A Scalable Parallel Union-Find Algorithm for
Distributed Memory Computers

Fredrik Manne and Md. Mostofa Ali Patwary
Department of Informatics, University of Bergen, N-5020rdgan, Norway,
{Fredrik.Manne, Mostofa.Patwar@ii.uib.no

Abstract—The Union-Find algorithm is used for maintaining computers and thus the largest systems tend to be of this
a number of non-overlapping sets from a finite universe of type. However, their higher latency makes distributed mgmo
elements. The algorithm has applications in a number of are& 5 yhyters more dependent on aggregating sequential work
including the computation of spanning trees, in image procssing, o .

through the exploitation of locality.

as well as in scientific computations.)]
Although the algorithm is inherently sequential there has een 1h€ current work presents a new parallel Union-Find al-

some previous efforts at constructing parallel implementtions. ~ gorithm for distributed memory computers. The algorithm
These have mainly focused on shared memory computers. Here operates in two stages. In Stage 1 each processor performs

we present the first scalable parallel implementation of théJnion- |ocal computations in order to reduce the number of edges
Find algorithm suitable for distributed memory computers. Our i need to be considered for inclusion in the final spanning
new parallel algorithm is based on an observation of how the ird his is simil h h di h

part of the sequential algorithm can be executed more efficigly. (€€ This is similar to the approach used in [5], however, we

We show the efficiency of our implementation through a series Use a sequential Union-Find algorithm for this stage inbktea
of tests to compute spanning forests of very large graphs. of BFS. Thus when we start the second (parallel) stage each

processor has a Union-Find type forest structure that spans
each local component.

In Stage 2 we merge these structures across processors
obtain a global solution. This is again carried out using

Let U be a collection ofn distinct elements and le§;
denote a set of elements frarh Two sets{S;, S2} are disjoint
if S NSy = (. A disjoint set data structure maintains 3

collection {51, 5, ..., Sk} of disjoint dynamic sets selecteda Union-Find type algorithm resulting in a data structure

LrgLrlT;I[I].si?rfg r‘:‘]itnl]sbgec:}tltfr']id;g i;iﬂ'ﬁgemn:nm:'vg;g;s v¥here components can span several processors. Thus a Find
y: : . ' P . %&eration can now move between processors and result in
then tofind which set a given element belongs to by Iocatlng%|

. . arent pointers being set to off-processor nodes. Als@esin
its representative element and also to create a new set fr P 9 P o

. s rHltiple edges might be considered simultaneously, a Union
the union of two existing sets. . . .
i , . operation might not always succeed as this could lead te@sycl
The underlying data structure of each set is typically @ the data-structure.
rooted tree where the element in the root vertex is the repreq, poth the sequential and the parallel stage we make use
sentative of the set. Using the two techniqlésion-by-rank ot 5 novel observation on how the Union-Find algorithm
andpath compressiothe running time of any combination of .5, he implemented. This allows both for a faster sequential
m Union and Find operations i9(na(m,n)) wherea is the algorithm and also to reduce the amount of communication in
very slowly growing inverse Ackerman function [4]. Stage 2. When determining if an edge w) should be part of
From a theoretical point of view using the Union-Findne spanning tree in the classical sequential implememtati
algorithm is close to optimal. However, for very large pebl gne follows parent pointers, first fromand then fromw. If
instances such as those that appear in scientific CoOmputifg two root elements are different then the edge is added to
this might still be too slow or it might even be that thene solution and one of the roots is set to point to the other.
problemis too large to fit in the memory of one processor. Ofethe two root elements are identical the edge is discarded.
recent application that makes use of the Union-Find algorit \nve show that by carefully traversing the data structure in
is a new algorithm for computing Hessian matrices usingzigzagfashion, one can stop the search earlier. If the edge
substitution methods [7]. Hence, designing parallel atgors should not be part of the solution we stop the search as soon
is necessary to keep up with the very large problem instanggs e reach the lowest common ancestow afnd w and if
that appear in scientific computing. the edge should be part of the solution we never search furthe
Early efforts at designing parallel Union-Find algorithmshan to the lowest root before merging the trees.
[5], [1] did not result in codes that gave speedup. In [3], To show the feasibility and efficiency of our algorithm we
Bader and Cong presented the first parallel algorithm feave implemented several variations of it on a Cray XT4
computing spanning forests that gave speedup on arbitr@atallel computer using C++ and MPI and performed tests
graphs. However, this code did not employ the Union-Fing compute spanning trees of very large graphs using up to
structure and is only applicable for shared memory compute40 processors. Our results show that the algorithm scales
Focusing on distributed memory computers is of impowell both for real world graphs and also for small-world
tance since these have better scalability than shared ngemgraphs. In particular we have used application graphs from

areas such as linear programming, medical science, stalictalgorithms, the sequential and parallel zigzag algoritis.
engineering, civil engineering, and automotive indust#y, [can be seen the algorithm scales well up to 32 processors
[8]. We have also used small-world graphs as well as rand@nhwhich point the communication in Stage 2 dominates the
graphs generated by the GTGraph package [2]. algorithm and causes a slowdown. Similar experiments f®r th

Ouir first results concern the different sequential algargh small-world graphs showed a more moderate speedup peaking
for computing a spanning forest. A comparison of the différeat about a factor of four when using 16 processors.
sequential Union-Find algorithms on the real world graphs

is shown in the upper left quadrant of Fig. 1. All timir Seduental spannyg vee algorims parallel spanming e algoritims using 4 pocessors
have been normalized relative to the slowest algorithm ™ = NP
classical algorithm (CL) using path compression (W). As 7 _ e %o o " X
be seen, removing the path compression (O) decreast - * o b ‘o, T,
running time. Also, switching to the zigzag algorithm (z =+ L e . £ * e o
improves the running time further, giving approximatel * . *oaos* S o ° 4 o
50% decrease in the running time compared to the cla: . o 0 0 ° : S
algorithm with path compression. To help explain theselte | ° o ¢
we have tabulated the number of “parent chasing” opera ——
on the formz = p(z) These show that the zigzag algorit T e T T
only executes about 10% as many such operations a Paralll spanning tree algorthms using 8 processors peedp of parallel spanming e agortms
classical algorithm. However, this does not translate t — N .
equivalent speed up due to the added complexity of thez 6o 00 0 g
algorithm. J - 2

The performance results for the synthetic graphs giv £ T - s
even more pronounced improvement when using the zi £ ©e . ° %
algorithms. For these graphs both zigzag algorithms ov “ . °)
forms both classical algorithms and the zigzag algor =t e L)]
without path compression gives an improvement close to % ravmo .
compared to the classical algorithm with path compressi T e S T

Next, we present the results for the parallel algorithms. o

these experiments we have used the Mondrian hypergraph pay-1. Performance results: S - Sequential algorithm, PalRaalgorithm,
titioning tool [9] for assigning vertices and edges to pssms. CL - Classical Union-Find, ZZ - zigzag Union-Find, W - Withthacompres-
For most graphs this has the effect of increasing locality afi°™ © - Without path compression.

thus enabling to reduce the number of edges that have to bei_o conclude we note that the zigzag Union-Find algorithm

considered for Stage 2. : : ! X
. . . achieves considerable savings compared to the classgml al
In our experiments we have compared using either th .
. . . rfifhm both for the sequential and the parallel case. However
classical or the zigzag algorithm, both for the sequentia
S .our parallel implementation did not achieve speedup for the
computation in Stage 1 and also for the parallel computation

in Stage 2. How the improvements from the sequential zi Zrandom graphs beyond 8 processors and even for this con-

g€ 2. '€ 1Imp S€4 g ﬁguration the running time was still slightly slower tharr fo
algorithm are carried into the parallel algorithm can bense?he best sequential algorithm. This is mainly due to the poor
in the upper right and lower left quadrant of Fig. 1. Here '

w, .
show the result of combining different parallel algorithwith F(})callty of such graphs.
different sequential ones when using 4 and 8 processors. All REFERENCES
timings have again been normalized to the slowest algorithffi R. J. ANDERSON ANDH. WoLL, Wait-free parallel algorithms for the

i ; _ i i union-find problem in Proceedings of the twenty-third annual ACM
the parallel classical algorithm (P-CL) with the sequdntia symposium on Theoty of computing (STOC 91), 1991, pp. 370-38

ClaSSinfll algorithm (S-CL), and using Path Co_mpreSSion- (W)} D. A. BADER AND K. MADDURI, GTGraph: A synthetic graph generator
Replacing the parallel classical algorithm with the paall suite http://www.cc.gatech.edukamesh/GTgraph, 2006.

zigzag algorithm while keeping the sequential algorithnedix [3] D- J- BADER AND G. CONG, A fast, parallel spanning tree algorithm
. ; % wh . 4 for symmetric multiprocessors (smp3dpurnal of Parallel and Distributed
gives an improvement of about 5% when using 4 processors. computing, 65 (2005), pp. 994—-1006.

This increases to 14% when using 8 processors, and to abigutr. H. CormEN, C. E. LEISERSON R. L. RIVEST, AND C. STEIN,
30% when using 40 processors. This reflects how the running !ntroduction to Algorithms The MIT Press, second ed., 2001.

. . '@;G CYBENKO, T. G. ALLEN, AND J. E. PoLiTO, Practical parallel
time of Stage 2 becomes more important for the total running igorithms for transitive closure and clusteriniternational Journal of
time as the number of processors is increased. Parallel Computing, 17 (1988), pp. 403—423.

i i i i 5] T. A. DAvis, University of Florida sparse matrix collectionSubmitted
When keeping the parallel zigzag algorithm fixed and ré2 1o ACM Trahsactone o Matheraateal Softuate.

placing the sequential algorithm in Step 1 we get a Similgfj A H. GEsREMEDHIN, A. TARAFDAR, F. MANNE, AND A. POTHEN,
effect as we did when comparing the sequential algorithms, New acyclic and star coloring algorithms with applicatiottscomputing
although this effect is dampened as the number of processgrsfiessiansSIAM Joumal on Seientitc Computnd, 25 (2007), pp. 51553

. . . J. KOSTER Parasol matriceshttp://www.parallab.uib.no/projects/parasol/data.
is increased and Step 1 takes less of the overall running t"’{!’; B. VASTENHOUW AND R. H. BISSELING, A two-dimensional data dis-

The lower right quadrant of Fig. 1 shows the speedup tribution method for parallel sparse matrix-vector muligation, SIAM

on three large matrices when using the best combination of Review, 47 (2005), pp. 67-95.

