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1. Overview

“Matrix decomposition refers to the transformation of a given matrix into a given canonical form.” [1],
when the given matrix is transformed to a right-hand-side product of canonical matrices the process o
producing this decomposition is also called “matrix factorization”. Matrix decomposition is a fundamen-
tal theme in linear algebra and applied statistics which has both scientific and engineering significance
The purposes of matrix decomposition typically involve two aspects: computational convenience and an
alytic simplicity. In the real world, it is not feasible for most of the matrix computations to be calculated
in an optimal explicit way, such as matrix inversion, matrix determinant, solving linear system and least
square fitting, thus to convert a difficult matrix computation problem into several easier tasks such as
solving triangular or diagonal system will greatly facilitate the calculations. Data matrices representing
some numerical observations such as proximity matrix or correlation matrix are often huge and hard tc
analyze, therefore to decompose the data matrices into some lower-order or lower-rank canonical form
will reveal the inherent characteristic and structure of the matrices and help to interpret their meaning
readily.

This tutorial is primarily a summary of important matrix decomposition methods, we will first present
some basic concepts in Section 2 and then introduce several fundamental matrix decomposition methoc
in the successive sections, e.g. SVD, LU, QR and Eigen decomposition. A unified view of matrix fac-
torization derived from the Wedderburn rank-one reduction theorem is briefly discussed in the summary
Section 7.

2 Matrix Multiplication and Definitions

2.1 Matrix Multiplication

SupposeA € R™" andB € R™", the matrix multiplicationC = AB can be viewed from three
different perspectives as follows:

Dot Product Matrix Multiply.Every element;; of C is the dot product of row vecter; and column
vectorb;.

A= ap € R"
@
B=(b,....0,) bR

C = (Cij> Cij = ainj.

Column Combination Matrix MultiplyEvery column:; of C is a linear combination of column vector
a, of A with columnsb;; as the weight coefficients.




(a1,...,a,) a; € R™
(bi,....by) b R
=(c1,...,¢,) ¢ €R™

Cj :Zbkjak j: 1:n.
k=1

Outer Product Matrix MultiplyC is the sum ofr matrices, every matrix is an outer productAk
column vector and’s row vector, which is a rank-one matrix.

A
B
C

A=(ay,...,a.) a; €ER™
by

B = bkERn
bT

T

C= Z abt .
k=1

2.2 Special Matrix Definition

Before further discussion, we first present definitions of some special matrices, here we follow the terms
in[2].

Definition 1 A real matrixA is a symmetric matrix if it equals to its own transpose, thakis- A”.

Definition 2 A complex matridA is a hermitian matrix if it equals to its own complex conjugate trans-
pose, thatisA = AX.

Definition 3 A real matrixQ is an orthogonal matrix if the inverse €} equals to the transpose €J,

Q'=Q7 thatisQQ” = Q"Q =1.

Definition 4 A complex matriXU is a unitary matrix if the inverse dU equals the complex conjugate
transpose olJ, U~! = U¥  thatisUUY = U#U =1.

Definition 5 A matrix A € R"*" is positive definite ift?’ Az > 0 for all nonzerox € R". Positive
definite matrices have positive definite principle sub-matrices and all the diagonal entries are positive.

Definition 6 SupposeS C R™ be a subspace with orthonormal badis= (vy,...,v), P = VIV ¢
R™*" js theorthogonal projection matrignto S such that-ange(P) = S, P2 = P, andP” = P. P is
unique for subspacs.

Hermitian matrix and unitary matrix are the counterparts of symmetric and orthogonal makgjx in
the following theorems iR can be readily transformed to the corresponding fornS by substituting
the transpose by conjugate transpose and orthogonal matrix by unitary matrix. Therefore, for simplicity,
we present most of the matrix decomposition resultR.in
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3 Singular Value Decomposition

Suppose matribA € R™*", the column vectors oA, namelyrange(A), represent a subspacef’,
similarly range(AT) is a subspace iR", apparently the two subspaces have the same dimension equals
to the rank ofA. SVD decomposition is able to reveal the orthonormal basis of-thge(A) and
range(AT) and the respective scale factetssimultaneously.

3.1 SVD decomposition

Theorem 1 Singular Value Decomposition(SVD)If matrix A € R™*", then there exist orthogo-
nal matricesU = (u1,...,u,) € R™™ |V = (vq,...,v,) € R™" and diagonal matrixX> =
diag(oy,...,0,) € R™™ p =min(m,n), such that

A =UXVT,  where o1 >09...20,2>0.

Proof 1 Leto, = ||A|2 = maxy,=1]|Av[2. Then there exist unit 2-norm vectots € R™ and
v; € R, such that

A
”AU1|| =01,U1 = ﬂ, therefore Av, = oquy.
01

Any orthonormal set can be extended to form an orthonormal basis for the whole space, so we car
findV, € R andU, € R™*(™V suchthatV = (v, V) € R*" andU = (u,U;) € R"™*™
are orthonormal basis, thus

T T T 2 T T
. Uq o Uq A'U1 Uq AV1 o 01 ”'Lbl HQ Uy AV1 o 01 Uq AV1
A1 = ( UT ) (Av AV = ( UTAv, UTAU, ) - ( oUTu, UTAU, )~ \ 0 UTAU,

Let (o1 u{AVy), = (01 w’) € R", the 2-norm of the product witA, gives:

2 T
o1 o] +w w
A (7 ) B=1 7Y B2 (oF 4 Ty

So the 2-norm of matriA; is

A 2 T
[Ai][2 = sup [A.r] > 91+ w) =4/ (07 + wlw),
sern || V(01 + wlw)

while U and V are both orthonomal basis anA, || = ||All = o1, SOw = 0. An induction on
arguments completes the proof.

The o; are thesingular valuesof A and the vectow; andv; are theleft singular vectorandright
singular vector which satisfy that

Av; = o, and ATUZ‘ = 0;V;.



3.2 Corollary of SVD

SVD decomposition reveals many intrinsic properties of matiand is numerical stable for calcula-
tions.

Corollary 1 If A =UXV7isaSVD ofA witho; > 05... >0, > 0,11 = ... =0, =0, we have the
following statements:

1. rank(A) =r.

2. null(A) = span{v,41,...,v,}.

3. range(A) = span{uy, ..., u,}.

4. A=37", ojuv; =U,%.V,, whereU, = (uy,...,u,),V, = (v1,...,0.),8, = (01,...,00).

5 ||AllF = ,/a%+...+o]%.

6. ||A||2 = 01.

7.0;=+/N(ATA),j =1,...,p, where);(ATA) is thejth largest eigenvalue cA” A..

8. v; are orthonormalized eigenvectors Af' A andw; are orthonormalized eigenvectors AfA ™.

SVD is generalized to simultaneously diagonalize two matrices [3] or decomposition of a matrix that
employs different metrics in the normalizations [4].

4 LU and Cholesky Decomposition

Solution to the linear system equatidn: = b is the basic problem in linear algebra. Theoretically when

A is a non-singular square matrix there exists a unique solutien A~'b, however the inverse of a
matrix is typically not easy to compute. So we hope to transfArno some triangular systems which

are much easier to solve by forward or backward substitution, this process is referreGaossan
elimination[5]. This process can be summarized in matrix form as LU decompostion and a series of
evolutions when matriXA has extra properties.

4.1 Elementary Operation and Gaussian Transform

For square matriA, the following three operations are referred taedmmentary row (column) opera-
tions of type 1, 2, and Bspectively:

1. interchanging two rows (or columns) .
2. multiplying all elements of a row (or column) & by some nonzero number.

3. adding to any row (or column) oA any other row (or column) oA multiplied by a non zero
number.



These operations can be implemented by pre- or post-multiplying an appropriate matricelealled
mentary matricesthe type 3 row elementary matrices have the following forms:

1 0 1 0

0 1 0 1
Gaussian elimination process can be described as matrix multiplications of type 3 lower triangle ele-

mentary matrices. Far € R" with z;, # 0, Gaussian Transformatios defined as matri¥i;, = I—-rel,
whereGauss vector is

T =10, .07t | m=2 i=k+1:m ande{:<o,...,o, 1,0,...,0)
T T

Pre-multiplyx with M, then the last + 1 to n elements of: are zeroed.

1 ... 0 0 --- 0 o o
10 1 0 0 T | Tk
Mez =1 T 1 0 e | |0
0 ... —7, 0 ... 1 Tn 0

It is easy to verify that Gaussian transform matrix is the product of lower triangular type 3 elementary
matrices withdet(M,) = 1. So by multiplying a series of Gaussian transform matrix, the lower part
of A can be gradually zeroed given that the pivets # 0 during the process. This process can be
summarized as LU decomposition.

4.2 LU decomposition

Theorem 2 LU DecompositionLet A € R™*" and all the leading principal minordet(A(1 : k,1 :
k)) # 0,k =1,...,n — 1. Then there exist a unique unit lower triangulawith diagonal elements all
equal to one and a unique upper triangular mattixsuch thatA = LU, anddet(A) = ujjugs . . . Upy.

Proof 2 Givena;; # 0 in A, we can find Gaussian transforM; to zero theus, . .., a,;. Suppose at
k—1stepM,_;...M;A = A*=1 consider the: x k portion of this equation, since Gaussian trans-
forms are unit lower triangular with determinants equal to othe,( A (1 : k,1: k) = aﬁ_l) . a;’;—” #

0. Therefore the:th pivota,ﬁ’;’l) = 0, we can proceed to find Gaussian transfaxi,.



If A =L;U; = L,U, are two LU decompositions of a non-singul&r thenL;lLl = UQUl‘l, since
the left part of the equation is unit lower triangular while the right side is upper triangular, both of the
matrices must be the identity to satisfy the equation. Hdnce; L, andU; = U,.

If A = LU thendet(A) = det(LU) = det(L) det(U) = ujjuag . . . Upp.

For linear system\x = b if we pre-compute the LU decomposition Af= LU, the problem reduces
to solve two triangle systenlsy = b andUx = y which can be calculated much more readily. Moreover
when the system has to be solved with respect to many difféysnth as the solution of certain circuit
under different excitations, the LU decomposition method is very efficient.

4.3 Cholesky decomposition

If the matrix A has additional properties, the LU decomposition will have particular forms. In this
section we will present the specilized LU decomposition for symmetric and positive definite matrices.
First we express the LU decomposition in an equavalent way.

Theorem 3 LDM” Decomposition Let A € R™" and all the leading principal minorget(A(1 :
k,1:k))#0,k=1,...,n— 1. Then there exist unique unit lower triangular matrideand M and a
unique diagonal matriD = diag(d,, . ..,d,), such thatA = LDM".

If A has a LU decompositioA = LU and letD = diag(u11, - - -, unn), Observe thaM’ = DU
is unit upper triangular. Thud = LU = LD(D~'U) = LDM?. Uniqueness follows from the
uniqueness of LU decomposition.

Further ifA is symmetricA = LDM” = A” = MDL”, MDL” is also thd.DM” Decomposition
of A. From the uniqueness we halie= M.

Theorem 4 LDL” Decomposition If A € R™" is a non-singular symmetric matrix and hB®M”
DecompositioP = LDM?, thenL. = M and A = LDL".

For a positive definite matriXA, theD = diag(d,, ...,d,) in LDM” decomposition has positive
diagonal entries. So we can further specilize the LU decomposition for symmetric positive definite
matrices.

Theorem 5 Cholesky Decomposition If A € R™" is symmetric positive definite, then there exists
a unique lower triangulaiG € R™*" with positive diagonal entries such that = GG”, andG is
referred to theCholesky triangle

IntheLDL” decomposition of symmetri&, the entries of the diagonal matiix = diag(d,, ..., d,)
are all positive, so leG = Ldiag(+/dy, ..., +/d,) is a lower triangular with positive diagonal entries
andA = GG, the uniqueness follows from the uniqueness offifd.” decomposition.

5 QR Decomposition

If the linear systemAx = b is overdetermined, namely, whefe € R™*" with m > n andb € R™, the

exact solution may not exist. So we can use the least square solution of the minimjzation b||, as

a substitution. In this section we will present several methods to construct the QR decomposition anc
how to compute the least square fitting by QR, LU and SVD decomposition.
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5.1 Householder Reflections and Givens Rotations

Letv € R™ be nonzero, a n-by-n matrR of the form
P =1- 2w’ /vy,

is called aHouseholder reflectioor Householder matrivor Householder transformationThe vector
v is called aHouseholder vector A geometric illustration: when a vectaris multiplied by P, it is
reflected with the hyperplane of orthogonal complemenpan{v}+.

Householder reflections can be used to zero selected entries of a vector in similar way to Gaus:
transformations, while Gauss transformations are unit lower triangular and Householder matrices are
orthogonal and symmetric:

PPT =PP = (I-2v0T/vTv)(I - 200" /o)
= I— 4o’ /vTv + dvvTvo? /(vTv)? =1

Given a vecto # = € R", we will show there exists a Householder reflection can zero the all but
the first elements i, such thalPz € span{e;}. Letv = x + ae; anda = ||z ||z,

Prx = x— 2;’551)
= z— %(x + aeq)
— o A (o 4 ae) = ac,
Furthermore, to zero all the elements except the first two entries of veetdiz;, 7o, . . ., z,,)7, we can
obtain the Household vectot = 2’ + ||2'||e; wherez’ = (zo,...,z,)T and extend) = (0,v")". So

on so forth we can apply a series of Householder reflections to reduce mataxa upper triangular
matrix.

Household reflections are capable of introducing zeros to all but the first element of a Gectmrs
rotationsare able to selectively zero one element. For veeter (xy, ..., x4, ..., Tgy ..., Tp) T, 23 # 0,
the following Givens rotation can force, to be zero:

1 ... 0 ... 0 ...0
0 c s 0
G(i,k,0) = :
0 -5 . c 0
O ... 0 ... 0 ... 1
wherec = cos(0) = xﬁ—+§ ands = sin(f) = ﬁ In a geometric view, Givens rotation amounts to

a counterclockwise rotatiahin (i, k) coordinate plane. It is easy to che€X:, k, #) is also orthogonal,
and by the pre-multiplication of a series of Givens rotations we can zero the lower part of a matrix.



5.2 Gram-Schmidt orthonormalization

If A =(a,...,a,) € R™™is alinear independent set of vectors, by subtracting from the the projec-
tions ofa;, ontoa; (i < k) from a;, and adequate normalization, we can gradually orthonormalize
an orthonomal se® = (¢, . . ., g.n) as follows:

g1 = G1/7’11 11 = HalH

g2 = (Clz - 7"2191)/7”22 Tro1 = JCQTCh, o2 = HGQ - 7"21Q1H2

q3 = (a3 — T31q1 — 7“32612)/7“33 r31 = $§Q17 r3a = ng@2’7“33 = ||CL3 — T31q1 — 7“32612H2
~ k—1 . T k—1

@ = (ar— Zi:l TikQs)/Thk)  Tik = Q; Qs Thle = ||ak — Z¢=1 TikGil2

Therefore,a, = Zle ik, A is the product ofQ and an upper trianguld® = (r;;), this process is
called theGram-Schmidt orthonormalization process

This process is sensitive to roundoff errors. A modified version of Gram-Schmidt process subtracts
the projections ontq, of all the succeeding; from a; instead of subtract from; all the previousy.
Wheng;, is determined we first subtract the projectiorupbntog; from a; for : > k and then normalize
the newa, 1 to getgy1:

fork=1ton
_ k _
qr = Gk/Tkk y Tkk = ||6Lk||2
at =af —rpqe r=adTq, for i=k+1:n

After Q is calculated, by sequentially substitutiafywith the previous:i,i < k we can easily get the

representation;, namelya,, with respect tay, . . . , g
g = affren=(af" — re_1 kQ-1)

Tkk
1 (k=2
@(Gk — Tk kQk—2 — Th—1 kQk—1)

. k—1
%(allc — Dici Tikdi)-

Thusa, = Zf”:l rikqi» Which impliesA is the product of) and an upper trianguld® = (r;;).

5.3 QR Decomposition

Theorem 6 QR Decomposition Let A € R™*", there exist an orthogonal matri® € R™*™ and an
upper triangular matrixR € R™*", such that

A =QR

All the methods in the previous sub-sections can be viewed as different constructive proofs of QR de-
composition, including Householder reflection, Givens rotation and Gram-Schimdt orthogonalization
process and its modification version.



Corollary 2 If A € R™*" has full column rankn > n and A = QR is a QR decompositionA =
(ay,...,a,)andQ = (qi, . .., q,) are column partition forms, then

span{ay,...,ax} = span{q,...,qx} k=1:n
Ta’nge(A) = spa’n{(ha s 7Qn}
range(A)t = span{qi1, .-, qm}

LetQ; = (q1,---,qn), A = Q;R; with R; € R™*", thenG = R is the lower triangular Cholesky
factor of AT A.

The first part of the corollary can be easily proved by the Gram-Schmidt process.
ATA = (QR)TQ,R; = RTR, = GTG, soR, is unique upper triangular with positive diagonal
entries.

5.4 Least Square Fitting

Let's consider the overdetermined systAm = b, where thedata matrixA € R™*" and theobservation
vectorb € R™ with m > n, typically the system has no exact solutiohi§ not an element afange(A).
The goal of least square fitting problem is to finé R™ to minimizeJ = || Az — b||,, wherep = 2 the
optimization function is analytic.
If A doesn’t have full column rank the solution to the LS fitting is not unique, nfiinimizes theJ
thenx + z, 2z € null(A) is also a solution. Assum& has full column rank the unique LS solutiens
is give by the pseudo inversgs = Afb = (ATA)"'ATh. As we mentioned before the inverse of a
matrix is typically not easy to compute, the normal equat™mAz;s = A”b is more practical to be
solved by QR decomposition, LU decomposition or SVD decomposition.
Note that the 2-norm of a vector is invariant under orthogonal transformation. Suppes€@R is
the QR decomposition, we can get
T R1 n
QA-R- ( ' ) o

—nNn

whereR; is square upper triangular, and
Ty C n
Qb= ( d ) m-—n’

[Az 0[5 = Q" Az — Q0|3 = [Ruz — |3 + [|]f5.
Thusz;s € R"™ can be readily solved with back substitution of the upper triangular syRtem= c.
Once the QR decomposition &f is computed by Householder reflection or any other methods, the full
rank LS problem can be solved by the above procedure.
An alternative method is to solv&” Az, = ATb by LU decomposition oAT”A. C = ATA isa
symmetric positive definite matrix, there exists the Cholesky decompositienGG7, so solving the
two triangular system gives the LS solution:

d=A"T0,Gy=d, Gz 5 =1.

If A doesn’t have full column rankA” A may not be invertible. we can use SVD decomposition of
A to solve the LS problem.

then
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Theorem 7 Let A € R™" and A = UX VT is its SVD decomposition withunk(A) = r. If U =
(u1,...,uy,)andV = (v, ..., u,) are column partitions and € R™, then the LS solution tdz = b

is:
~ulb
Trs = ZZ1 o, U;
Proof 3
Az = b3 = [[(UTAV)(VTz) — U3 = [[Za — UTb|3
= 22:1(‘71‘0%‘ - Uz‘Tb)Z + Z;irﬂ(uzrb)z
wherea = V7'z. Clearly, only the first part related te, soa = (u/b/o;, ... ,ufb/or,o,...,O)T

minimizes the fitting, thus

T

ul'b
zrs = Vo = E V.

i=1

In addition given the SVD decomposition the pseduo invers& af R™*" is defined asAf ¢ R"*™
andA’ = VXTU”, where

o1 O

1 1
> = diag (—,...,—,0,...,0) e R™m™,

6 Schur Decomposition and Eigenvalue Decomposition

Given a square matriA, we have interests about what is the simplest f@nm C or R under uni-
tary(orthogonal) similarity transforrh = QBQ? or similarity transformA = XBX~!'. Matrix B
reveals the intrinsic information oA in that many attributes and structure of matrices are invariant
under similarity transform.

Definition 7 Let A € C™*", if there exists a nhon-zero vectore C" that satisfiesAx = Az, A € C, A
is called theeigenvalueof matrix A andz is referred to aigenvector

Eigenvalues are the roots of matrixA’s characteristic polynomiadlet(A\I — A), the set of eigenvalues
is also called thepectrumof A. The sum of the diagonal elementsAfis referred to asraceof A,

trace(A) = i Qi = i i
i=1 i=1

6.1 Schur Decomposition

Theorem 8 Schur Decomposition Let A € C"*", then there exists a unital® € C**" such that

QAQ=T=D+N
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whereD = diag()\y, ..., \,) andN is strictly upper triangularQ = (¢, . . ., g,) is a column partition-
ing of the unitary matriXQ whereg; is referred to asSchur vectorand fromAQ = QT Schur vector
satisfy
k—1
Aqe = Neqr + Zniqu‘, k=1:n.

=1

Proof 4 The theorem obviously holds when= 1. Suppose\ is an eigenvalue of matriA and Az =
Az with x € C™ is a unit vector. Then can be extended to a unitary matitix = (z, us, . .., uy,),

AU = (Ax,Auy,...,Au,)
= (Az,Aus,...,Auy,)

2wl
- (o)
Suppose the theorem holds for matrices of order 1, there is a unitaryU such thatU” CU is upper
triangular. Thus, let€) = Udiag(1, U) itis easy to verify the theorem holds for order

For a real matrixA, the eigenvalues are either real or conjugate complex in pairs. In order to operate
all with real numbersT changes to block upper triangular with either 1-by1 or 2-by-2 diagonal blocks
which is called as real Schur decomposition.

Theorem 9 Real Schur DecompositiorLet A € R"*", then there exists an orthogong) € R"*"
such that

Ry Rz ... Ry
QTAQ _R - 0 RQQ c Rgm
0 0 ... Rom

where eactR;; is either a 1-by-1 matrix a 2-by-2 matrix having complex conjugate eigenvalues.

Proof 5 The theorem obviously holds for= 1. Let A € R™*", if A has a real eigenvalug then A
can be block diagonalized and reduced to order 1 as shown in the proof of Schur decomposition.
If A has a couple of conjugate complex eigenvalye = o + i3, it is easily to see the corresponding
eigenvectors are also complex conjugate = y £ iz, wherey and z are real vectors.

Aly+iz)=(a+if)y+iz)=A(y z)=(y z)(_aﬁ g)

G # 0 implies thaty and z are independent, thus by Gram-Schimt process we can eytendz to an
orthogonalQ = (y, (y — r122)/r22,4s3, - - -, gn), SUCh that

T ~( R Rp
QAQ—< Ry

whereR; is a 2-by-2 matrix with eigenvalues , = a + 3. By induction the theorem holds.
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Corollary 3 A is normal, namelyA? A = AA™ | if and only if there exists a unitar§) € C"*" such
that Q7AQ = diag(\1, ..., \n).

Corollary 4 A is real symmetric matrix, there exists an orthogofale R™*" such thatQ?AQ =
diag(A1, ..., \n).

Consider the real Schur decomposition of symmeirjsoR . is also symmetric. And the eigenvalues of
2-by-2 symmetric matrices are real, thAlscan be diagonalized.

6.2 Eigenvalue Decomposition

Theorem 10 Block Diagonal Decomposition Let A € C™*™ and aSchur decompositioas follows:

T11 T12 qu
QTAQ_T - 0 Ty ... Ty
0 0 ... T,

assume that th&';; are square and the eigenvaluesdf andT; are different whenever # j, then
there exists a nonsingular matrik € C™*™, such that

/

qq)‘

(Y'Q"A(QY) = diag(T),,..., T

For matrix A € C"*", the order of eigenvalug; in the characteristic polynomial is referred to as
algebraic multiplicityof \;, the dimensions ofull(A\;,I— A) is calledgeometric multiplicityof A; which
implies the number of independent eigenvectors associated\yith

Corollary 5 Diagonal Decomposition Let A € C"*", there exists a non-singula&X € C"*™ which
can diagonalizeA
X TAX = diag(Ai, ..., \),

if and only if the geometric multiplicities of all eigenvaldgequal to their algebraic multiplicities.

Theorem 11 Jordan Decomposition Let A € C™*", then there exists a non-singular € C™*" such
that X 'AX = diag(Ji,...,J;),where

A1 0

Ai

Ji: .
1
0 0 N

ism; — by — m,; square matrix andn, + ... + m;=n, J; is referred to aslordan blocks
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6.3 Hessenberg Decomposition

Theorem 12 Hessenberg Decomposition Let A € R™*", then there exists an orthogonal matrix
Q € R™", such that

Q'AQ=H
whereH is aHessenberg matriwhich means the elements below the sub-diagonal are zero.

Proof 6 We claimQ is a product ofn — 2 Householder matrice®,,...,P,,. We can find» — 1
order Householder reflectiol?; to zero the first column oA except the first two entries. Let =
(agl,...,anl)T and P a = (621,0,...,0)T. Let P, = diag(1,P), note Householder matrices are
symmetric and; is symmetric, then

1 0 a w 1 0 a TP
T _ - 11 Y _ AV 1
Pl AP N ( O Pl ) ( (04 A22 ) ( 0 Pl ) < PlOé P1A22P1 )

Now suppose the — 1 step has been done we fihd- 1 Householder matriceP, . .., P;_; such that

T Bll B12 B13
(Pl . Pk—l) A (P1 e Pk—l) == B11 b22 B23
0 B32 B33

is upper Hessenberg through its fifst- 1 columns B, is a vector withn — &k elements, we can fined—k
order Householder matri¥;, to zeroB3;,'s elements except the first entry, Bt = diag(IL,,_x, Py),

then B
B B2 B1T3Pk

(Py...Pt)"A(Py...Py)= | By b»  BLP:
0 PiBs PiBsPy
is upper Hessenberg through its filsstolumns. By induction, the theorem holds.

If matrix A is symmetric, the Hessenberg decomposition leads to a tri-diagonal foAmTiis claim
can be easily verified by setting= o’ andB,; = B, in the above proof.

hll th O O
hoir hoy - 0 ;
Q'AQ=H=| o . . - 0
0 " ' hn—ln
O O hnn_l h/nn

Companion matrix decomposition is a non-orthogonal(non-unitary in complex domain) analog of
the Hessenberg decompositon, just like the relation of Schur decomposition and Jordan decompositiot
Companion matrixndicates the matrices have the following forms and their transpose, which can be
easily derived from the characteristic polynomiat(\I — C) = ¢y + ;A + ... + ¢, AL+ 2™

00 ... 0 —Cp —Cp—1 ... —Co —C1 —C(Cp

10 ... 0 —c 1 0o ... 0 0
c=|01 ... 0 —c C= 0 1 ... 0 0

0 0 1 —cy O 0 ... 1 0
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Schur Decomposition is an important means to compute eigenvalues. A practical iteration scheme
based on Hessenberg decomposition and QR decomposition is called QR iteration as follows:

Hessenberg decomposition

H, = UlAU,
fork=1,2,...
QR decomposition
Hy 1 = UgRy
H, =R,U,;

The QR iteration converges to the Schur decomposition of matriRlease refer to [3] for details.

7 Biconjugate Decomposition

7.1 Biconjugate Decomposition

A variety of matrix decomposition processes can be unified with the Wedderburn rank-one reduction
theorem [6], such as Gram-Schmidt orthogonalization process, LU, QR, SVD decomposition.

Theorem 13 If A € R™*", z € R andy € R™ are vectors such that = y” Ax # 0, then the matrix
B = A — w'Azy” A has rank exactly one less than the rankAof

Proof 7 We will show the order oB’s null space is one larger than that . Vz € null(A),e.g.
Az =0wegetBz = 0, sonull(A) C null(B). Vz € null(B),

0=Bz=Az—-w 'Az(y"Az).
Letk = w—tyT Az, which is a scalar, thus
A(z — kx) =0,

(z — kz) € null(A), noteAx # 0, the null space oB is therefore obtained from that & by addingx
to its basis, which increase the order of this space by 1. Thus, the rddksobne less ther.

Supposerank(A) = r, we can define aank reducing procest generate a sequence of Wedderburn
matrices{ A} by using
A=A AL = Ay —w Ayl Ag

for any vectorr;, € R™ andy, € R™ satisfyingw, = y{ Ayx;, # 0. The sequence will terminate in
r steps sincqrank(Ay)} decreases by exactly one at each step. This process can be summarized in
matrix outer-product factorization form:

A=o0'wT (1)
whereQ = diag{w,...,w.}, ® = (¢1,...,¢,) € R™"and¥ = (¢y,...,1,) € R™*" with
Ok = Apar, Up = Alyy
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Further equ. 1 can be written:
A=Ay, Aa) Q7 (AL Yl A) (2)

Note everyA, can be expressed with, we can findU = (uy,...,u,) € R andV = (vy,...,v,) €
R™" whereAu;, = Az, andv] A =yl A,.

_ "l vl Axy ) il vl Au;
Ukzﬂvk—z oT A, Uy, Uk:yk_z UTAUZ' V;

i=1 i=1

Thus equ. 1 can be rewritten as

VIAU = Q (3)
A =AUQ 'VTA, (4)

This matrix decomposition process in equ. 1,3,4 is referred tbi@mjugate decompositiom [6],
which can be easily verified by substitution Wedderburn marix; = 0 with {A;}.(U, V) is called
A-biconjugate pairand(X,Y) is calledA-biconjugatable

Depending on the initial matriA and the choice of the vector s¢is, Y ), a variety of factorizations
can be derived from biconjugate decomposition. Here we list the results for some well-known matrix
decompositions, please refer to [6] for details.

Gram-Schmidt let A be the identity matrix an@X, Y') are identical and contain the vectors for which
an orthogonal basis is desirgd] = V) give the resultant orthogonal basis.

LDM For A € R™*" of rankn, if the A-biconjugatabléX,Y') are both the identity matrig, I), then
equ. 3 provides the uniqueDM” decomposition ofA, whereA = V-"QU~! for V-7 and
U~7T unit lower triangular matrices.

QR For A € R™™ of rankn, if the A-biconjugatabldX,Y) is (I, A) and gives the the biconjugate
pair (U, V) = (R;*,Q¥) andQ = ¥2in equ. 3, wherel is a diagonal matrix an®* is the
unit upper triangular matribdx = ¥R, andQ give the QR decompositioA = QR.

SVD For A € R™ " of rank, the SVD ofA given asA = UXV7, the A-biconjugatabléX,Y) is
(V. U).

7.2 Summary

( SVD: A =UXVH

QR: A = QR

(squargSchur: A = QTQ (non-unitaryJordan: A = XJX!(---)Eigen: A = XXX !
(real squargReal Schur A = QRQ? (symmetrigEigen: A = X3 X7

(real squargHessenberg A = QHQ? (non-orthogonalCompanioiisymmetrig Tri-Diagonal
(non-singular square - )LU(LDM) : A = LU = LDM? (symmetrigLDL : A = LDL”
(symmetric positive definite squatholesky: A = GGT

AeCmr

\
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