

Abstract— Specialization has always been a tool for work

distribution and simplification in nature and in distributed

robotics. We present a novel approach to use hardware

specialization hierarchically to enhance the capabilities of a

swarm without increasing complexity, allowing a numerous

group of robots to benefit from the extended features of a few to

complete a task that was impossible for them before. We tested

the concept under a simulated environment with a classical

distributed robotics problem, shape formation, and validated

the simulated results against a real experiment.

I. INTRODUCTION

Specialization is a valuable strategy to efficiently solve
problems in large groups. Nature provides countless examples
of the advantage of differentiating individuals in specific roles:
cells[1], bees[2][3], ants[2][3][4], termites[2][3], etc., are
often organized in such ways that individuals perform only a
small set of tasks as part of a much larger process.

In the past, researchers have used specialization in
distributed robotics to increase efficiency or simplify the robot
swarm hardware. One common use of specialization is to
reduce the group complexity by assigning specific tasks based
on the mechanical abilities of different robot types [5]; this
“hardware specialization” leverages differences in the
hardware of the individuals. This kind of specialization is used
in heterogenous swarms, for example allowing reduction of
the total number of actuators by avoiding unnecessary
redundancies, such in [5], some individuals can drive while
others can grab objects. If every individual in the group had
the same mechanical configuration, then every individual must
have all the required capabilities to complete a goal. This not
only means that the final configuration of the robots would be
more complex (they would need to be able to drive and grab
objects), but also that extending the capabilities of the swarm
would require an extension of the capabilities of every single
individual.

While counterintuitive, hardware specialization can also be
achieved using hardware variability in homogeneous swarms.
An example of this could be to let what a priori seems to be a
group of identical robots “discover” [6][7] which individuals
are better at solving specific tasks based on the success rate
attempting to perform them. Then small differences in each
robot’s hardware performance start playing a part, the
individuals accumulate knowledge about their own abilities

and use that knowledge to take or abandon specific roles: those
with better actuators will move, those with better sensors will
sense, for example.

 Another form of specialization, “software specialization”,
could be achieved by defining roles in the algorithm so, during
its execution, the roles will be dynamically assigned to specific
agents. An example could be the algorithms that require the
selection of a leader to serve as a point of reference for the rest
of the robots to achieve a goal or help coordinate the actions
of the group. The leader role could be assigned at runtime
based on an advantageous condition [8], purely randomly [9]
or by hand [10] [11]. A different use of soft specialization is to
instruct the robots to “switch” roles when they reach a specific
state. A good example are some foraging algorithms where all
the participants starts on an explorative mode until the path
between the source and the destination is discovered and then
some robots switch to a beacon mode and others to a forager
mode [12]. Soft specialization can also be found on some
sensor network implementations [13], where some sensor-
nodes closer to the phenomena under investigation, or with a
better chance to get the measurement, specialize in sensing
while other nodes take on a sole communication role. The
main benefit of “soft specialization” is the possibility to assign
roles based of spatial or temporal advantages, such as: when
an individual is better located, has more battery, is in range of
the goal or became part of a path for example. This also means
that if the advantage changes, the roles can be re-shuffled to
maintain performance. The main drawback is that every robot
must have the hardware abilities to execute all possible roles.

German Espinosa, Michael Rubenstein

Using Hardware Specialization and Hierarchy to

Simplify Robotic Swarms

German Espinosa is with the Electrical Engineering and

Computer Science Department, McCormick School of Engineering,

Northwestern University. (e-mail:
germanespinosa@u.northwestern.edu)

Michael Rubenstein is with the Electrical Engineering and
Computer Science Department, Mechanical Engineering Department,

McCormick School of Engineering, Northwestern University. (e-mail:

rubenstein@northwestern.edu).

Fig. 1. Coachbot with the raspberry pi board(A), the high resolution camera

(B) and the kilobot communication module (C) next to a kilobot (D) and
fiducial markers (E).

Even though these uses of specialization allow algorithms
to be broken down into roles, most require all participants to
have the same level of understanding of the global objective.
This means that the complexity of the algorithm is limited by
the weakest computing element of the swarm. To overcome
this limitation, we propose an alternative use of specialization:
the decomposition of a process into “layers” with different
complexity, from a complete understanding of the global goal
to a very local ability to solve a specific task.

In our layered approach, specific parts of the goal are
communicated to the immediate layer below as a mandate to
start a task. The recipient of this mandate does not need to
know the global goal, and only receives the information
required to execute its local task. This interaction between
layers is characterized by a hierarchical relationship, where the
robots in the lower layers simply execute the commands sent
by the upper layers, and the complexity of the goal decreases
as the message moves down layers. An important point is that
additional information to complete the task can be inferred as
an implicit part of the communication between layers. For
example, this implicit information could be the time and place
the message was communicated. Here, if the top most layer
has some sort positional or synchronization information, the
rest of the system can “inherit” this knowledge implicitly.

We are looking to show that this approach can help reduce
the total complexity of the group by giving the individuals only
the computational and sensory abilities to perform in their
assigned role and, as an additional benefit, the robots
performing the local tasks can have specialized mechanical
properties, not required to perform in the other layers.

II. HIERARCHICAL SHAPE FORMATION

A classical problem of distributed robotics was selected to
test the value of hierarchy as a form of hardware
specialization: shape formation. The technique used was
inspired by the growing circles process described in [14], that
provides a mechanism to connect global and local rules, but as

it is currently not possible to make the robots self-replicate, we
decided to combine it with the technique on [15] where robots
join the shape after performing stochastic walk when they
bump into a growing surface.

The work was divided into two roles: “global” robots that
understand the shape and know where circles need to be built
and “local” robots that can build and add to the circles.

A high-level idea of the algorithm is as follows: the process

begins by providing to the global robots a list of circles,

specified by center location and radius, that form the desired

shape. Then these global robots will navigate towards where

the center of each circle should be located and wait there until

it can recruit a randomly walking local robot as a seed. The

local robot selected as a seed receives all the parameters

needed to form the assigned circle and the global robot moves

on to the next circle. The seed stays in place and after a

predefined time (called “Initial wait time”), starts recruiting

more robots by emitting a decreasing hop-count message that

starts at size one and over time increases until it reaches the

full size of the circle provided by the global robot. When all

circles are fully grown, the shape emerges (fig. 4).
These two layers of work, global and local, demand

significantly different abilities. The global role requires
positional information, path planning to prevent robot from
running into growing circles and global communication to
shuffle tasks and share progress information. The local role
requires only to perform a random walk and contact-based
communication.

Fig. 2. Program flowchart for global role robots.

Fig. 3. Program flowchart for local role robots.

One difference between this approach for shape formation
and many others using homogeneous swarms [11], is that the
global location and orientation of the shape in the environment
is completely controlled by the algorithm, this means that no
manual seed is required and the resulting shape will be at the
exact global position is desired at the end. This is a direct result
of the positioning abilities of the global robots and its passed
down to the local robots using hierarchy.

III. ROLES DEFINITION

The tasks performend by robots in the “global role” can be
summarized as follows. Global robots are given a priori a user
defined set of circles to be formed, with the location , the size,
the priority, the initial wait time and the grow rate of each one.
Using communication between global robots, each global
robot claims a circle to form based on priority, proximity and
availability. Then, using positioning information, they
navigate toward the locations where the assigned circle centers
should be located and recruit a “local” robot to start building a
circle of a specified size and that location (by sending a “seed
recruiting” message to the local robot). This interaction can be
observed in figure 1. After successful recruitment of a local
robot, the global robot communicates to all global robots that
the circle was built and bids on a new circle to form (fig. 2).
This continues until all the circles have been started.

Each action performed on the circles is transmitted
immediately to the rest of the global robots to ensure no circle
is assigned twice and all circles are completed at the end of the
process.

The “local” robot starts by moving around in the
environment using a random walk. If a local robot receives a
“seed recruiting” message (from a global robot), the robot will
stop moving and bid for the chance to become a seed for a
circle. If it fails to become a seed for a circle, due to other robot
winning the bid or a faulty communication, it will return to
moving randomly. In case of winning the bid, the seed will
wait the time specified as the “initial wait time” and then start
transmitting a “growing circle” message with a hop-count one.
From that moment on, it will increase the hop-count by one
whenever the time specified as the “growing rate” elapses until
it reaches the size of the circle. All these parameters: the circle
size, the initial wait time and the grow rate, are given to the
seed robot by the global robot during the recruitment.

If a local robot walking randomly receives a “growing
circle” message with a hop-count value greater than zero, it
will stop moving, reduce the hop-count value by one and
retransmit this message (fig 3).

IV. SELECTED HARDWARE

The Kilobot platform allows the use of a large number of
robots that are easy to operate collectively and also meets all
the requirements of the local role, as it can perform a random
walk, and has short range communication and distance
sensing. These last two can be used together to simulate a
downgrade to contact-based communications like it is needed
for the algorithm. For more information about kilobots, see [9].

The global role needed a robot platform with the ability to
sense its position, plan paths and move without colliding with
other global robots. In terms of communications, it required

the ability to send progress information to its peers at all time
and also short-range communication with nearby kilobots. A
custom designed robot called “Coachbot” was built to meet
these needs. Coachbot is a two-wheel differential drive robot
built within a circular acrylic frame. The frame is designed to
run in an environment shared with kilobots by being able to
gently push through a crowd of them without knocking them
over. Each Coachbot is powered by a 3.7V 2Ah rechargeable
battery and an onboard raspberry Pi 3 rev 1.2 computer with a
1Ghz ARM processor and built in WIFI, a high-resolution
forward-facing camera and a special communication module
attached in the front to send and receive messages to and from
touching kilobots. To share progress and positioning
information between Coachbots, they send peer to peer
messages over WIFI. This distributed communication system
allows changes in the number of Coachbots during the
execution of the experiment without impacting the result. The
coachbot total part cost is under $120.

To get positioning information, Coachbots use a number of
Aruco [16] fiducial tags located in the walls of the arena. Each
tag is uniquely identified and the global position of each tag is
known by all Coachbots. Using its camera, Coachbot can
compute the relative position of the robot respect to the tags
captured by the camera, and therefore estimate the location and
orientation of the robot. Aggregating information from
multiple tags reduce the impact of noise in the readings and
improve the accuracy in the positioning information produced.
For this reason, we incorporated multiple tags in different sizes
in every possible view angle (fig. 1).

V. SIMULATION ENVIRONMENT

To test the performance of the shape formation, we

Fig 4: (A) Coachbot moving toward the center of the assigned circle of hop-
count one. (B) Coachbot recruiting a kilobot to serve as the seed for the

circle. (C) Coachbot moving away toward the next circle and the seed

starting the circle formation. (D) Circle formation in advanced state,

randomly walking kilobot performing edge following.

developed a simulated environment with all the features

required in the shape formation process. A virtual three meters

by three meters arena hosted one thousand robots for the local

role and up to four robots for the global role. Robots were

represented by a circular shape that cannot overlap and cannot

move outside of the arena. All robots started in a randomized

position and ran for sixty simulated minutes. The program

simulates the movement and communication behaviors needed

for the local and global roles robots. Collision detection was

only added to the local robots, as in the real experiment the

Coachbots hardware was designed to be able to push its way

through kilobots and they will use positioning and planning to

avoid each other. All the results showed in section VII and VIII

were obtained by repeating simulated experiment 100 times

for each parameter variation.

VI. EVALUATION FUNCTION

To quantitatively measure how well the shape is formed
with the described hierarchical shape formation algorithm, a
custom evaluation function was used. The evaluation function
is given the desired shape and the position of all robots at a
particular time. It then reports the ratio of area inside the shape
that is farther than one Kilobot diameter from any other robot,
these are locations within the shape that another Kilobot could
have been added. Figure 14 shows in red an example of the
area considered by the evaluation function farther than one
Kilobot diameter a way from other robots in the shape.

Each robot counts not only by its own surface but also has

a small influence area around it where there is not enough

space to fit another robot. The areas within the desired shape

where there is enough space to fit a robot but it is not occupied

by any, it is discounted from the area of the shape. The

evaluation function then reports the ratio of space where no

other robot will fit to the total area in the shape.

VII. SHAPES AND SIMULATION RESULTS

It was necessary to show the algorithm worked well with
various desired shapes, such as contours and solid ones, to do
so, two experiments of each kind were selected: a straight line
and an “N” will test contours, and a filled triangle and a
rectangle will do the same for solid shapes. In addition, to
ensure the method is nonspecific to these four, the algorithm
was tested with 100 random shapes (fig. 7). Each random
shape was formed by a group of 18 circles of sizes 1, 2 and 3,
randomly distributed in a 1m by 1m section of the arena to
maximize overlapping. In terms of shape completion, the
results show that the algorithm performance is better in
contours than solid shapes and is affected by the overlapping
area of circles and the sharpness of contours (fig. 5).

In terms of speed of formation, the solid shapes took longer
to build. The straight line was the fastest, and did not improve
much after the first ten minutes. The N contour had a
significant change in the slope at ten minutes but continued to
improve through the following twenty minutes of the
experiment. In both solid shapes, it can be appreciated the wait
times to trigger the circle formation as changes in the curve
slope. Random shapes where the slowest, taking close to thirty
minutes to reach an average value of 0.8 (fig. 6).

Fig. 7. Final robot configuration and desired shapes. Evaluation function results from left to right: Line 96.89%, “N” 93.77%, Triangle 95.56%, Rectangle

89.58% and Random 92.10%. In green shows robot that are part of the shape, in red robots performing edge following and in gray robots that are in random

walk state. The desired shape is marked with a light blue shade.

Fig. 6. Value of evaluation function over time, by shape. Computed from

100 simulations per scenario. Solid line represents the mean and dotted line
the standard deviation.

Fig. 5. Value of evaluation function, by shape. Computed from 100

simulations per scenario.

VIII. IMPLEMENTATION ADJUSTMENTS

By analyzing the initial results, some additional parameters
and behaviors that increase the shape completion and speed up
the process were identified.

Edge following: The local robots originally only joined the
shape when they randomly ran into another robot sending a
“growing circle” message with a hop-count bigger than zero,
otherwise they just kept walking randomly. By adding edge
following, the kilobots follow the edge of the shape (where the
hop-count is zero) once they bumped into it, instead of staying
in the random walk behavior. This allows them to try to find a
spot where they can join a circle, even if they arrive to the
shape in a non-growing area (fig. 4). The change in the local
role increases the chance of a kilobot of joining a growing
shape and produce better and faster results. To evaluate the
improvement, we performed the same shape formation
simulations with and without edge following behavior and
compared the output. The results showed that edge following
improvement is more significant in solid filled shapes. The
median formation in triangles improved around 4% and in
rectangles improved over 5% (fig. 8).

Edge following also increased the speed of the algorithm
by keeping robots near the shape while the circles are forming
and, when the hop-count of the circle is incremented during

the formation, all robots performing edge following are likely
to be recruited by the circle immediately. Comparing the
completion over time, on average the formation was five
minutes quicker to reach value 0.85 for the rectangle shape
once edge following was implemented (fig. 9).

Initial wait time: One complication that can arise with this
algorithm is that a circle can be blocked by others surrounding
it before it is complete. This happened mainly when complex
shapes have circles located close enough to each other to block
the way of nearby walking kilobots. To prevent this problem,
we defined a parameter per circle to specify a wait time for the
seeds before starting sending hop-count messages. This allow
circles surrounded by other circles to start growing before the
circles around it can block it, generating a more consistent and
better result. By waiting 5 minutes before every circle started
the recruitment in a 5x5 lattice of circles, the evaluation
function showed a significant change allowing the top 75% of
the executions to improve from at least value 0.74 to 0.78 (fig.
10).

Grow rate: Another initial complication occurred in
experiments with bigger circles, where growing surfaces with
a high hop-count tended to have diffusion limited aggregation
problems [17] and form long branches with lots of empty
space. These structures blocked the way for walking kilobots
and prevented these circles from achieving a high density. To

Fig. 11. Value of evaluation function, by grow rate in minutes per hop-

count increase. Computed from 100 simulations per scenario.

Fig. 9. Value of evaluation function over time, with and without edge

following. Computed from 100 simulations per scenario.

Fig. 10. Value of evaluation function, with and without initial wait time.

Computed from 100 simulations per scenario.

Fig. 8. Value of evaluation function, with (blue) and without (red) edge

following, by shape. Computed from 100 simulations per scenario.

avoid this problem, we added another parameter to the circles
to control the growth rate. The seed, instead of starting the hop-
count with the circle size, starts at zero and increases the hop-
count at a fixed rate until reaching the desired value at a
configurable pace. By controlling the time between hop-count
increases, the completion improved on large circles, reducing
the median incomplete area from 0.2 to 0.02 in circles of hop-
count 10 (fig 11). Figure 12 shows the correlation between
completion and the grow rate. Each one of the three increments
in the grow rate, improved the results.

Priority: Originally the coachbots assigned the circles only
based on the global robot’s current distance to the circle. This
solution works fine for simple contours, but proved to be
problematic with complex shapes, especially on solid ones.
The main drawback is that in a solid shape, is necessary to start
building it on a specific order to prevent isolating pending
circles. An example of this can be a rectangular lattice like
shape, if the circles on the edge are recruited first, then
accessing the inner ones becomes difficult or impossible. To
address this problem, we added a priority parameter to the
circles based on the Manhattan distance of the circle to the
center of the shape, giving the interior circles higher priority.
We found that by doing that we could improve the median
results by 6% in solid complex shapes (fig. 13).

IX. EXPERIMENTAL SETUP

The results of a smaller experiment with real robots was
compared against the same configuration in the simulation to
validate the accuracy of the data obtained from the simulation.
Each experiment ran for a maximum of fifteen minutes
forming five circles (4 with size 1 and 1 with size 3) in a
diamond formation. The experiments were considered finished
when there was no growing surface exposed to randomly
walking local robots or when the time was up.

The experiment was performed ten times in a one-meter by
one-meter arena with 100 kilobots and 2 coachbots. Kilobots
cannot sense the edge of the arena, so ones touching the edge
were rotated by hand to allow them to continue to move
randomly. To capture the activity during the experiments, a
ceiling camera that took one picture per second was installed
and a computer vision algorithm computed the location and the
state of each robot in the arena. After the data was captured, it

is then used to compute the completion rate using the
evaluation function.

X. EXPERIMENTAL RESULTS

The average completion value of the experiment was 0.95,
very close to the 0.94 obtained by the simulation with the same
setup. Surprisingly, both environments reached 0.85 average
value at a very similar time, around 6 minutes and 45 seconds.

One observation was that, like in a pixelated image, in a
reduced number of circles, small variations in the location of
the circles had a great effect in the recognizability of the
desired shape in both, the simulation and the real experiment.
However, the circle formation performed as predicted in the
simulation and the metrics from the evaluation function have
shown a high completion value.

Another observation from performing the experiment in
real robots was the realization on how the physical interaction
was influencing the results in a way that was not fully modeled
in the simulation. Randomly walking and edge following
robots bumped into non-growing areas of circles and pushed
other stationary robots altering the formation. This
unaccounted interaction caused two different effects: one
detrimental and one beneficial to the shape formation. When
the seeds of the circles are by themselves (during the initial
wait time) or the circles are in a very early state and do not
have enough mass to withstand the collisions, the bumping
caused migrations of the circles centers. This caused robots to
end the experiment outside of the desired shape and do not
count for the evaluation function. In the other hand, when the
circles are more complete, the edge following behavior of the
robots running into the shape, creates an inward movement in
the edge of the shape reducing the empty space and increasing
the number of robots forming each circle, making circles more
compact (fig 14). This unaccounted phenomenon caused the
completion rate to increase and decrease over time, when in
the simulation it only increased (fig 15).

Figure 15 also shows the correlation in the results from the
both, the physical experiment and simulated one. This
information supports the hypothesis than the experiment will
behave close to the simulated results when performed in bigger
scenarios.

Fig. 13. Value of evaluation function, by circle priority strategy. Computed
from 100 simulations per scenario.

Fig. 12. Value of evaluation function over time, by grow rate in minutes per

hop-count increase. Computed from 100 simulations per scenario.

XI. CONCLUSION AND FUTURE WORK

In this paper, we showed a novel approach for
specialization using hierarchy to reduce the complexity of
robot swarms. The fundamental idea we proposed, is to divide
work into layers, from a global understanding of the goal to a
local knowledge of a task. We showed supporting evidence
that the approach allowed a simple swarm to achieve an
objective it was not able to achieve before by adding a global
role assigned to a more complex robot to help support the
process. We performed simulated experiments to validate the
process and improve the settings of the different parameters in
the algorithm.

The described use of specialization and hierarchy in the
swarm allowed the Kilobots to operate without distance
sensing, using contact based communication. This reduction
in needed capability could result in approximately $2.50 cost
savings per Kilobot (the cost of distance sensing hardware),
and therefore $2500 for the whole 1000 robot swarm. This
savings is an order of magnitude more than the cost of adding
a few Coachbots used to reduce the needed Kilobot
capabilities. Using cost as an approximation of swarm
complexity, this means the use of specialization and hierarchy
allows for a significant reduction in swarm complexity when
compared to similar tasks in a homogenous swarm, such as in
[11]. In addition, the shape formation task presented here is
greatly speed up using the coachbots, forming shapes in
approximately 30 min compared to 12 hours in [11] and also
requires no human intervention to secure the location and
orientation of the shape in the arena.

We tested the concept using it only for shape formation,
however, we believe this separation of work and duties could
be applied to other problems. Future work includes the test of
hierarchy in other scenarios like collective transport and
foraging, as well as to approach complicated problems like
algorithm healing and fault tolerance.

REFERENCES

[1] Ispolatov et al. "Division of labour and the evolution of
multicellularity." Proc. of the Royal Society of London B: Biological

Sciences 279, no. 1734 (2012): 1768-1776.

[2] Robinson, Gene E. "Regulation of division of labor in insect societies."
Annual review of entomology 37, no. 1 (1992): 637-665.

[3] Beshers, S. N., and J. H. Fewell. "Models of division of labor in social

insects." Annual review of entomology 46, no. 1 (2001): 413-440.
[4] Wilson, Edward O. "Division of labor in fire ants based on physical

castes (Hymenoptera: Formicidae: Solenopsis)." Journal of the Kansas

Entomological Society (1978): 615-636.
[5] Dorigo et al. "Swarmanoid: a novel concept for the study of

heterogeneous robotic swarms." IEEE Robotics & Automation

Magazine 20, no. 4 (2013): 60-71.
[6] Labella et al. "Division of labor in a group of robots inspired by ants'

foraging behavior." ACM Transactions on Autonomous and Adaptive

Systems (TAAS) 1, no. 1 (2006): 4-25.
[7] Labella et al. "Self-organised task allocation in a group of robots." In

Distributed Autonomous Robotic Systems 6, 2007.

[8] Stilwell et al. "Toward the development of a material transport system
using swarms of ant-like robots." In IEEE International Conference on

Robotics and Automation, 1993.

[9] Rubenstein et al. "Kilobot: A low cost scalable robot system for
collective behaviors." In Robotics and Automation (ICRA), 2012 IEEE

International Conference on, pp. 3293-3298. IEEE, 2012.

[10] Chen et al "Segregation in swarms of e-puck robots based on the brazil
nut effect” International Conference on Autonomous Agents and

Multiagent Systems, 2012.

[11] Rubenstein et al. "Programmable self-assembly in a thousand-robot
swarm." Science 345, no. 6198 (2014): 795-799.

[12] Hrolenok et al. "Collaborative foraging using beacons.” International

Conference on Autonomous Agents and Multiagent Systems, 2010.
[13] Byers, John, and Gabriel Nasser. "Utility-based decision-making in

wireless sensor networks." First Annual Workshop on Mobile and Ad

Hoc Networking and Computing, 2000.
[14] Kondacs, Attila. "Biologically-inspired self-assembly of two-

dimensional shapes using global-to-local compilation." In 18th

international joint conference on Artificial intelligence, 2003.
[15] Neubert et al. "A robotic module for stochastic fluidic assembly of 3D

self-reconfiguring structures." In Robotics and Automation (ICRA),

2010 IEEE International Conference on, pp. 2479-2484. IEEE, 2010.
[16] Garrido-Jurado et al. "Automatic generation and detection of highly

reliable fiducial markers under occlusion." Pattern Recognition 47, no.

6 (2014): 2280-2292.
[17] Witten, Thomas A., and Leonard M. Sander. "Diffusion-limited

aggregation." Physical Review B 27, no. 9 (1983): 5686.

Fig. 15. Evaluation function over time in minutes: Simulation Vs

Experiment. Computed from 100 simulations and 10 experiments.

Fig. 14. Screen shot from experiment and simulation execution with

associated evaluation function.

