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Abstract—Pairwise statistical significance (PSS) has been
found to be able to accurately identify related sequences
(homology detection), which is a fundamental step in nu-
merous applications relating to sequence analysis. Although
more accurate than database statistical significance, it is both
computationally intensive and data intensive to construct the
empirical score distribution during the estimation of PSS,
which poses a big challenge in terms of performance and
scalability. Multicore computers and clusters have become
increasingly ubiquitous and more powerful than before. In
this paper, we evaluate the use of OpenMP, MPI and hybrid
paradigms to accelerate the estimation of PSS of local sequence
alignment. Through distributing the compute-intensive kernels
of the pairwise statistical significance estimation procedure
across multiple computational units, we achieve a speedup of
up to 113.10× using 128 cores.

Keywords-Pairwise statistical significance; Multicore,
OpenMP; MPI; Hybrid;

I. INTRODUCTION

The recent decades have witnessed dramatic increase in
the quantity and variety of publicly available proteomic and
genomic sequence data. GenBank, for example, as of August
2011, has accumulated more than 1012 nucleotides of nucleic
acid sequence data, and continues to grow at an exponential
rate, approximately doubling every 18 months [1]. How to
deal with the massive quantities of data pouring from the
sequencing factories, make sense of them, and render them
accessible to people who are working on a wide variety of
problems is a big challenge in bioinformatics [2, 3].

Pairwise sequence alignment (PSA) is widely used in the
analysis of DNA and protein sequences [4, 5]. It builds the
basic platform for many other biological applications such
as homology detection, protein structure prediction, finding
protein function and deciphering evolutionary relationships.
Sequence alignment is an effective method that reports a
score, indicating the relatedness between sequences. Gener-
ally, a higher score indicates that the sequences are more
related. However, the alignment score depends on various
factors like the alignment program, scoring scheme, se-

quence lengths, and compositions of sequence under com-
parison [6]. It may not make sense to draw a conclusion
about the relatedness of pairwise sequences from scores
alone. Therefore, it is more appropriate to measure the
quality of a PSA using the statistical significance of the
score rather than the score itself [7]. An alignment score
is more statistically significant if it has a low probability
of occurring by chance. Statistical significance of sequence
alignment scores is very important to know whether an
observed sequence similarity could imply a functional or
evolutionary link, or is a chance event [6]. Pairwise statistical
significance (PSS) is a promising method to evaluate the
statistical significance of an alignment, which is specific
to the sequence-pair being aligned, and independent of
database [8]. However, the estimation of PSS is very data-
intensive and computation-intensive [9]. Therefore, applying
high performance computing (HPC) techniques is an obvious
choice to accelerate the estimation.

Although FPGAs [10] and GPUs [11] have been used to
accelerate the estimation of pairwise statistical significance,
the researchers in bioinformatics community are required
to acquire special knowledge to use them properly. More-
over, special hardware requirement limits the utilization of
those high performance platforms. On the other hand, the
multicore computers or laptops and clusters have become
increasingly ubiquitous and more powerful. Therefore, it is
of interest to use high performance technologies to unlock
the potential of computers or laptops and clusters. Based on
this observation and motivation, in this paper, we present
OpenMP, MPI and hybrid (OpenMP + MPI) implemen-
tations to accelerate the estimation of PSS. After careful
performance analysis, we have efficiently distributed the
compute-intensive kernels of the algorithm across processors
(cores), so as to reap the maximum benefits of OpenMP
or/and MPI paradigms. Our experiments show that our paral-
lelization methodology achieves high performance for these
applications. The maximum speedup of OpenMP, MPI and
hybrid implementations are 18.94×, 22.58× and 22.65×,



respectively, when using single node with 24 cores. With
128 cores spread across 6 nodes, pure MPI implementation
and hybrid implementation achieve speedups of 113.10×
and 112.86× respectively. The results of pairwise statistical
significance estimation depend on the sequence alignment
technique used.

The remainder of this paper is organized as follows. We
present the essential background about PSS and parallel
programming paradigm in Section II. Subsequently, we
describe the different parallel implementations in Section
III. We present the experimental results and performance
analysis of different implementations in Section IV, followed
by conclusions in Section V.

II. BACKGROUND

A. Algorithm overview

In order to determine whether the resulting similarity
(usually representing as a alignment score) between the two
sequences implies an evolutionary link or is just a chance
event, one has to know how probable it is to obtain the
same score by aligning completely unrelated (e.g., randomly
chosen) sequences [12]. Thus, statistical approaches are
often used to avoid a bias brought by single sample. These
approaches are based upon theoretical models or permutation
reconstructions of the observed sequences and convert the
scores into a P-value or E-value [13]. Accurate estimation of
statistical significance of sequence alignment has attracted a
lot of research in recent years [8, 14–19].

In the case of gapless alignment, an asymptotic theory
for local alignment scores has been developed rigorously.
The optimal alignment scores 𝑆 among random, unrelated
sequences approximately turns out to be a Gumbel or an
Extreme Value Distribution (EVD) [6, 12, 13, 20], which has
a much broader tail than that of the Gaussian distribution.
The P-value, defined as the probability of observing a
gapless alignment of a sequence pair with a score 𝑆 greater
than 𝑥, is simply given by

𝑃 (𝑆 > 𝑥) ≈ 1− 𝑒𝑥𝑝(−𝐾𝑚𝑛𝑒−𝜆𝑥) = 1− 𝑒−𝐸(𝑥) (1)

where 𝑚 and 𝑛 are the lengths of the two sequences being
aligned, 𝜆 and 𝐾 are estimable constants depending on
the scoring scheme and average compositions of sequences
based on the Poisson distribution hypothesis [21], and 𝐸(𝑥),
also known as E-value, is the expected number of distinct
local alignments with score values of at least 𝑥.

For the case of gapped alignment, although no asymptotic
score distribution has yet been established analytically for
the local alignments, simulations and computational exper-
iments strongly indicate that, for both local and global
alignments, these scores still roughly follow the Gumbel
law after pragmatic estimation of the 𝜆 and 𝐾 parameters
[6, 22–24].

Pairwise statistical significance is an attempt which makes
the estimation process more specific to the sequence pair be-
ing compared [9]. Considering one sequence pair 𝑞 (known
as query sequence) and 𝑠 (known as subject sequence), their
lengths 𝑚 and 𝑛, respectively, given the scoring scheme
𝑆𝐶 (substitution matrix, gap opening penalty, gap exten-
sion penalty) and the number of permutations 𝑁 , the PSS
described in [8] can be thought of being estimable by the
following function:

𝑃𝑆𝑆(𝑞, 𝑠,𝑚, 𝑛, 𝑆𝐶,𝑁)

The function PSS simulates 𝑁 random sequences of
equal length n through permuting 𝑠 𝑁 times, generates 𝑁
scores by aligning 𝑞 against the 𝑁 the permutated copies
of 𝑠, then fits these scores to an extreme value distribution
using type-I censored maximum likelihood fitting [25] to
obtain the statistical parameters 𝐾 and 𝜆, and finally returns
the estimation of statistical significance of the pairwise
alignment score between 𝑞 and 𝑠.

Although the estimation of PSS has been shown to be
accurate [9], it involves thousands of such permutations and
alignments, which are enormously time consuming and can
be impractical for estimating PSS for a large number of se-
quence pairs. For instance, for our previous experiments with
86 query sequences and 2771 subject sequences, the sequen-
tial implementation takes more than 32 hours [26]. Hence,
using multicore computers or clusters is highly conducive
to accelerating the computation of PSS. Moreover, large
data sets demand more computing power. The earlier work
[9] only presents an MPI implementation for computing
single pair estimation of PSS. But in this work, we not only
extend that work to support multi-pair estimation of PSS
using different strategies, but also design a pure OpenMP
and OpenMP/MPI hybrid implementation to enhance the
parallelism, maximizing the benefits of multicore era, as also
illustrated by the results.

B. Parallel Programming paradigm

In recent years, the several CPU vendors, such as AMD R○

and Intel R○, have shifted gears away from heading for more
clock speeds to adding parallelism support on-chip with
multicore processors (i.e., putting more simpler and smaller
cores on a single chip compared to before). This practice
can bypass many of the technological obstacles (such as
energy and other constraints on processor designs) that CPU
vendors are encountering while trying to boost speeds. But
only if an application takes advantage of these multiple
cores, it is able to harvest the benefits. This is where
OpenMP paradigm sets foot in this picture.

Currently, the most often-used parallel programming
paradigm is the flat MPI mode, in which each single-
threaded MPI process is executed on one core. However,
the growth in memory capacity is not keeping pace with the
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Figure 1: The hybrid parallel programming paradigm

growth in the number of cores. Therefore, this programming
model of MPI everywhere is not likely to be a viable
model on these newer architectures simply because of the
reduced amount of memory per core [27]. It is important to
investigate a hybrid paradigm (for example, a combination
of OpenMP and MPI) to avoid these issues [28].

The hybrid paradigm can match the characteristics of the
cluster of multicore nodes very well, since it allows for a
two-level communication pattern (i.e., intra-communications
among cores within a node and inter-node communications
among different nodes), as shown in Figure 1. The main
benefits of the hybrid paradigm is to take advantage of
process level coarse-grain parallelism, in which one MPI
process executes on each multi-core processor, and fine grain
parallelism on a loop level, in which each MPI process
spawns a team of threads to occupy the multicore processor
when encountering parallel sections of code using OpenMP.

III. IMPLEMENTATIONS

For a given single sequence pair (𝑞, 𝑠), careful analysis of
the data pipelines of PSS estimation shows that its computa-
tion can be decomposed into three computation kernels: (i)
Permutation: generating 𝑁 random sequences by permuting
𝑠; (ii) Alignment: aligning the 𝑁 permuted sequences of
𝑠 against 𝑞 using Smith-Waterman (SW) algorithm [22];
and (iii) Fitting: obtaining statistical constants 𝐾 and 𝜆 by
fitting the 𝑁 scores generated in (ii) into an EVD, finally
returning the PSS between sequence pair 𝑞 and 𝑠 according
to Equation 1. The kernels of permutation and alignment
comprise the overwhelming majority of the overall execution
time (varying from 92.4% to 99.2%). Therefore, efforts
should be spent to optimize these two kernels, which will
result in net significant improvements to the performance of
the algorithm as a whole.

A. OpenMP implementation

Algorithm 1 outlines the basic idea of parallelizing the
estimation of PSS using OpenMP. For each query 𝑞, we load
the standard substitution matrix (SSM) like BLOSUM62
or position-specific scoring matrix (PSSM) (line 3). Subse-
quently, for each subject sequence 𝑠, we need to run a loop
of 𝑁 iterations (line 5-8). This loop is parallelized using

Algorithm 1 Pseudo-code of OpenMP implementation for
PSS estimation.
input: 𝑄: query sequence database; 𝑆: subject sequence
database;
output: 𝑃𝑆𝑆: Pairwise statistical significance

1: Read sequences from database (𝑄,𝑆)
2: for each query sequence 𝑞 ∈ 𝑄 do ◁ A
3: Read substitution matrix 𝑀 for the given query 𝑞;
4: for each subject sequence 𝑠 ∈ 𝐷 do ◁ B
5: for 𝑘 ← 0, 𝑁 ; in parallel do ◁ C
6: 𝑠𝑘 ← 𝑘-th permuted sequence of 𝑠
7: Scores [𝑘]← 𝑆𝑊 (𝑞, 𝑠𝑘,𝑚, 𝑛, 𝑆𝐶)
8: end for
9: (𝐾,𝜆)← 𝐸𝑉𝐷 𝐹𝑖𝑡𝑡𝑖𝑛𝑔 (𝑆𝑐𝑜𝑟𝑒𝑠)

10: 𝑃𝑆𝑆 (𝑖)← 1− 𝑒𝑥𝑝
(︀
−𝐾𝑚𝑛𝑒−𝜆𝑥

)︀
11: end for
12: end for

OpenMP. In each iteration of the loop, we compute a new
permutation of the subject sequence 𝑠, called 𝑠𝑘 (line 6),
and use SW algorithm to align the permuted sequence, 𝑠𝑘,
to the query sequence, 𝑞, to get a score (line 7).

Then the 𝑁 alignment scores are gathered together on
the master thread and fitted into an EVD (line 9). Finally,
the PSS is obtained using equation 1 (line 10). In this
case, each thread works on the alignment of one pair
of sequences. Multiple alignment tasks are performed in
parallel by different threads. As shown in Algorithm 1,
there are three for-loop levels (marked by ‘A’, ‘B’, ‘C’,
respectively) that can be parallelized. The computation of
SW algorithm is very sensitive to the length of query and
subject sequences, it will result in an imbalanced workload
among CPU cores if ‘A’ or ‘B’ for-loop is parallelized, which
would hurt the performance. By comparison, in ‘C’ for-loop,
a particular query is aligned to the permuted copies of a
particular subject sequence. Hence the lengths of the two
sequences do not vary between the iterations of the for loop,
which means parallelizing this level for will obtain a good
load balance among cores. More fine-grained parallelization
is also possible, where multiple threads collaborate to align
one pair of sequences (i.e., in intra-parallelism mode [11]).
However, because of the overhead of synchronization and
communications, it is difficult to achieve good performance.
Our experiments with intra-parallelism show no further
performance improvement as expected.

B. MPI implementation

1) Intuitive strategy: As discussed in the previous section,
the kernels of permutation and alignment are independent
of each other during the pairwise statistical significance
estimation procedure, which map very well to programming
models capable of expressing MPI task parallelism. Let us
assume that the number of nodes is 𝑃 and the number of
permutations is 𝑁 . In [9], the root process broadcasts a
query (𝑞) and a subject sequence (𝑠) to all other processes



in each iteration. Then, each process computes ⌈𝑁/𝑃 ⌉
permutations of 𝑠 and aligns them to the query sequence, 𝑞.
Subsequently, the root process gathers the ⌈𝑁/𝑃 ⌉ alignment
scores from each process and uses them for fitting. The
intuitive strategy for multi-pair estimation of PSS is simply
extended from [9]. That paper discusses the parallelization
of estimation of PSS of a single pair of query and subject
sequences. We just execute that for each query and subject
sequence pair. The main disadvantage of this policy is
that a higher overhead of communication among processes
has to be paid, as the query and subject sequences have
to broadcasted to all the processes. Also, communication
is required for gathering alignment scores for each pair.
Moreover, only the root performs the task of fitting.

2) Tiling strategy: Instead of distributing the permutation
and alignment tasks for each pair of query and subject
sequences like in the intuitive strategy, the tiling strategy
employs a more coarse-grained parallelism. Tiling strategy
partitions the sequence database into different disjoint sets
of subject sequences and assigns one set to each process.
Therefore, each process has a subset of subject sequences
and all the query sequences and can estimate the PSS of
each pair independent of other processes. This enhances
data locality on single node and reduces the overhead of
communication.

In order to achieve higher efficiency for this paralleliza-
tion, the workload of each node should be roughly equal.
The workload of the estimation of PSS process mainly
depends on the length of query and subject sequence.
Before tiling the sequences, we therefore reorder the subject
sequences based on their lengths.

Moreover, instead of distributing roughly equal number of
subject sequences to different processes, this method parti-
tions sequences based on the total length of sequences. This
is done as follows. Before all the sequences are partitioned,
they are sorted by their length. Let 𝑏𝑖𝑛[𝑖] represent the set
of subject sequences assigned to process 𝑖. We populate the
bins in the following way: (i) In the first round, we assign
the first sequence from the sorted list to 𝑏𝑖𝑛[0], and the
second sequence to 𝑏𝑖𝑛[1], and so on until we assign the 𝑝-th
sequence to 𝑏𝑖𝑛[𝑝], where 𝑝 is the total number of nodes. (ii)
In each following round, we get the sum of the lengths of all
the sequences in each bin, say 𝐿[𝑖]. We assign the smallest
length sequence to the bin with maximum 𝐿[𝑖], assign the
second smallest one to the bin of second maximum 𝐿[𝑖], and
so on. (iii) Continue the step (ii) until all database sequences
are allocated to the bins. After that, each node receives the
nearly same amount of sequences. This helps to balance the
workload across nodes and improve the performance. Unlike
the previous strategy, there is no need to gather alignment
scores generated from every node as each node can estimate
the pairwise statistical significance separately. The overhead
of communication is much smaller, which is expected to
result in a higher performance and better scalability.

Algorithm 2 Pseudo-code of Hybrid Implementation for
PSS estimation.
input:𝑄: query sequence database; 𝑆: subject sequence
database;
output: 𝑃𝑆𝑆: Pairwise statistical significance

1: read sequences from database (𝑄,𝑆)
2: if Rank = 0 then
3: Sort subject sequences based on their length
4: Partition subject sequences into roughly equal bins based

on the aggregate of their lengths.
5: Transfer each bin to the corresponding MPI task.
6: end if
7: for each query sequence 𝑞 ∈ 𝑄 do
8: Read substitution matrix 𝑀 for the given query 𝑞
9: for each subject sequence 𝑠 ∈ 𝑏𝑖𝑛[𝑖]; in parallel do

◁ MPI-level parallization
10: for 𝑘 ← 0, 𝑁 ; in parallel do

◁ OpenMP-level parallization
11: 𝑠𝑘 ← 𝑘-th permuted sequence of 𝑠
12: Scores [𝑘]← 𝑆𝑊 (𝑞, 𝑠𝑘,𝑚, 𝑛, 𝑆𝐶)
13: end for
14: (𝐾,𝜆)← 𝐸𝑉𝐷 𝐹𝑖𝑡𝑡𝑖𝑛𝑔 (𝑆𝑐𝑜𝑟𝑒𝑠)
15: 𝑃𝑆𝑆 (𝑖)← 1− 𝑒𝑥𝑝

(︀
−𝐾𝑚𝑛𝑒−𝜆𝑥

)︀
16: end for
17: end for

C. Hybrid implementation of OpenMP and MPI

In essence, hybrid implementation is a combination of
our OpenMP and MPI (tiling strategy) implementation. Al-
gorithm 2 provides a pseudo-code of the hybrid implemen-
tation. The hybrid implementation consists of a heirarchy
of MPI tasks and OpenMP threads. We use the tiling
strategy to distribute workload over multiple MPI tasks.
Therefore, an MPI task 𝑖 handles the partition 𝑏𝑖𝑛[𝑖] of
the subject sequences (line 9). When MPI task 𝑖 picks up
one pair of sequences (𝑞, 𝑠) belonging to itself, it spawns
several threads, which cooperate to complete the kernels of
permutation and alignment in parallel (line 10). After all the
alignments are done, the threads exit and MPI task 𝑖 uses
the alignment scores to perform fitting and compute PSS
(line 14-15). Note that, thread-level synchronization (explicit
and implicit) and communications bring extra overhead in
hybrid paradigm, which means hybrid paradigm do not
necessarily make a higher performance improvement than
flat-MPI paradigm. However, OpenMP paradigm can dra-
matically decrease memory usage, allowing larger problems
to be addressed. Therefore, hybrid mode can find a tradeoff
between speedup and memory consumption.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental setup

We carried out the experiments on Cray XE6 machines
(provided by Hopper system at NERSC), each with 24
cores and 32 GB memory. Each node contains two twelve-
core AMD R○ “Magny-Cours” @2.1 GHz processors. The



operating system is 64-bit Linux. The sequences data used in
this work comprise of a non-redundant subset of the CATH
2.3 database [29, 30]. This dataset consists of 2771 domain
sequences as our subject sequences library, which represents
1099 homologous superfamilies and 623 topologies and
includes 86 CATH queries serving as our query set.

B. Results and discussion

In this subsection, we present the performance differ-
ences among different programming paradigms on the same
platform. Furthermore, we analyze potential reasons for
these performance differences. The performance on one
node using OpenMP, MPI and their hybrid paradigm are
investigated first. Then we present results for performance
on multiple nodes.

In order to understand the performance characteristics of
the implementations, we use a simple performance model
𝑡𝑡𝑜𝑡𝑎𝑙 = 𝑡𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙+𝑡𝑠𝑒𝑟𝑖𝑎𝑙+𝑡𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑, where 𝑡𝑡𝑜𝑡𝑎𝑙 is the total
running time, 𝑡𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 is the running time of the section that
can be parallelized, 𝑡𝑠𝑒𝑟𝑖𝑎𝑙 is the running time of section that
runs sequentially and 𝑡𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 is the extra overhead (such
as communication or synchronization) when using OpenMP
and/or MPI paradigm.

1) Performance analysis on one node: In this subsection,
we compare the performance of these three paradigms and
analyze the reasons of differences of performance. All of
the experiments are executed on single node with 24 cores.
The amount of computation required for a query sequence
depends on its length. Hence we compared the performance
using multiple lengths of query sequences. Four query
sequences of length 200, 400, 800, and 1600 are chosen
from CATH to align against all the 2771 subject sequences.
We have tested different number of OpenMP threads, 𝑇 , and
MPI tasks, 𝑃 . Figure 2 shows the experimental results of the
OpenMP implementation. All speedups are computed over
the corresponding sequential implementation. The maximum
speedup is 6.10×, 9.61×, 14.55×, and 18.94×, correspond-
ing to the length of query equal to 200, 400, 800 and 1600,
respectively. Observe that, performance increases with the
increase in length of query sequences.

We use CrayPat, a performance analysis tool for the XT
and XE platforms, to profile the sequential implementation.
Let 𝑓 = 𝑡𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙/𝑡𝑡𝑜𝑡𝑎𝑙 present the percentage of whole
implementation that can be parallelized, in our case, CrayPat
shows that 𝑓 (i.e., the percentage of computation kernels of
permutation and alignment) varies from 92.4% to 99.2%
corresponding to the query sequence lengths changing from
200 to 1600. Therefore, according to Amdahl’s law, the
maximum speed of the OpenMP implementation in theory
falls between 8.73 to 20.27× when number of processors
(cores) 𝑃 is 24. In practice, the extra overhead brought by
using parallel paradigm will further lower performance. This
explains that it is hard to achieve a high speedup for an
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Figure 2: The speedup of the OpenMP implementation

OpenMP implementation unless 𝑓 becomes the dominant
part.

Additionally, although in most cases, the non-uniform
memory architecture (NUMA) used by Hopper machine pro-
vides advantages over traditional symmetric multiProcessing
(SMP) solutions in terms of low level memory characteristics
(such as memory bandwidth) and scalability, it also brings
its disadvantages, like the NUMA effect [28]. Each NUMA
node we are using is essentially a four-chip node, one of
which contains a six-core die. All the memory in NUMA
is transparently accessible, but if a process running on chip
node 𝑖 accesses the memory connected to a different chip
node 𝑗 (where 𝑖 ̸= 𝑗), a performance penalty will be incurred
(i.e., NUMA effect). When 𝑓 is lower, the performance will
be more sensitive to this extra overhead. This can shed a light
on why the speedup using 8 threads is even a little lower than
using 6 threads when the length of query sequence is equal
to 200, because the benefits of increasing threads is lower
than the overhead of NUMA effect. But when the length
of query sequence increases, the NUMA effect decreases.
In [28], authors claimed that it is very hard to address the
performance implications of the NUMA effect while using
more than 6 OpenMP threads on Hopper. Our experiments
confirmed this claim again.

As for MPI implementation using tiling strategy, due
to the requirement of very limited communications among
processes and zero dependency of the three kernels (per-
mutation, alignment and fitting) of different query-subject
sequence pairs, it achieves an almost linear speedup and
similar scalability, resulting in curves for the four different
query lengths superimposing each other, as shown in Figure
3. Therefore, the performance of the MPI implementation
is not sensitive to the length of query sequence. When
𝑃 = 24, the speedups are obtained as 22.50×, 22.58×,
22.57×, and 22.58×, corresponding to the length of query
sequence 200, 400, 800, and 1600, respectively.

For the experiments of hybrid implementation, we only
test different combinations of threads and MPI tasks, subject
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to 𝑇 × 𝑃 = 24. When 𝑇 = 24 and 𝑃 = 1, the
performance of hybrid implementation is roughly equal to
the pure OpenMP one. On the other hand, when 𝑇 = 1
and 𝑃 = 24, its performance is nearly same as flat MPI
one, with a maximum speedup of 22.51×. In other words,
the performance of hybrid implementation is between pure
OpenMP and MPI. When the length of query sequence 𝐿
is 200, representing lower computation, its performance is
more sensitive to the 𝑇 . This is because more OpenMP
threads will bring more scheduling overhead, which leads
to an increase in the fraction (1− 𝑓), consequently a lower
speedup according to Amdahl’s law. But when 𝐿 > 400 and
𝑇 <= 6, as one decreases 𝑃 and increases 𝑇 , the overall
memory usage decreases (a more than 50% reported by
CrayPat) significantly but performance loss is very limited
(less than 10%), as shown in Figure 4. Another observation
in this figure is that using more than 6 OpenMP threads
incurs quite a substantial performance penalty because of
NUMA effects.

In short, using more OpenMP threads can potentially save
memory usage while it may also increase the synchroniza-
tion cost (implicit or explicit) among these threads and
the activation/deactivation overhead. Therefore, it is hard
to generalize a common rule for setting of the optimized
number of OpenMP threads to deliver the best performance,
because it also depends on specific computer architectures,
platforms and problem size.

2) Performance analysis on multiple nodes: In this case,
we run the entire query set containing 86 queries against
the entire CATH 2.3 database containing 2771 subject se-
quences. Currently, OpenMP paradigm cannot be applied
on more than one nodes on Cray platforms. Therefore, in
this subsection, we only compare the performance of flat-
MPI and hybrid paradigm. Due to limited communications
and lower dependency across MPI tasks compared to the
intuitive strategy, and also due to better load balancing, the
flat-MPI implementation using the tiling strategy results in
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a better scalability and higher performance. Their maximum
speedups are 113.09× and 77.54×, respectively when using
128 MPI tasks, as shown in Figure 5.

As for hybrid implementation on multiple nodes, the
experiments are carried for different combinations of MPI
tasks 𝑃 and OpenMP threads 𝑇 , subject to 𝑃 × 𝑇 = 128.
Similar to the experiments of single node, when 𝑇 = 1 and
𝑃 = 128, its performance is up to a maximum speedup
of 112.86×. Again, substantial reductions in memory usage
occurs with increasing number of OpenMP threads at the
cost of some performance loss. When 𝑇 > 6, NUMA effect
hurts performance significantly for the same reason analyzed
in above subsection. We show the results in Figure 6.

In summary, MPI paradigm usually obtains best perfor-
mance and scalability but consumes more memory. Hybrid
paradigm may not alter the performance of an application
much, but it can decrease memory usage, in some cases,
very dramatically. It allows larger problems to have a better
chance to be addressed, which is especially important for
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the current trend in computer architecture development.
All the implementations of the proposed method and

related programs are available for free academic use at
http://cucis.ece.northwestern.edu/projects/PSSE/.

V. CONCLUSIONS

In this paper, we evaluate the use of OpenMP, MPI and
hybrid paradigms to build a high performance accelerator
to estimate the pairwise statistical significance of local
sequence alignment. By distributing the most compute-
intensive task of permutation and alignment, and in some
cases fitting, our accelerator reaps the benefits of these
parallelization paradigms, which results in high end-to-end
speedups for estimation of PSS. The proposed efficient
framework is also applicable to a wide variety of next-
generation sequencing comparison based applications, such
as DNA sequence mapping and database search. As the
size of biological sequence databases are increasing rapidly,
even more powerful high performance computing accelerator
platforms, comprising of heterogeneous components such as
multi-core CPU along with many-core GPU clusters and
possibly FPGAs, are expected to be more and more common
and imperative for sequence analysis, for which this work
could be a significant stepping stone.
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