
1

A Scalable Parallel Union-Find Algorithm for
Distributed Memory Computers

Fredrik Manne and Md. Mostofa Ali Patwary
Department of Informatics, University of Bergen, N-5020 Bergen, Norway,

{Fredrik.Manne, Mostofa.Patwary}@ii.uib.no

Abstract—The Union-Find algorithm is used for maintaining
a number of non-overlapping sets from a finite universe of
elements. The algorithm has applications in a number of areas
including the computation of spanning trees, in image processing,
as well as in scientific computations.

Although the algorithm is inherently sequential there has been
some previous efforts at constructing parallel implementations.
These have mainly focused on shared memory computers. Here
we present the first scalable parallel implementation of theUnion-
Find algorithm suitable for distributed memory computers. Our
new parallel algorithm is based on an observation of how the Find
part of the sequential algorithm can be executed more efficiently.
We show the efficiency of our implementation through a series
of tests to compute spanning forests of very large graphs.

Let U be a collection ofn distinct elements and letSi

denote a set of elements fromU . Two sets{S1, S2} are disjoint
if S1 ∩ S2 = ∅. A disjoint set data structure maintains a
collection {S1, S2, . . . , Sk} of disjoint dynamic sets selected
from U . Each set is identified by a representativex, which is
usually some member of the set. The two main operations are
then tofind which set a given element belongs to by locating
its representative element and also to create a new set from
the union of two existing sets.

The underlying data structure of each set is typically a
rooted tree where the element in the root vertex is the repre-
sentative of the set. Using the two techniquesUnion-by-rank
andpath compressionthe running time of any combination of
m Union and Find operations isO(nα(m, n)) whereα is the
very slowly growing inverse Ackerman function [4].

From a theoretical point of view using the Union-Find
algorithm is close to optimal. However, for very large problem
instances such as those that appear in scientific computing
this might still be too slow or it might even be that the
problem is too large to fit in the memory of one processor. One
recent application that makes use of the Union-Find algorithm
is a new algorithm for computing Hessian matrices using
substitution methods [7]. Hence, designing parallel algorithms
is necessary to keep up with the very large problem instances
that appear in scientific computing.

Early efforts at designing parallel Union-Find algorithms
[5], [1] did not result in codes that gave speedup. In [3],
Bader and Cong presented the first parallel algorithm for
computing spanning forests that gave speedup on arbitrary
graphs. However, this code did not employ the Union-Find
structure and is only applicable for shared memory computers.

Focusing on distributed memory computers is of impor-
tance since these have better scalability than shared memory

computers and thus the largest systems tend to be of this
type. However, their higher latency makes distributed memory
computers more dependent on aggregating sequential work
through the exploitation of locality.

The current work presents a new parallel Union-Find al-
gorithm for distributed memory computers. The algorithm
operates in two stages. In Stage 1 each processor performs
local computations in order to reduce the number of edges
that need to be considered for inclusion in the final spanning
tree. This is similar to the approach used in [5], however, we
use a sequential Union-Find algorithm for this stage instead
of BFS. Thus when we start the second (parallel) stage each
processor has a Union-Find type forest structure that spans
each local component.

In Stage 2 we merge these structures across processors
to obtain a global solution. This is again carried out using
a Union-Find type algorithm resulting in a data structure
where components can span several processors. Thus a Find
operation can now move between processors and result in
parent pointers being set to off-processor nodes. Also, since
multiple edges might be considered simultaneously, a Union
operation might not always succeed as this could lead to cycles
in the data-structure.

In both the sequential and the parallel stage we make use
of a novel observation on how the Union-Find algorithm
can be implemented. This allows both for a faster sequential
algorithm and also to reduce the amount of communication in
Stage 2. When determining if an edge(v, w) should be part of
the spanning tree in the classical sequential implementation,
one follows parent pointers, first fromv and then fromw. If
the two root elements are different then the edge is added to
the solution and one of the roots is set to point to the other.
If the two root elements are identical the edge is discarded.

We show that by carefully traversing the data structure in
a zigzagfashion, one can stop the search earlier. If the edge
should not be part of the solution we stop the search as soon
as we reach the lowest common ancestor ofv and w and if
the edge should be part of the solution we never search further
than to the lowest root before merging the trees.

To show the feasibility and efficiency of our algorithm we
have implemented several variations of it on a Cray XT4
parallel computer using C++ and MPI and performed tests
to compute spanning trees of very large graphs using up to
40 processors. Our results show that the algorithm scales
well both for real world graphs and also for small-world
graphs. In particular we have used application graphs from



2

areas such as linear programming, medical science, structural
engineering, civil engineering, and automotive industry [6],
[8]. We have also used small-world graphs as well as random
graphs generated by the GTGraph package [2].

Our first results concern the different sequential algorithms
for computing a spanning forest. A comparison of the different
sequential Union-Find algorithms on the real world graphs
is shown in the upper left quadrant of Fig. 1. All timings
have been normalized relative to the slowest algorithm, the
classical algorithm (CL) using path compression (W). As can
be seen, removing the path compression (O) decreases the
running time. Also, switching to the zigzag algorithm (ZZ)
improves the running time further, giving approximately a
50% decrease in the running time compared to the classical
algorithm with path compression. To help explain these results
we have tabulated the number of “parent chasing” operations
on the formz = p(z). These show that the zigzag algorithm
only executes about 10% as many such operations as the
classical algorithm. However, this does not translate to an
equivalent speed up due to the added complexity of the zigzag
algorithm.

The performance results for the synthetic graphs give an
even more pronounced improvement when using the zigzag
algorithms. For these graphs both zigzag algorithms outper-
forms both classical algorithms and the zigzag algorithm
without path compression gives an improvement close to 60%
compared to the classical algorithm with path compression.

Next, we present the results for the parallel algorithms. For
these experiments we have used the Mondrian hypergraph par-
titioning tool [9] for assigning vertices and edges to processors.
For most graphs this has the effect of increasing locality and
thus enabling to reduce the number of edges that have to be
considered for Stage 2.

In our experiments we have compared using either the
classical or the zigzag algorithm, both for the sequential
computation in Stage 1 and also for the parallel computation
in Stage 2. How the improvements from the sequential zigzag
algorithm are carried into the parallel algorithm can be seen
in the upper right and lower left quadrant of Fig. 1. Here we
show the result of combining different parallel algorithmswith
different sequential ones when using 4 and 8 processors. All
timings have again been normalized to the slowest algorithm,
the parallel classical algorithm (P-CL) with the sequential
classical algorithm (S-CL), and using path compression (W).
Replacing the parallel classical algorithm with the parallel
zigzag algorithm while keeping the sequential algorithm fixed
gives an improvement of about 5% when using 4 processors.
This increases to 14% when using 8 processors, and to about
30% when using 40 processors. This reflects how the running
time of Stage 2 becomes more important for the total running
time as the number of processors is increased.

When keeping the parallel zigzag algorithm fixed and re-
placing the sequential algorithm in Step 1 we get a similar
effect as we did when comparing the sequential algorithms,
although this effect is dampened as the number of processors
is increased and Step 1 takes less of the overall running time.

The lower right quadrant of Fig. 1 shows the speedup
on three large matrices when using the best combination of

algorithms, the sequential and parallel zigzag algorithm.As
can be seen the algorithm scales well up to 32 processors
at which point the communication in Stage 2 dominates the
algorithm and causes a slowdown. Similar experiments for the
small-world graphs showed a more moderate speedup peaking
at about a factor of four when using 16 processors.

m_t1 cranksg2 inline_1 ldoor af_shell10boneS10 bone010 audi spal_004
30

40

50

60

70

80

90

100

Graphs

T
im

e 
in

 %

Sequential spanning tree algorithms

 

 

S−CL−W

S−ZZ−W

S−CL−O

S−ZZ−O

m_t1 cranksg2 inline_1 ldoor af_shell10 boneS10 bone010 audi spal_004

40

50

60

70

80

90

100

Graphs

T
im

e 
in

 %

Parallel spanning tree algorithms using 4 processors

 

 

P−CL S−CL−W

P−ZZ S−CL−W

P−ZZ S−ZZ−W

P−ZZ S−CL−O

P−ZZ S−ZZ−O

m_t1 cranksg2 inline_1 ldoor af_shell10boneS10 bone010 audi spal_004

40

50

60

70

80

90

100

Graphs

T
im

e 
in

 %

Parallel spanning tree algorithms using 8 processors

 

 

P−CL S−CL−W

P−ZZ S−CL−W

P−ZZ S−ZZ−W

P−ZZ S−CL−O

P−ZZ S−ZZ−O

1 4 8 16 24 32 40

0

2

4

6

8

10

12

14

16

Processors

S
pe

ed
up

Speedup of parallel spanning tree algorithms

 

 

spal_004

audi

inline_1

Fig. 1. Performance results: S - Sequential algorithm, P- Parallel algorithm,
CL - Classical Union-Find, ZZ - zigzag Union-Find, W - With path compres-
sion, O - Without path compression.

To conclude we note that the zigzag Union-Find algorithm
achieves considerable savings compared to the classical algo-
rithm both for the sequential and the parallel case. However,
our parallel implementation did not achieve speedup for the
random graphs beyond 8 processors and even for this con-
figuration the running time was still slightly slower than for
the best sequential algorithm. This is mainly due to the poor
locality of such graphs.

REFERENCES

[1] R. J. ANDERSON AND H. WOLL, Wait-free parallel algorithms for the
union-find problem, in Proceedings of the twenty-third annual ACM
symposium on Theory of computing (STOC 91), 1991, pp. 370–380.

[2] D. A. BADER AND K. M ADDURI, GTGraph: A synthetic graph generator
suite. http://www.cc.gatech.edu/˜ kamesh/GTgraph, 2006.

[3] D. J. BADER AND G. CONG, A fast, parallel spanning tree algorithm
for symmetric multiprocessors (smps), Journal of Parallel and Distributed
Computing, 65 (2005), pp. 994–1006.

[4] T. H. CORMEN, C. E. LEISERSON, R. L. RIVEST, AND C. STEIN,
Introduction to Algorithms, The MIT Press, second ed., 2001.

[5] G. CYBENKO, T. G. ALLEN , AND J. E. POLITO, Practical parallel
algorithms for transitive closure and clustering, International Journal of
Parallel Computing, 17 (1988), pp. 403–423.

[6] T. A. DAVIS, University of Florida sparse matrix collection. Submitted
to ACM Transactions on Mathematical Software.

[7] A. H. GEBREMEDHIN, A. TARAFDAR, F. MANNE, AND A. POTHEN,
New acyclic and star coloring algorithms with applicationsto computing
hessians, SIAM Journal on Scientific Computing, 29 (2007), pp. 515–535.

[8] J. KOSTER, Parasol matrices. http://www.parallab.uib.no/projects/parasol/data.
[9] B. VASTENHOUW AND R. H. BISSELING, A two-dimensional data dis-

tribution method for parallel sparse matrix-vector multiplication, SIAM
Review, 47 (2005), pp. 67–95.


