
Matrix Decomposition

Ming Yang
Electrical and Computer Engineering

Northwestern University
Evanston, IL 60208

mya671@ece.northwestern.edu

Contents

1. Overview 2

2 Matrix Multiplication and Definitions 2
2.1 Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Special Matrix Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Singular Value Decomposition 4
3.1 SVD decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Corollary of SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 LU and Cholesky Decomposition 5
4.1 Elementary Operation and Gaussian Transform . . . . . . . . . . . . . . . . . . . . . . 5
4.2 LU decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.3 Cholesky decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 QR Decomposition 7
5.1 Householder Reflections and Givens Rotations . . . . . . . . . . . . . . . . . . . . . . . 8
5.2 Gram-Schmidt orthonormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.3 QR Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.4 Least Square Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6 Schur Decomposition and Eigenvalue Decomposition 11
6.1 Schur Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.2 Eigenvalue Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.3 Hessenberg Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

7 Biconjugate Decomposition 15
7.1 Biconjugate Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1



1. Overview
“Matrix decomposition refers to the transformation of a given matrix into a given canonical form.” [1],
when the given matrix is transformed to a right-hand-side product of canonical matrices the process of
producing this decomposition is also called “matrix factorization”. Matrix decomposition is a fundamen-
tal theme in linear algebra and applied statistics which has both scientific and engineering significance.
The purposes of matrix decomposition typically involve two aspects: computational convenience and an-
alytic simplicity. In the real world, it is not feasible for most of the matrix computations to be calculated
in an optimal explicit way, such as matrix inversion, matrix determinant, solving linear system and least
square fitting, thus to convert a difficult matrix computation problem into several easier tasks such as
solving triangular or diagonal system will greatly facilitate the calculations. Data matrices representing
some numerical observations such as proximity matrix or correlation matrix are often huge and hard to
analyze, therefore to decompose the data matrices into some lower-order or lower-rank canonical forms
will reveal the inherent characteristic and structure of the matrices and help to interpret their meaning
readily.

This tutorial is primarily a summary of important matrix decomposition methods, we will first present
some basic concepts in Section 2 and then introduce several fundamental matrix decomposition methods
in the successive sections, e.g. SVD, LU, QR and Eigen decomposition. A unified view of matrix fac-
torization derived from the Wedderburn rank-one reduction theorem is briefly discussed in the summary
Section 7.

2 Matrix Multiplication and Definitions

2.1 Matrix Multiplication

SupposeA ∈ Rm×r andB ∈ Rr×n, the matrix multiplicationC = AB can be viewed from three
different perspectives as follows:

Dot Product Matrix Multiply.Every elementcij of C is the dot product of row vectoraT
i and column

vectorbj.

A =




aT
1
...

aT
m


 ak ∈ Rr

B = (b1, . . . , bn) bk ∈ Rr

C = (cij) cij = aT
i bj.

Column Combination Matrix Multiply.Every columncj of C is a linear combination of column vector
ak of A with columnsbkj as the weight coefficients.
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A = (a1, . . . , ar) ai ∈ Rm

B = (b1, . . . , bn) bj ∈ Rr

C = (c1, . . . , cn) cj ∈ Rm

cj =
r∑

k=1

bkjak j = 1 : n.

Outer Product Matrix Multiply.C is the sum ofr matrices, every matrix is an outer product ofA’s
column vector andB’s row vector, which is a rank-one matrix.

A = (a1, . . . , ar) ai ∈ Rm

B =




bT
1
...

bT
r


 bk ∈ Rn

C =
r∑

k=1

akb
T
k .

2.2 Special Matrix Definition

Before further discussion, we first present definitions of some special matrices, here we follow the terms
in [2].

Definition 1 A real matrixA is a symmetric matrix if it equals to its own transpose, that isA = AT .

Definition 2 A complex matrixA is a hermitian matrix if it equals to its own complex conjugate trans-
pose, that isA = AH .

Definition 3 A real matrixQ is an orthogonal matrix if the inverse ofQ equals to the transpose ofQ,
Q−1 = QT , that isQQT = QTQ = I.

Definition 4 A complex matrixU is a unitary matrix if the inverse ofU equals the complex conjugate
transpose ofU, U−1 = UH , that isUUH = UHU = I.

Definition 5 A matrix A ∈ Rn×n is positive definite ifxTAx ≥ 0 for all nonzerox ∈ Rn. Positive
definite matrices have positive definite principle sub-matrices and all the diagonal entries are positive.

Definition 6 SupposeS ⊆ Rn be a subspace with orthonormal basisV = (v1, . . . , vk), P = VTV ∈
Rn×n is theorthogonal projection matrixontoS such thatrange(P) = S, P2 = P, andPT = P. P is
unique for subspaceS.

Hermitian matrix and unitary matrix are the counterparts of symmetric and orthogonal matrix inR,
the following theorems inR can be readily transformed to the corresponding forms inC by substituting
the transpose by conjugate transpose and orthogonal matrix by unitary matrix. Therefore, for simplicity,
we present most of the matrix decomposition results inR.
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3 Singular Value Decomposition

Suppose matrixA ∈ Rm×n, the column vectors ofA, namelyrange(A), represent a subspace inRm,
similarly range(AT ) is a subspace inRn, apparently the two subspaces have the same dimension equals
to the rank ofA. SVD decomposition is able to reveal the orthonormal basis of therange(A) and
range(AT ) and the respective scale factorsσi simultaneously.

3.1 SVD decomposition

Theorem 1 Singular Value Decomposition(SVD)If matrix A ∈ Rm×n, then there exist orthogo-
nal matricesU = (u1, . . . , um) ∈ Rm×m , V = (v1, . . . , vn) ∈ Rn×n and diagonal matrixΣ =
diag(σ1, . . . , σp) ∈ Rm×n p = min(m,n), such that

A = UΣVT , where σ1 ≥ σ2 . . . ≥ σp ≥ 0.

Proof 1 Let σ1 = ‖A‖2 = max‖v‖2=1‖Av‖2. Then there exist unit 2-norm vectorsu1 ∈ Rm and
v1 ∈ Rn, such that

‖Av1‖ = σ1, u1 =
Av1

σ1

, therefore Av1 = σ1u1.

Any orthonormal set can be extended to form an orthonormal basis for the whole space, so we can
find V1 ∈ Rn×(n−1) andU1 ∈ Rm×(m−1), such thatV = (v1V1) ∈ Rn×n andU = (u1U1) ∈ Rnm×m

are orthonormal basis, thus

A1
.
=

(
uT

1

UT
1

)
(Av1 AV1) =

(
uT

1 Av1 uT
1 AV1

UT
1 Av1 UT

1 AU1

)
=

(
σ1‖u1‖2

2 uT
1 AV1

σ1U
T
1 u1 UT

1 AU1

)
=

(
σ1 uT

1 AV1

0 UT
1 AU1

)

Let
(
σ1 uT

1 AV1

)
T

=
(
σ1 ωT

) ∈ Rn, the 2-norm of the product withA1 gives:

‖A1

(
σ1

ω

)
‖2

2 = ‖ σ2
1 + ωT ω

. . .
‖2

2 ≥ (σ2
1 + ωT ω)2

So the 2-norm of matrixA1 is

‖A1‖2 = sup
x∈Rn

‖A1x‖
‖x‖ ≥ (σ2

1 + ωT ω)√
(σ2

1 + ωT ω)
=

√
(σ2

1 + ωT ω),

while U and V are both orthonomal basis and‖A1‖2 = ‖A‖2 = σ1, so ω = 0. An induction on
arguments completes the proof.

The σi are thesingular valuesof A and the vectorui andvi are theleft singular vectorand right
singular vector, which satisfy that

Avi = σiui and AT ui = σivi.
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3.2 Corollary of SVD

SVD decomposition reveals many intrinsic properties of matrixA and is numerical stable for calcula-
tions.

Corollary 1 If A = UΣVT is a SVD ofA with σ1 ≥ σ2 . . . ≥ σr ≥ σr+1 = . . . = σp = 0, we have the
following statements:

1. rank(A) = r.

2. null(A) = span{vr+1, . . . , vn}.
3. range(A) = span{u1, . . . , ur}.
4. A =

∑r
j=1 σjujv

T
j = UrΣrVr, whereUr = (u1, . . . , ur),Vr = (v1, . . . , vr),Σr = (σ1, . . . , σr).

5. ‖A‖F =
√

σ2
1 + . . . + σ2

p.

6. ‖A‖2 = σ1.

7. σj =
√

λj(ATA), j = 1, . . . , p, whereλj(A
TA) is thejth largest eigenvalue ofATA.

8. vi are orthonormalized eigenvectors ofATA andui are orthonormalized eigenvectors ofAAT .

SVD is generalized to simultaneously diagonalize two matrices [3] or decomposition of a matrix that
employs different metrics in the normalizations [4].

4 LU and Cholesky Decomposition

Solution to the linear system equationAx = b is the basic problem in linear algebra. Theoretically when
A is a non-singular square matrix there exists a unique solutionx = A−1b, however the inverse of a
matrix is typically not easy to compute. So we hope to transformA to some triangular systems which
are much easier to solve by forward or backward substitution, this process is referred to asGaussian
elimination [5]. This process can be summarized in matrix form as LU decompostion and a series of
evolutions when matrixA has extra properties.

4.1 Elementary Operation and Gaussian Transform

For square matrixA, the following three operations are referred to aselementary row (column) opera-
tions of type 1, 2, and 3respectively:

1. interchanging two rows (or columns) inA.

2. multiplying all elements of a row (or column) ofA by some nonzero number.

3. adding to any row (or column) ofA any other row (or column) ofA multiplied by a non zero
number.
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These operations can be implemented by pre- or post-multiplying an appropriate matrices calledele-
mentary matrices, the type 3 row elementary matrices have the following forms:

E(3) =




1 0
...

1 . . . τ

1
...
1

...
0 1




or E(3) =




1 0
. ..

1
... 1
τ . . . 1

...
0 1




Gaussian elimination process can be described as matrix multiplications of type 3 lower triangle ele-
mentary matrices. Forx ∈ Rn with xk 6= 0, Gaussian Transformationis defined as matrixMk = I−τeT

k ,
whereGauss vectorτ is

τT =


0, . . . , 0︸ ︷︷ ︸

k

, τk+1, . . . , τn


 τi =

xi

xk

i = k + 1 : n and eT
k =

(
0, . . . , 0, 1︸︷︷︸

kth

, 0, . . . , 0

)

Pre-multiplyx with Mk then the lastk + 1 to n elements ofx are zeroed.

Mkx =




1 · · · 0 0 · · · 0
...

...
...

...
. ..

...
0 1 0 0
0 −τk+1 1 0
...

...
...

...
...

...
0 . . . −τn 0 . . . 1







x1

. . .
xk

xk+1

. . .
xn




=




x1

. . .
xk

0
. . .
0




It is easy to verify that Gaussian transform matrix is the product of lower triangular type 3 elementary
matrices withdet(Mk) = 1. So by multiplying a series of Gaussian transform matrix, the lower part
of A can be gradually zeroed given that the pivotsxkk 6= 0 during the process. This process can be
summarized as LU decomposition.

4.2 LU decomposition

Theorem 2 LU DecompositionLet A ∈ Rn×n and all the leading principal minorsdet(A(1 : k, 1 :
k)) 6= 0, k = 1, . . . , n− 1. Then there exist a unique unit lower triangularL with diagonal elements all
equal to one and a unique upper triangular matrixU such thatA = LU, anddet(A) = u11u22 . . . unn.

Proof 2 Givena11 6= 0 in A, we can find Gaussian transformM1 to zero thea21, . . . , an1. Suppose at
k − 1 stepMk−1 . . .M1A = A(k−1), consider thek × k portion of this equation, since Gaussian trans-
forms are unit lower triangular with determinants equal to one,det(A(1 : k, 1 : k) = a

(k−1)
11 . . . a

(k−1)
kk 6=

0. Therefore thekth pivota(k−1)
kk 6= 0, we can proceed to find Gaussian transformMk.
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If A = L1U1 = L2U2 are two LU decompositions of a non-singularA, thenL−1
2 L1 = U2U

−1
1 , since

the left part of the equation is unit lower triangular while the right side is upper triangular, both of the
matrices must be the identity to satisfy the equation. Hence,L1 = L2 andU1 = U2.

If A = LU thendet(A) = det(LU) = det(L) det(U) = u11u22 . . . unn.

For linear systemAx = b if we pre-compute the LU decomposition ofA = LU, the problem reduces
to solve two triangle systemsLy = b andUx = y which can be calculated much more readily. Moreover
when the system has to be solved with respect to many differentb, such as the solution of certain circuit
under different excitations, the LU decomposition method is very efficient.

4.3 Cholesky decomposition

If the matrix A has additional properties, the LU decomposition will have particular forms. In this
section we will present the specilized LU decomposition for symmetric and positive definite matrices.
First we express the LU decomposition in an equavalent way.

Theorem 3 LDMT Decomposition. Let A ∈ Rn×n and all the leading principal minorsdet(A(1 :
k, 1 : k)) 6= 0, k = 1, . . . , n− 1. Then there exist unique unit lower triangular matricesL andM and a
unique diagonal matrixD = diag(d1, . . . , dn), such thatA = LDMT .

If A has a LU decompositionA = LU and letD = diag(u11, . . . , unn), observe thatMT = D−1U
is unit upper triangular. ThusA = LU = LD(D−1U) = LDMT . Uniqueness follows from the
uniqueness of LU decomposition.

Further ifA is symmetric,A = LDMT = AT = MDLT , MDLT is also theLDMT Decomposition
of A. From the uniqueness we haveL = M.

Theorem 4 LDLT Decomposition. If A ∈ Rn×n is a non-singular symmetric matrix and hasLDMT

DecompositionA = LDMT , thenL = M andA = LDLT .

For a positive definite matrixA, theD = diag(d1, . . . , dn) in LDMT decomposition has positive
diagonal entries. So we can further specilize the LU decomposition for symmetric positive definite
matrices.

Theorem 5 Cholesky Decomposition. If A ∈ Rn×n is symmetric positive definite, then there exists
a unique lower triangularG ∈ Rn×n with positive diagonal entries such thatA = GGT , and G is
referred to theCholesky triangle.

In theLDLT decomposition of symmetricA, the entries of the diagonal matrixD = diag(d1, . . . , dn)
are all positive, so letG = Ldiag(

√
d1, . . . ,

√
dn) is a lower triangular with positive diagonal entries

andA = GGT , the uniqueness follows from the uniqueness of theLDLT decomposition.

5 QR Decomposition

If the linear systemAx = b is overdetermined, namely, whereA ∈ Rm×n with m ≥ n andb ∈ Rm, the
exact solution may not exist. So we can use the least square solution of the minimization‖Ax− b‖2 as
a substitution. In this section we will present several methods to construct the QR decomposition and
how to compute the least square fitting by QR, LU and SVD decomposition.
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5.1 Householder Reflections and Givens Rotations

Let v ∈ Rn be nonzero, a n-by-n matrixP of the form

P = I− 2vvT /vT v,

is called aHouseholder reflectionor Householder matrixor Householder transformation. The vector
v is called aHouseholder vector. A geometric illustration: when a vectorx is multiplied byP, it is
reflected with the hyperplane ofv’s orthogonal complementspan{v}⊥.

Householder reflections can be used to zero selected entries of a vector in similar way to Gauss
transformations, while Gauss transformations are unit lower triangular and Householder matrices are
orthogonal and symmetric:

PPT = PP = (I− 2vvT /vT v)(I− 2vvT /vT v)
= I− 4vvT /vT v + 4vvT vvT /(vT v)2 = I.

Given a vector0 6= x ∈ Rn, we will show there exists a Householder reflection can zero the all but
the first elements inx, such thatPx ∈ span{e1}. Let v = x + αe1 andα = ‖x‖2,

Px = x− 2vT x
vT v

v

= x− 2(xT x+αx1)
xT x+2αx1+α2 (x + αe1)

= x− 2(α2+αx1)
2α2+2αx1

(x + αe1) = αe1

Furthermore, to zero all the elements except the first two entries of vectorx = (x1, x2, . . . , xn)T , we can
obtain the Household vectorv′ = x′ + ‖x′‖e1 wherex′ = (x2, . . . , xn)T and extendv = (0, v′)T . So
on so forth we can apply a series of Householder reflections to reduce matrixA to a upper triangular
matrix.

Household reflections are capable of introducing zeros to all but the first element of a vector,Givens
rotationsare able to selectively zero one element. For vectorx = (x1, . . . , xi, . . . , xk, . . . , xn)T , xk 6= 0,
the following Givens rotation can forcexk to be zero:

G(i, k, θ) =




1 . . . 0 . . . 0 . . . 0
...

...
...

...
...

0 . . . c . . . s . . . 0
...

...
...

...
...

0 . . . −s . . . c . . . 0
...

...
...

...
...

0 . . . 0 . . . 0 . . . 1




wherec = cos(θ) = xi√
x2

i +x2
k

ands = sin(θ) = −xk√
x2

i +x2
k

. In a geometric view, Givens rotation amounts to

a counterclockwise rotationθ in (i, k) coordinate plane. It is easy to checkG(i, k, θ) is also orthogonal,
and by the pre-multiplication of a series of Givens rotations we can zero the lower part of a matrix.
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5.2 Gram-Schmidt orthonormalization

If A = (a1, . . . , an) ∈ Rm×n is a linear independent set of vectors, by subtracting from the the projec-
tions ofak ontoai (i < k) from ak and adequate normalization, we can gradually orthonormalizeA to
an orthonomal setQ = (q1, . . . , qm) as follows:

q1 = a1/r11 r11 = ‖a1‖
q2 = (a2 − r21q1)/r22 r21 = xT

2 q1, r22 = ‖a2 − r21q1‖2

q3 = (a3 − r31q1 − r32q2)/r33 r31 = xT
3 q1, r32 = xT

3 q2, r33 = ‖a3 − r31q1 − r32q2‖2
... =

...
...

qk = (ak −
∑k−1

i=1 rikqi)/rkk) rik = qT
i ak, rkk = ‖ak −

∑k−1
i=1 rikqi‖2

Therefore,ak =
∑k

i=1 rikqi, A is the product ofQ and an upper triangularR = (rij), this process is
called theGram-Schmidt orthonormalization process.

This process is sensitive to roundoff errors. A modified version of Gram-Schmidt process subtracts
the projections ontoqk of all the succeedingai from ai instead of subtract fromai all the previousqk.
Whenqk is determined we first subtract the projection ofai ontoqk from ai for i > k and then normalize
the newak+1 to getqk+1:

for k=1 to n
qk = ak

k/rkk , rkk = ‖ak‖2

ak+1
i = ak

i − rkiqk , rki = akT
i qk, for i = k + 1 : n

After Q is calculated, by sequentially substitutingak
k with the previousai

k, i < k we can easily get the
representationa1

k namelyak with respect toq1, . . . , qk:

qk = ak
k/rkk = 1

rkk
(ak−1

k − rk−1 kqk−1)

= 1
rkk

(ak−2
k − rk−2 kqk−2 − rk−1 kqk−1)

=
...

= 1
rkk

(a1
k −

∑k−1
i=1 rikqi).

Thusak =
∑k

i=1 rikqi, which impliesA is the product ofQ and an upper triangularR = (rij).

5.3 QR Decomposition

Theorem 6 QR Decomposition. LetA ∈ Rm×n, there exist an orthogonal matrixQ ∈ Rm×m and an
upper triangular matrixR ∈ Rm×n, such that

A = QR

All the methods in the previous sub-sections can be viewed as different constructive proofs of QR de-
composition, including Householder reflection, Givens rotation and Gram-Schimdt orthogonalization
process and its modification version.
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Corollary 2 If A ∈ Rm×n has full column rankm ≥ n andA = QR is a QR decomposition.A =
(a1, . . . , an) andQ = (q1, . . . , qm) are column partition forms, then

span{a1, . . . , ak} = span{q1, . . . , qk} k = 1 : n
range(A) = span{q1, . . . , qn}
range(A)⊥ = span{qn+1, . . . , qm}

.

LetQ1 = (q1, . . . , qn), A = Q1R1 with R1 ∈ Rn×n, thenG = RT
1 is the lower triangular Cholesky

factor ofATA.

The first part of the corollary can be easily proved by the Gram-Schmidt process.
ATA = (Q1R1)

TQ1R1 = RT
1 R1 = GTG, soR1 is unique upper triangular with positive diagonal

entries.

5.4 Least Square Fitting

Let’s consider the overdetermined systemAx = b, where thedata matrixA ∈ Rm×n and theobservation
vectorb ∈ Rm with m ≥ n, typically the system has no exact solution ifb is not an element ofrange(A).
The goal of least square fitting problem is to findx ∈ Rn to minimizeJ = ‖Ax− b‖p, wherep = 2 the
optimization function is analytic.

If A doesn’t have full column rank the solution to the LS fitting is not unique, ifx minimizes theJ
thenx + z, z ∈ null(A) is also a solution. AssumeA has full column rank the unique LS solutionxLS

is give by the pseudo inversexLS = A†b = (ATA)−1AT b. As we mentioned before the inverse of a
matrix is typically not easy to compute, the normal equationATAxLS = AT b is more practical to be
solved by QR decomposition, LU decomposition or SVD decomposition.

Note that the 2-norm of a vector is invariant under orthogonal transformation. SupposeA = QR is
the QR decomposition, we can get

QTA = R =

(
R1

0

)
n

m− n
,

whereR1 is square upper triangular, and

QT b =

(
c
d

)
n

m− n
,

then
‖Ax− b‖2

2 = ‖QTAx−QT b‖2
2 = ‖R1x− c‖2

2 + ‖d‖2
2.

ThusxLS ∈ Rn can be readily solved with back substitution of the upper triangular systemR1x = c.
Once the QR decomposition ofA is computed by Householder reflection or any other methods, the full
rank LS problem can be solved by the above procedure.

An alternative method is to solveATAxLS = AT b by LU decomposition ofATA. C = ATA is a
symmetric positive definite matrix, there exists the Cholesky decompositionC = GGT , so solving the
two triangular system gives the LS solution:

d = AT b,Gy = d,GT xLS = y.

If A doesn’t have full column rank,ATA may not be invertible. we can use SVD decomposition of
A to solve the LS problem.
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Theorem 7 Let A ∈ Rm×n andA = UΣVT is its SVD decomposition withrank(A) = r. If U =
(u1, . . . , um) andV = (v1, . . . , un) are column partitions andb ∈ Rm, then the LS solution toAx = b
is:

xLS =
r∑

i=1

uT
i b

σi

vi

Proof 3
‖Ax− b‖2

2 = ‖(UTAV)(VT x)−UT b‖2
2 = ‖Σα−UT b‖2

2

=
∑r

i=1(σiαi − uT
i b)2 +

∑m
i=r+1(u

T
i b)2

whereα = VT x. Clearly, only the first part related tox, so α =
(
uT

i b/σi, . . . , u
T
r b/σr, 0, . . . , 0

)T

minimizes the fitting, thus

xLS = Vα =
r∑

i=1

uT
i b

σi

vi.

In addition given the SVD decomposition the pseduo inverse ofA ∈ Rm×n is defined asA† ∈ Rn×m

andA† = VΣ†UT , where

Σ† = diag

(
1

σ1

, . . . ,
1

σr

, 0, . . . , 0

)
∈ Rn×m.

6 Schur Decomposition and Eigenvalue Decomposition

Given a square matrixA, we have interests about what is the simplest formB in C or R under uni-
tary(orthogonal) similarity transformA = QBQH or similarity transformA = XBX−1. Matrix B
reveals the intrinsic information ofA in that many attributes and structure of matrices are invariant
under similarity transform.

Definition 7 LetA ∈ Cn×n, if there exists a non-zero vectorx ∈ Cn that satisfiesAx = λx, λ ∈ C, λ
is called theeigenvalueof matrixA andx is referred to aseigenvector.

Eigenvalues are then roots of matrixA’s characteristic polynomialdet(λI−A), the set of eigenvalues
is also called thespectrumof A. The sum of the diagonal elements ofA is referred to astraceof A,

trace(A) =
n∑

i=1

aii =
n∑

i=1

λi.

6.1 Schur Decomposition

Theorem 8 Schur Decomposition. LetA ∈ Cn×n, then there exists a unitaryQ ∈ Cn×n such that

QHAQ = T = D + N

11



whereD = diag(λ1, . . . , λn) andN is strictly upper triangular.Q = (q1, . . . , qn) is a column partition-
ing of the unitary matrixQ whereqi is referred to asSchur vectorsand fromAQ = QT Schur vector
satisfy

Aqk = λkqk +
k−1∑
i=1

nikqi, k = 1 : n.

Proof 4 The theorem obviously holds whenn = 1. Supposeλ is an eigenvalue of matrixA andAx =
λx with x ∈ Cn is a unit vector. Thenx can be extended to a unitary matrixU = (x, u2, . . . , un),

AU = (Ax,Au2, . . . ,Aun)
= (λx,Au2, . . . ,Aun)

= U

(
λ ωT

0 C

)

Suppose the theorem holds for matrices of ordern − 1, there is a unitaryŨ such thatŨHCŨ is upper
triangular. Thus, letsQ = Udiag(1, Ũ) it is easy to verify the theorem holds for ordern.

For a real matrixA, the eigenvalues are either real or conjugate complex in pairs. In order to operate
all with real numbers,T changes to block upper triangular with either 1-by1 or 2-by-2 diagonal blocks
which is called as real Schur decomposition.

Theorem 9 Real Schur Decomposition.Let A ∈ Rn×n, then there exists an orthogonalQ ∈ Rn×n

such that

QTAQ = R =




R11 R12 . . . R1m

0 R22 . . . R2m
...

...
...

...
0 0 . . . Rmm




where eachRii is either a 1-by-1 matrix a 2-by-2 matrix having complex conjugate eigenvalues.

Proof 5 The theorem obviously holds forn = 1. Let A ∈ Rn×n, if A has a real eigenvalueλ thenA
can be block diagonalized and reduced to ordern − 1 as shown in the proof of Schur decomposition.
If A has a couple of conjugate complex eigenvalueλ1,2 = α ± iβ, it is easily to see the corresponding
eigenvectors are also complex conjugatex1,2 = y ± iz, wherey andz are real vectors.

A(y + iz) = (α + iβ)(y + iz) ⇒ A
(

y z
)

=
(

y z
) (

α β
−β α

)
.

β 6= 0 implies thaty andz are independent, thus by Gram-Schimt process we can extendy andz to an
orthogonalQ = (y, (y − r12z)/r22, q3, . . . , qn), such that

QTAQ =

(
R11 R12

0 R22

)

whereR11 is a 2-by-2 matrix with eigenvaluesλ1,2 = α + iβ. By induction the theorem holds.
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Corollary 3 A is normal, namelyAHA = AAH , if and only if there exists a unitaryQ ∈ Cn×n such
thatQHAQ = diag(λ1, . . . , λn).

Corollary 4 A is real symmetric matrix, there exists an orthogonalQ ∈ Rn×n such thatQTAQ =
diag(λ1, . . . , λn).

Consider the real Schur decomposition of symmetricA, soR is also symmetric. And the eigenvalues of
2-by-2 symmetric matrices are real, thusA can be diagonalized.

6.2 Eigenvalue Decomposition

Theorem 10 Block Diagonal Decomposition. LetA ∈ Cn×n and aSchur decompositionas follows:

QHAQ = T =




T11 T12 . . . T1q

0 T22 . . . T2q
...

...
...

...
0 0 . . . Tqq




assume that theTii are square and the eigenvalues ofTii andTjj are different wheneveri 6= j, then
there exists a nonsingular matrixY ∈ Cn×n, such that

(Y−1QH)A(QY) = diag(T
′
11, . . . ,T

′
qq).

For matrixA ∈ Cn×n, the order of eigenvalueλi in the characteristic polynomial is referred to as
algebraic multiplicityof λi, the dimensions ofnull(λiI−A) is calledgeometric multiplicityof λi which
implies the number of independent eigenvectors associated withλi.

Corollary 5 Diagonal Decomposition. Let A ∈ Cn×n, there exists a non-singularX ∈ Cn×n which
can diagonalizeA

X−1AX = diag(λ1, . . . , λn),

if and only if the geometric multiplicities of all eigenvalueλi equal to their algebraic multiplicities.

Theorem 11 Jordan Decomposition. LetA ∈ Cn×n, then there exists a non-singularX ∈ Cn×n such
thatX−1AX = diag(J1, . . . ,Jt),where

Ji =




λi 1 . . . 0

0 λi
... . . .

. .. ... ...
...

... ... 1
0 . . . 0 λi




is mi − by −mi square matrix andm1 + . . . + mt=n, Ji is referred to asJordan blocks.
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6.3 Hessenberg Decomposition

Theorem 12 Hessenberg Decomposition. Let A ∈ Rn×n, then there exists an orthogonal matrix
Q ∈ Rn×n, such that

QTAQ = H

whereH is aHessenberg matrixwhich means the elements below the sub-diagonal are zero.

Proof 6 We claimQ is a product ofn − 2 Householder matricesP1, . . . ,Pn2 . We can findn − 1
order Householder reflectionP1 to zero the first column ofA except the first two entries. Letα =
(a21, . . . , an1)

T and P1α = (a21, 0, . . . , 0)T . Let P1 = diag(1,P), note Householder matrices are
symmetric andP1 is symmetric, then

PT
1 AP =

(
1 0
0 P1

)(
a11 ω
α A22

)(
1 0
0 P1

)
=

(
a11 ωTP1

P1α P1A22P1

)

Now suppose thek − 1 step has been done we findk − 1 Householder matricesP1, . . . ,Pk−1 such that

(P1 . . .Pk−1)
T A (P1 . . .Pk−1) =




B11 B12 B13

B11 b22 B23

0 B32 B33




is upper Hessenberg through its firstk−1 columns.B32 is a vector withn−k elements, we can findn−k
order Householder matrixPk to zeroB32’s elements except the first entry, LetPk = diag(In−k,Pk),
then

(P1 . . .Pk)
T A (P1 . . .Pk) =




B11 B12 BT
13Pk

B11 b22 BT
23Pk

0 PkB32 PkB33Pk




is upper Hessenberg through its firstk columns. By induction, the theorem holds.

If matrix A is symmetric, the Hessenberg decomposition leads to a tri-diagonal form ofA. This claim
can be easily verified by settingω = αT andB23 = BT

32 in the above proof.

QTAQ = H =




h11 h12 0 . . . 0

h21 h22
... 0

...

0
... ... . .. 0

... 0
... ... hn−1 n

0 . . . 0 hn n−1 hnn




.

Companion matrix decomposition is a non-orthogonal(non-unitary in complex domain) analog of
the Hessenberg decompositon, just like the relation of Schur decomposition and Jordan decomposition.
Companion matrixindicates the matrices have the following forms and their transpose, which can be
easily derived from the characteristic polynomialdet(λI−C) = c0 + c1λ + . . . + cn−1λ

n−1 + λn:

C =




0 0 . . . 0 −c0

1 0 . . . 0 −c1

0 1 . . . 0 −c2
...

...
...

...
...

0 0 . . . 1 −cn−1




C =




−cn−1 . . . −c2 −c1 −c0

1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
...

0 0 . . . 1 0




.
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Schur Decomposition is an important means to compute eigenvalues. A practical iteration scheme
based on Hessenberg decomposition and QR decomposition is called QR iteration as follows:

Hessenberg decomposition
H0 = UT

0 AU0

for k = 1, 2, . . .
QR decomposition
Hk−1 = UkRk

Hk = RkUk

The QR iteration converges to the Schur decomposition of matrixA. Please refer to [3] for details.

7 Biconjugate Decomposition

7.1 Biconjugate Decomposition

A variety of matrix decomposition processes can be unified with the Wedderburn rank-one reduction
theorem [6], such as Gram-Schmidt orthogonalization process, LU, QR, SVD decomposition.

Theorem 13 If A ∈ Rm×n, x ∈ Rn andy ∈ Rm are vectors such thatω = yTAx 6= 0, then the matrix
B

.
= A− ω−1AxyTA has rank exactly one less than the rank ofA.

Proof 7 We will show the order ofB’s null space is one larger than that ofA. ∀z ∈ null(A),e.g.
Az = 0 we getBz = 0, sonull(A) ⊆ null(B). ∀z ∈ null(B),

0 = Bz = Az − ω−1Ax(yTAz).

Letk = ω−1yTAz, which is a scalar, thus

A(z − kx) = 0,

(z − kx) ∈ null(A), noteAx 6= 0, the null space ofB is therefore obtained from that ofA by addingx
to its basis, which increase the order of this space by 1. Thus, the rank ofB is one less thenA.

Supposerank(A) = r, we can define arank reducing processto generate a sequence of Wedderburn
matrices{Ak} by using

A1
.
= A,Ak+1

.
= Ak − ω−1

k Akxky
T
k Ak

for any vectorxk ∈ Rn andyk ∈ Rm satisfyingωk = yT
k Akxk 6= 0. The sequence will terminate in

r steps since{rank(Ak)} decreases by exactly one at each step. This process can be summarized in
matrix outer-product factorization form:

A = ΦΩ−1ΨT (1)

whereΩ
.
= diag{ω1, . . . , ωr}, Φ .

= (φ1, . . . , φr) ∈ Rm×r andΨ
.
= (ψ1, . . . , ψr) ∈ Rn×r with

φk
.
= Akxk, ψk

.
= AT

k yk
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Further equ. 1 can be written:

A = (A1x1, . . . ,Arxr)Ω
−1

(
yT

1 A1, . . . , y
T
r Ar

)
(2)

Note everyAk can be expressed withA, we can findU = (u1, . . . , ur) ∈ Rn×r andV = (v1, . . . , vr) ∈
Rm×r, whereAuk = Akxk andvT

k A = yT
k Ak.

uk
.
= xk −

k−1∑
i=1

(
vT

i Axk

vT
i Aui

)
ui, vk

.
= yk −

k−1∑
i=1

(
yT

k Aui

vT
i Aui

)
vi

Thus equ. 1 can be rewritten as

VTAU = Ω (3)

A = AUΩ−1VTA. (4)

This matrix decomposition process in equ. 1,3,4 is referred to asbiconjugate decompositionin [6],
which can be easily verified by substitution Wedderburn matrixAr+1 = 0 with {Ak}.(U,V) is called
A-biconjugate pairand(X,Y) is calledA-biconjugatable.

Depending on the initial matrixA and the choice of the vector sets(X,Y), a variety of factorizations
can be derived from biconjugate decomposition. Here we list the results for some well-known matrix
decompositions, please refer to [6] for details.

Gram-Schmidt let A be the identity matrix and(X,Y) are identical and contain the vectors for which
an orthogonal basis is desired,(U = V) give the resultant orthogonal basis.

LDM ForA ∈ Rn×n of rankn, if the A-biconjugatable(X,Y) are both the identity matrix(I, I), then
equ. 3 provides the uniqueLDMT decomposition ofA, whereA = V−TΩU−1 for V−T and
U−T unit lower triangular matrices.

QR For A ∈ Rn×n of rankn, if the A-biconjugatable(X,Y) is (I,A) and gives the the biconjugate
pair (U,V) = (R−1

1 ,QΨ) andΩ = Ψ2 in equ. 3, whereΨ is a diagonal matrix andR−1
1 is the

unit upper triangular matrix,R = ΨR1 andQ give the QR decompositionA = QR.

SVD For A ∈ Rm×n of rank, the SVD ofA given asA = UΣVT , the A-biconjugatable(X,Y) is
(V,U).

7.2 Summary

A ∈ Cm×n





SVD : A = UΣVH

QR : A = QR
(square)Schur: A = QTQH(non-unitary)Jordan: A = XJX−1(· · · )Eigen: A = XΣX−1

(real square)Real Schur: A = QRQT (symmetric)Eigen: A = XΣXT

(real square)Hessenberg: A = QHQT (non-orthogonal)Companion(symmetric)Tri-Diagonal
(non-singular square· · · )LU(LDM) : A = LU = LDMT (symmetric)LDL : A = LDLT

(symmetric positive definite square)Cholesky: A = GGT
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