leq 1/2\)
- Let \(X_i = \) size of list \(i\).
- Then
 \[
 (X \geq k) = (X_i \geq k) \cup \ldots \cup (X_n \geq k).
 \]

\[
\begin{align*}
P[X \geq k] & \leq \sum_{i=1}^n P[X_i \geq k] \\
\text{so find } k \text{ s.t. } P[X_i \geq k] & \leq \frac{1}{2^n}. \\
\end{align*}
\]

\[
\begin{align*}
P[X_i \geq k] & = P[(X_i = k) \cup (X_i = k + 1) \cup \ldots \cup (X_i = n)] \\
& = \sum_{j=k}^n P[X_i = j] \\
& \leq \sum_{j=k}^n \frac{n}{j} \left(\frac{1}{n}\right)^j \left(1 - \frac{1}{n}\right)^{n-j} \\
& \leq \sum_{j=k}^n \frac{1}{j} \\
& \leq \sum_{j=k}^n \left(\frac{1}{k}\right)^j \\
& \leq 2 \left(\frac{1}{k}\right)^k \\
\end{align*}
\]

Conclusion:

\[
2 \left(\frac{1}{k}\right)^k \leq \frac{1}{2n}
\]

\[
\begin{align*}
k & > 2 \ln n / \ln \ln n \\
\left[\text{Plug } k = 2 \ln n / \ln \ln n \text{ into } k \ln k \text{ to check it’s sufficient (i.e., } \geq \ln n)\right] \\
\text{E.g., } n = 10^6, \text{ w.p.r. } 1/2, \text{ just 10 collisions max.}
\end{align*}
\]

Probability Practice

Question: Roll a 6-sided die twice.
• $A =$ event that first roll is odd
• $B =$ event that sum of rolls is odd

Are A and B independent?

Question: Roll a 6-sided die twice. Let X be the sum of the rolls and Y be the difference.

1. Are X and Y independent?
2. What is $E[X]$?
3. What is $E[Y]$?
4. What is $E[XY]$?

[[See MIT OpenCourseWare Recitation Notes]]

Question: Pick a number n ∈ {1, . . . , 6}

- Roll 2 die
- If n doesn’t come up, lose $1
- If n comes up once, win $1
- If n comes up twice, win $2
- If n comes up three times, win $4

What is expected payoff?

Question: Roll two die. Advance in board game as follows:

- go forward # squares equal to sum of rolls
- if a double, roll again and advance additional # squares equal to sum of rolls
- if a double, roll again and advance additional # squares equal to sum of rolls
- third time doubles, go back to start position

How many squares do you advance in expectation?

Question: Given urn with r red and b black balls:

- remove balls one at a time, at random without replacement
- let X be # red balls removed before first black ball

What is $E[X]$?

Hint: look for nice random variables X_i s.t. $X = \sum_i X_i$ and use linearity of expectation.