
Pavlov’s Arcade

Reinforcement Learning for a Breakout AI

Angela Jiang
Northwestern University

2317 Ridge Avenue
Evanston, IL

(616)635-9604
angelajiang2014

@u.northwestern.edu

Motoki Mizoguchi
Northwestern University

1116 Garnett Place
Evanston, IL

(859)230-0662
motokimizoguchi2013
@u.northwestern.edu

Max New
Northwestern University

1930 Ridge Avenue
Evanston, IL

(985)397-1770
maxnew2013

@u.northwestern.edu

ABSTRACT
In this paper we describe the design and implementation of a
bot to play the arcade game Breakout. Instead of manually
writing the bot, we use reinforcement learning techniques to
learn a strategy by repeated sessions of Breakout where the
learner is rewarded for advancing through the game and pun-
ished for losing. We show that our bot’s game performance
increases with repeated plays, though it does not converge
to a strategy that never loses.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Experimentation

Keywords
Q-Learning, Reinforcement Learning

1. INTRODUCTION
Video games are designed to challenge human players. A

new player starts with no knowledge of the game mechan-
ics and learns by reward and punishment which strategies
are good or bad. A key aspect of game design is creat-
ing an experience that helps the player to learn the game
quickly through this conditioning. In our project, we di-
rectly apply this philosophy of gaming to the construction
of an AI player. Just as a human would, the bot plays the
arcade game repeadetly, being rewarded for advancing and
punished for losing. Starting from a random strategy, the
learner uses a Q-Learning reinforcement technique to update
its policy.

In section 2 we describe Q-Learning, the Breakout ar-
cade game and previous work on machine-learning based

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

game AIs. In sections 3 and 4 discuss how we adapt the
Q-Learning technique to the game of Breakout. In section
5 we evaluate the efficacy of our learning technique, and we
describe future work in section 6.

2. BACKGROUND

2.1 Q-Learning
In reinforcement learning, the AI receives positive and

negative rewards based on the outcome of its actions. For
each state, the optimal move may not be clear based on im-
mediate rewards. Reinforcement learning algorithms allow
the bot to learn based on delayed rewards so that it can
choose moves that maximize future rewards. In the case of
breakout, at every instant, the bot must choose a move so
that in the future, the ball will hit the paddle and avoid
losing the game.

Q-Learning is an algorithm for reinforcement learning that
does not provide a model for taking actions. Instead, it
learns what the optimal selection for each possible state is.
The final policy is the set of each possible state and the opti-
mal action to take. The algorithm is practical for a Breakout
bot because we know what the possible states are in advance
and the outcome of each move is deterministic. For any finite
markov decision process, q-learning is able to converge to
find an optimal policy. Unlike on-policy reinforcement learn-
ing algorithms such as TD-learing or SARSA, Q-learning if
an off-policy method. The final policy does not depend on
the way the state space is explored. This will avoid the pos-
siblity of getting trapped at local minima where the optimal
move is not explored because the reward is underestimated
at first.

The algorithm uses dynamic programming to explore the
state space by iteratively approximating the state-action
value, Q. The estimates of the Q values of all (state,action)
pairs are used to determine the next move. In the next iter-
ation, we are able to estimate the outcome of the move from
the reward we receive. The previous Q value is updated ac-
cordingly. There is also a possible discount factor applied
to observed rewards that motivates the bot to choose the
shortest number of moves to a future reward.

2.2 Breakout
Breakout is a popular arcade game first released in 1976

by Atari, Inc. In the game, the player has control of a single
paddle that sits at the bottom of the screen and can be

moved left or right. Above the paddle are a number of bricks
the player attempts to eliminate. A ball is released into
the game and bounces around the screen. The player has
to prevent the ball from passing through the bottom of the
screen or they lose a life. In addition, the player advances the
game by bouncing the ball into the bricks, which disappear
when hit. When all of the balls on the screen are eliminated,
a new set of bricks appear on screen and the game continues.
The game eventually ends when the player loses all of their
lives or a time limit runs out.

While simple, the optimal strategy for the game is not
immediately clear. We measure the performance of a strat-
egy by the number of bricks hit until the player runs out
of lives or a time limit expires. To demonstrate the tricki-
ness of implementing a Breakout bot consider the most ob-
vious strategy which is just to keep the paddle underneath
the ball at all times. This is easy to program, but is it an
optimal strategy? The player never loses, but there is no
guarantee that the game is advanced and the player may go
into arbitrarily long periods in which a ball is never hit. A
more advanced strategy would take into account where the
bricks are and aim the ball to hit them quickly. We take
such considerations into account when evaluating our bot’s
performance.

2.3 Related Work
There have been many works on implementing machine

learning in video games. Some research for machine learning
video game has been done through implementation of a Neu-
ral Networks [4, 5]. Neural Nets has been implemented for
arcade game such as Ms. Pac-Man [3]. Reinforcement learn-
ing has been implemented in more complex video games such
as Super Mario [2]. For implementing reinforcement learn-
ing into arcade games, work has been done to provide easier
access to the states in many Atari arcade games through the
arcade learning environment project [1].

3. DESIGN
In order to run Q-Learning, we need to consider the state

of the Breakout game. In a game of Breakout, there is a
court containing bricks, ball, and paddle. The ball, the pad-
dle, and each brick will have their x-y coordinates and size
of their object. The ball and the paddle also has their ve-
locity. The x-y coordinates are given by pixel values, which
depends on the window size of the browser that one runs
the game. This may range from 300 to 800 pixels in each di-
mension. With just the paddle and the ball, the order of the
state space can be 109 to 1011 in size. In order to keep the
state space small and consistent with different screen size,
we decided to normalize the x-y state space to the width of a
smallest brick unit called chunk. The court was normalized
to a 15 chunks by 15 chunks field, and the x and y values of
the ball and the paddle were represented using the mapping
to this field. This mapping reduced the state space for the
two states by a factor of 105.

Furthermore, some states can be ignored or further sim-
plified. Because the paddle does not move up or down in the
game, the y coordinate of the paddle can be ignored. Also,
the paddle has a width that stays constant, and the paddle
width reduces the position that the paddle can take on the
space. For the velocity of the ball, the speed component was
kept constant, so we considered the direction of the velocity.
We simplified the velocity to take on 6 different direction:

Figure 1: State Space representation: The court is broken
into 15 by 15 chunks, and the velocity of ball is represented
in 6 states. Without bricks, the state space representation
is reduced to ≈ 104 states.

up left, up straight, up right, down left, down straight, down
right.

For the bricks, one way of representing is to see whether or
not a brick exists in each position in the 15 by 15 field. That
representation has 215∗15 ≈ 1067 states, which is too big. We
first separated the court into 5 vertical regions with 3 chunks
in width, and recorded the number of bricks located inside
that region. We represent the bricks representing regions
with the highest brick number, which takes 5 states.

At any given point during the game, players either move
the paddle to the left, to the right, or keep it still. Thus,
given a state, there are 3 actions to choose from. A reward is
given to the bot for every time it hits a paddle or a brick, and
a bigger reward when it finishes a game. Heavy punishment
is given to an action that results in a loss.

4. IMPLEMENTATION
Our game is adapted from an open source Breakout imple-

mentation written in Javascript. Instead of receiving com-
mands from the keyboard, it queries our server for each
move. It is therefore synchronous with the server and will
only update the game after each response from the server.
The Python server provides the Javascript bot with its next
move.

The game provides the server with a reward and the cur-
rent state of the game and receives a command to stay, move
left or move right a single chunk. It will also notify the server
if the game is won or lost. In each case, the server will update
the q-table values for the previous state with the observed
reward. It will then determine the bot’s next move.

Before our server can provide the optimal moves to our
bot, it must learn the strategy. Our server therefore has two
modes, learning and testing. In learning mode, our server
chooses moves based on an ε-greedy algorithm to allow for
exploration. In testing mode, it provides the bot with the
move that is expected to maximize its reward.

As it is learning, the server will continually update values
in the q-table. We therefore need the q-table to be persistent

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Moves Trained On 1e7

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0
Hi

ts
Average Hits Per Life Without Bricks

Figure 2: Average Hits per Life

each time we run our server. We serialize the current table
each time the server is stopped with ctrl-c. Also to acquire
continual snapshots of the state of our server, we serialize
the table every 1,000,000 moves in learning mode and 50,000
moves in testing mode.

5. RESULTS

5.1 Experiment
While our learning is conducted, we take snapshots of the

state of the table at intervals of 50,000 and 1,000,000 moves
trained on. We then were able to test on these intermediary
tables and compare performace. The performance metrics
that we used were

• Number of hits of the ball

• Levels beaten

• Time elapsed before losing

Each bot was allowed 100 lives and results are averages.
In Figure2, we look at average number of paddle hits as
our bot trains. We see that the number of moves the bot
trains on correlates to a larger number of paddle hits. This
shows that the bot is indeed learning based on our reward
for paddle hits. In a level without bricks, we would expect
an optimal learner to prolong the game indefinitely. We
look that average time elapsed in Figure 3. The short time
duration per game is due to the game being sped up for
testing purposes. There is less of a noticeable correlation
here. This is evidence that our original assumption of what
the optimal strategy is may not be correct.

We also see less correlation in bots tested in levels that
include bricks. This is expected since we do not include
bricks in the state space. Because of this, the outcome of
each of our actions is no longer deterministic. For example,
while learning, the bot may discover that a paddle position
causes the ball to bounce diretly onto the paddle. How-
ever, if bricks are introduced into the state, this is no longer
the case. Another potentially optimal strategy is to always
move towards the ball. The performance using this strategy
shouldn’t change if bricks are introduced. Our results show
that this is probably not the optimal strategy learned either.

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Moves Trained On 1e7

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Ti
m

e
in

 S
ec

on
ds

Average Time Elapsed Per Life Without Bricks

Figure 3: Average Time elapsed per Life

6. FUTURE WORK
For this project, we were able to perform Q-Learning in

a small field and no information about the bricks was used
in our state representation. The initial goal was to have
an implementation where some sort of information about
the bricks on the court was included in the state after we
achieve a successful bot that can keep itself alive. Future
work can be done to extend our simple reinforcement learner
to include the state of the bricks on the court so that it can
aim the ball against the bricks for faster clearing of a level.

7. CONCLUSION
In our project, we applied reinforcement learning tech-

niques to the construction of a Breakout bot. In our test-
ing, we can observe that our bot’s performance increases
with training. However, because we see little correlation to
other metrics of game strategy, we cannot determine if our
proposed strategy is optimal.

8. REFERENCES
[1] M. G. Bellemare, Y. Naddaf, J. Veness, M. Bowling,

(2012). ”The arcade learning environment: An
evaluation platform for general agents.” arXiv preprint
arXiv:1207.4708.

[2] J. Togelius, S. Karakovskiy, J. Koutnik, J.
Schmidhuber, (2009, September). ”Super mario
evolution.” In Computational Intelligence and Games,
2009. CIG 2009. IEEE Symposium on (pp. 156-161).
IEEE.

[3] T. G. Tan, J. Teo, P. Anthony, J. H. Ong. ”Neural
network ensembles for video game AI using
evolutionary multi-objective optimization.” HIS, page
605-610. IEEE, (2011)

[4] R. Graham, H. McCabe, S. Sheridan, ”Neural
networks for real-time path-finding in computer
games”
http://www.gamesitb.com/nnpathgraham.pdf

[5] R. Graham, H. McCabe, S. Sheridan, ”Neural
Pathways for real-time dynamic computer games.”
http://gamesitb.com/Graham_EGIreland.pdf

	Introduction
	Background
	Q-Learning
	Breakout
	Related Work

	Design
	Implementation
	Results
	Experiment

	Future Work
	Conclusion
	References

