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Abstract

A plane graph is a planar graph with a fixed embedding. Let G = (V, E) be an edge

weighted connected plane graph, where V and E are the set of vertices and edges, respectively.

Let F be the set of faces of G. For each edge e ∈ E, let w(e) ≥ 0 be the weight of the edge

e of G. A face-spanning subgraph of G is a connected subgraph H induced by a set of edges

S ⊆ E such that the vertex set of H contains at least one vertex from the boundary of each

face f ∈ F of G. A minimum face-spanning subgraph H of G is a face-spanning subgraph of

G, where
∑

e∈S

w(e) is minimum. In this paper we consider the problem of finding a minimum

face-spanning subgraph of a plane graph and deal with the following problem which we

call “the face-spanning subgraph problem”: “Is there any face-spanning subgraph H of G

such that
∑

e∈S

w(e) ≤ b, for a positive real number b?”. We prove that the face-spanning

subgraph problem of a plane graph is NP -complete, which implies that it is unlikely to

have a polynomial time algorithm for finding a minimum face-spanning subgraph of a plane

graph. In this paper, we consider a variation of the face-spanning subgraph problem called

“minimum-vertex face-spanning subgraph problem” where the objective is to minimize the

number of vertices instead of edge cost and we prove that the minimum-vertex face-spanning

subgraph problem is also NP -complete. We also present approximation algorithms for both

the problems. We calculate the approximation ratios and time complexities for both the

algorithms. In this paper, we also present a linear time algorithm for finding a minimal

face-spanning subgraph of a plane graph. We calculate the upper bound and lower bound

on the number of vertices for a minimal face-spanning subgraph. We show that the upper

bound and the lower bound are tight. Note that the graphs being dealt with in the paper

are all undirected.
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2010 Mathematics Subject Classification: 05C10, 05C85.



134 Minimum face-spanning subgraphs of plane graphs

1. Introduction

A gas company wants to supply gas to a locality from a single gas source. They are
allowed to pass the underground gas lines along the road network only, because no one
allows to pass gas lines through the bottom of his building. The road network divides the
locality into many regions as illustrated in Figure 1(a), where each road is represented by
a line segment and a point at which two or more roads meet is represented by a (black or
white) small circle. A point at which two or more roads meet is called an intersection point.
Each region is bounded by some line segments and intersection points. These regions need
to be supplied gas. If a gas line reaches an intersection point on the boundary of a region,
then the region may receive gas from the line at that intersection point. Thus the gas lines
should reach the boundaries of all the regions of the locality. Gas will be supplied from a
gasfield which is located outside of the locality and a single pipe line will be used to supply
gas from the gasfield to an intersection point on the outer boundary of the locality. The
gas company wants to minimize the establishment cost of gas lines by selecting the roads
for laying gas lines such that the total length of the selected roads is minimum. Since
gas will be supplied from the gasfield using a single line to the locality, the selected road
network should be connected and contains an intersection point on the outer boundary of
the locality. Thus the gas company needs to find a set of roads that induces a connected
road network, supply gas in all the regions of the locality and the length of the induced
road network is minimum. Such a set of roads is illustrated by thick lines in Figure 1(b).

(a)

Gasfield

(b)

Figure 1: (a) A road-network of a locality and (b) a sample setup of gas pipelines drawn
by thick lines for supplying gas in all the regions from a gasfield.

The problem mentioned above can be modeled using a plane graph as follows. Let
G = (V,E) be an edge weighted connected plane graph, where V and E are the set of
vertices and edges, respectively. Let F be the set of faces of graph G. For each edge e ∈ E,
w(e) ≥ 0 is the weight of the edge e of G. A face-spanning subgraph of G is a connected
subgraph H induced by a set of edges S ⊆ E such that the vertex set of H contains at least
one vertex from the boundary of each face f ∈ F of G. Figure 2 shows two face-spanning
subgraphs drawn by thick lines where the cost of the face-spanning subgraph in Figure
2(a) is 11 and the cost of the face-spanning subgraph in Figure 2(b) is 13. Thus a plane
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graph may have many face-spanning subgraphs whose cost are different. A minimum face-
spanning subgraph H of G is a face-spanning subgraph of G, where

∑

e∈S
w(e) is minimum,

and a minimum face-spanning subgraph problem asks to find a minimum face-spanning
subgraph of a plane graph. If we represent each road of the road network by an edge of
G, each intersection point by a vertex of G, each region by a face of G and assign the
length of a road to the weight of the corresponding edge, then the problem of finding a
minimum face-spanning subgraph of G is the same as the problem of the gas company
mentioned above. A minimum face-spanning subgraph problem often arises in applications
like establishing power transmission lines in a city, power wires layout in a complex circuit,
planning irrigation canal networks for irrigation systems etc.
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Figure 2: A simple graph with (a) a face-spanning subgraph of cost 11 and (b) another
face-spanning subgraph of cost 13.

Efficient algorithms are necessary to solve these kinds of problems, which arise from
numerous practical applications. However developing efficient algorithms is not always
possible for many such problems [2, 7, 6]. In this paper, we show that the existence of a
polynomial-time algorithm for finding a minimum face-spanning subgraph, is highly un-
likely by proving that the decision version of the minimum face-spanning subgraph problem
belongs to the infamous class of NP -complete problems. In such a case, design of approx-
imation algorithms is needed for practical applications. We thus present approximation
algorithms for the minimum face-spanning subgraph problem and one of it’s variations in
this paper. It is worthwhile to note that the minimum face-spanning subgraph problem is
quite different from the “vertex cover problem” [4] or the “face cover problem” [1].

The rest of the paper is organized as follows. Section 2 describes some definitions.
Section 3 proves the NP -completeness of the face-spanning subgraph problem. A variation
of this problem called the minimum-vertex face-spanning subgraph problem is discussed
in Section 4. We deal with approximation algorithms in Section 5. Finally Section 6 gives
the conclusion. A preliminary version of this paper is presented at [8].
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2. Preliminaries

In this section we give some definitions.

Let G = (V,E) be a simple graph with vertex set V and edge set E. The number of
vertices of G is denoted by n, that is, n = |V |, and the number of edges of G is denoted by
m, that is, m = |E|. We often denote the set of vertices of G by V (G) and the set of edges
of G by E(G). We denote an edge joining vertices vi, vj of G by (vi, vj). If (vi, vj) ∈ E,
then two vertices vi, vj are said to be adjacent in G; edge (vi, vj) is then said to be incident
to vertices vi and vj; vi is a neighbor of vj . The degree of a vertex v in G is the number of
edges incident to v in G. We denote the maximum degree of graph G by ∆(G) or simply
by ∆. A path in G is an ordered list of distinct vertices (v1, v2, . . . , vq−1, vq) ∈ V such that
(vi−1, vi) ∈ E for all 2 ≤ i ≤ q. G is connected if for any two distinct vertices vi, vj of
G there is path between vi and vj in G. G is a tree if G is connected and has no cycle.
H = (V ′, E′) is called a subgraph of G if V ′ ⊆ V and E′ ⊆ E. A subgraph H = (V ′, E′)
of G is called the edge induced subgraph of G induced by the edge set E′ if V ′ contains
only the vertices of G which are end vertices of the edges in E′. Figure 3(b) illustrates
an edge induced subgraph induced by the edge set E′ = {(v1, v2), (v1, v5), (v5, v6)} of the
graph in Figure 3(a). For a set of edges S ⊆ E, we denote by V (S) the set of vertices
consisting of the end vertices of the edges in S, that means, V (S) is the set of vertices
of the edge induced subgraph of G induced by S. Figure 3(b) illustrates that the edge
induced subgraph of G induced by S = {(v1, v2), (v1, v5), (v5, v6)} contains the vertex set
V (S) = {v1, v2, v5, v6}.
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Figure 3: (a) A graph with six vertices and nine edges, and (b) an edge-induced subgraph
induced by edge set {(v1, v2), (v1, v5), (v5, v6)}.

A graph is planar if it can be embedded in the plane so that no two edges intersect
geometrically except at a vertex to which they are both incident. A plane graph G is
a planar graph with a fixed embedding. A plane graph divides the plane into connected
regions called faces. The unbounded region is called the outer face of G. We call a vertex v
of G an outer vertex if it is on the boundary of the outer face of G. Let F be the set of faces
of plane graph G. We say a set of edges S ⊆ E covers a face f ∈ F if V (S) contains at least
one vertex from the vertices on the boundary of f. Edge weighted connected plane graph
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is a connected plane graph where each edge e has a weight w(e) ≥ 0. Let G be an edge
weighted connected plane graph. Then for a subgraph H of G, the cost of H is computed
as

∑

e∈E(H)

w(e). We say a vertex set V ′ ⊆ V of a connected graph G is a separating set if

G−V ′ is disconnected. We say a vertex set V ′ ⊆ V covers all the edges of G if V ′ contains
at least one vertex from the end vertices of each edge of G. H is a tree cover of G if H
is a tree in G and the vertices in H cover all the edges of G. A face-spanning subgraph of
an edge weighted connected plane graph G is a connected subgraph H induced by a set of
edges S ⊆ E such that the vertex set of H contains at least one vertex from the boundary
of each face f ∈ F of G. A minimum face-spanning subgraph H of G is a face-spanning
subgraph of G, where

∑

e∈S
w(e) is minimum.

To prove that the face-spanning subgraph problem is NP -complete we reduce the
weighted tree cover problem to the face-spanning subgraph problem in Section 3. The
formal definition of weighted tree cover problem is as follows [3]:

Definition 2.1. (Weighted Tree Cover Problem) Given a plane graph G = (V,E)
and weight on the edges w(e) ≥ 0 for all e ∈ E and a positive real number b, does there
exist any weighted tree T = (V ′, E′) induced by E′ ⊆ E, whose vertices V ′ ⊆ V cover all
the edges in E and

∑

e∈E′
w(e) ≤ b?

3. Face-spanning subgraph problem

In this section we show that the face-spanning subgraph problem is NP -complete. To
prove that the face-spanning subgraph problem is NP -complete, we have to show that (i)
the face-spanning subgraph problem is in NP and (ii) the face-spanning subgraph problem
is NP -hard. We begin with a formal definition of the face-spanning subgraph problem:

Definition 3.1. (Face-Spanning Subgraph Problem) Let G = (V,E) be a connected
plane graph, where V and E are the set of vertices and edges, respectively, and let F be the
set of faces of graph G. Let w(e) ≥ 0 be a positive real number assigned to edge e as weight
for every edge e ∈ E. Then is there any set S ⊆ E such that the subgraph H induced by S
is connected, cover all faces of G and the cost of H is ≤ b, for a given positive real number
b?

In the rest of this section we prove that the face-spanning subgraph problem defined
above is NP -complete. As the first step of the proof, we prove the following lemma.

Lemma 3.2. The face-spanning subgraph problem is in NP.

Proof. To prove that the face-spanning subgraph problem is in NP, it is sufficient to prove
that for a given set S ⊆ E, we can verify in polynomial-time that the subgraph H induced
by S (i) is connected, (ii) cover all faces of G and (iii) the cost of H is ≤ b.
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(i) Connectivity of the subgraph H induced by S can be checked using DFS in linear
time.

(ii) We can verify whether S covers all faces of G or not in linear time by the following
method.
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Figure 4: (a) A graph G, (b) face-list for each vertex and (c) the boolean array AF (i)
after initialization and (ii) after checking the vertices of set V (S) = {v1, v3}.

Let F (v) be the set of faces of G such that each face in F (v) contains the vertex v. We
maintain a face-list for each vertex v as illustrated in Figure 4(b), where the face-list for v
contains the faces in F (v). In the graph in Figure 4(a), F (v1) contains the faces f1, f2 and
f6 and the faces f1, f2 and f6 have appeared in the face-list for the vertex v1 as illustrated
in Figure 4(b). We also maintain a boolean array AF of length |F | to indicate whether
the faces of G are covered by the vertices in V (S) or not. For all j ∈ {1, 2, . . . , |F |}, AF [j]
corresponds to the face fj of graph G. Initially all elements of AF are set to 0 as shown
in Figure 4(c)(i) to indicate that no face is covered by the vertices in V (S) initially. We
traverse the face-list for each vertex v in V (S) and for each face fj in the face-list, we
change the value of AF [j] to 1 to indicate that the face fj is covered by the vertices in
V (S). As an example let us consider a set V (S) = {v1, v3}. Figure 4(b) shows that F (v1)
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contains the faces f1, f2 and f6. Hence we set value 1 to AF [1], AF [2] and AF [6] as shown
in Figure 4(c)(ii). Similarly, since F (v3) contains the faces f1, f2 and f3, AF [1], AF [2] and
AF [3] are set to 1 as shown in Figure 4(c)(ii). After traversing the face-lists for all vertex
in V (S), we check the array AF to know that whether all faces of G are covered or not.

We now calculate the complexity of the method described above. Since |F (v)| is equal
to the degree of v and |V (S)| is at most |V |, then, to check all the vertices of V (S), we
have to consider at most

∑

v∈V (S)

d(v) = 2m = O(m) = O(n) entries in total. Since the

length of array AF is equal to |F |, the traversing time of AF is O(|F |) = O(n). Thus, the
overall time complexity to verify that whether the vertices in V (S) cover all faces of G or
not is O(n).

(iii) It can be verified easily in O(n) time that the cost of H is ≤ b.

Since it is possible to verify (i), (ii) and (iii) in polynomial time, the face-spanning
subgraph problem is in NP.

We now prove the following lemma as the second part of the proof.

Lemma 3.3. The face-spanning subgraph problem is NP-hard.

To prove Lemma 3.3 we will give a polynomial time many one reduction from the
weighted tree cover problem to the face-spanning subgraph problem.

Let G = (V,E) be a connected plane graph, where V and E are the set of vertices and
edges, respectively. Let F be the set of faces of graph G. We obtain a graph G′ from
G as follows. For each edge e = (vk, vl) ∈ E we add a vertex ve and two edges (vk, ve)
and (vl, ve) to G. More formally, G′ = (V ′, E′) where V ′ = V ∪ Ve, Ve = {ve|e ∈ E} and
E′ = E ∪Ee where Ee = {(ve, vk), (ve, vl)|{e = (vk, vl)} ∈ E}. In G′ we call a vertex in Ve

a new vertex, a vertex in V an original vertex, an edge in Ee a new edge and an edge in E
an original edge. Note that original vertices and original edges of G′ are also the vertices
and edges of G. We assign the cost w(e)/2 to each of the edges (ve, vk) and (ve, vl) for all
e = (vk, vl) ∈ E. Figure 5 illustrates the construction of G′ where the vertices drawn by
white small circles are new vertices, the edges drawn by dashed lines are new edges, the
vertices drawn by black circles are original vertices and the edges drawn by solid lines are
the original edges of G′. If G has n vertices and m edges, then G′ has n + m vertices and
3m edges. Clearly G′ can be constructed from G in O(n) time. One can easily observe
that the graph G′ is planar as illustrated in Figure 5, where a plane embedding of G′ is
shown. Throughout the paper we consider G′ as a plane embedding of the graph G′. For
each edge e = (vk, vl) ∈ E, we call the face (vk, vl, ve) of G′ a α-face. We call each of the
remaining faces of G′ a β-face. Figure 5 illustrates α-faces and β-faces. We now have the
following lemma.
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Figure 5: Illustration for the construction of G′ from G.

Lemma 3.4. The graph G′ has a face-spanning subgraph H of cost ≤ b′ if and only if G
has a weighted tree cover T of cost ≤ b, where b and b′ are two positive real numbers.

Proof. Necessity. Assume that G′ has a face-spanning subgraph of cost ≤ b′, that is,
there is an edge set S′ ⊆ E′ of graph G′ such that the subgraph H induced by S′ is
connected, cover all faces of G′ and the cost of H is ≤ b′. We now prove that G has a
weighted tree cover T of cost ≤ b, for a positive real number b.

From the construction of G′ it is obvious that the degree of each new vertex v is two
in G′. Each new vertex has exactly two neighbors vi, vj among the original vertices and
there is an original edge (vi, vj) between the two original vertices as illustrated in Figure
6(a). Modifying the subgraph H we construct a subgraph T of G′ such that T contains
only the original vertices and original edges as follows. Since H is a subgraph of G′, degree
of each new vertex v in H is either one or two. For each new vertex v of H we perform
one of the two operations described in Case 1 and Case 2 below to obtain T from H.

Case 1. v has degree two in H.

In this case v has two neighbors vi, vj among the original vertices such that (vi, vj) is
a solid edge. If (vi, vj) ∈ E(H) then we delete v from H to obtain T as illustrated in
Figure 6(b) and 6(e). Otherwise we replace the path (vi, v, vj) of H by the edge (vi, vj) to
construct T as illustrated in Figure 6(c) and 6(e).

Case 2. v has degree one in H.

In this case v has exactly one neighbor vi among the original vertices. We simply remove
the new vertex v of H to construct T. Figure 6(d) and 6(f) illustrates this case.

If T contains cycles, we delete an edge from each cycle until the resulting subgraph has
no cycle and we regard the resulting subgraph as T, and take the set of all edges in T as
S.

We now prove that T is a tree in G of cost ≤ b. Since H is connected, if we delete
the new vertex v or we replace the path (vi, v, vj) by edge (vi, vj) in Case 1, T remains
connected. Again, the cost of the path (vi, v, vj) is w(e)/2 + w(e)/2 = w(e) in total,
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which is equal to the cost of the edge (vi, vj). Hence in Case 1, the cost of the modified
subgraph is decreased (if we delete the new vertex v) or unchanged (if the path (vi, v, vj)
is replaced by edge (vi, vj)). In Case 2, the new vertex has degree one and it is omitted,
hence T remains connected after considering Case 2 for all such new vertices. In this case,
edge (v, vi) is removed, hence the cost of the modified subgraph decreases. Thus T is a
connected subgraph of cost ≤ b′ in G′. Note that we have destroyed cycles to construct T
and T is a tree of cost ≤ b′ in G′. If we take b = b′, then the cost of tree T is ≤ b. Since
the edges of T in G′ are original edges and the vertices of T in G′ are original vertices, G
contains T. Hence T is a tree of cost ≤ b in G.
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(b) (c) (d)
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Figure 6: Illustration for the construction of T from H.

Note that T and H are induced by S and S′ respectively. To prove that T is a weighted
tree cover in G of cost ≤ b, it is now remained to show that the set of vertices V (S) of
subgraph T is a vertex cover in G. Since H is face-spanning subgraph of G′, the set of
vertices V (S′) of H covers all faces of G′. Hence V (S′) contains at least one vertex (either
black or white) from the boundary of each face of G′. Since H is connected, V (S′) can
contain a new vertex v only if V (S′) contains at least one neighbor vi of v among the
original vertices in G′. Since a new vertex v has degree 2, the two faces covered by a new
vertex v are also be covered by an original vertex vi which is neighbor to the new vertex
v. Thus V (S′) contains at least one original vertex from the boundary of each face of
G′. Since V (S) contains all the original vertices of V (S′), V (S) also contains at least one
original vertex from the boundary of each face of G′. Since we create an α-face in G′ for
each edge of G while constructing G′, there is a face of G′ for each edge in G. Since each
face of G′ is covered by V (S), each edge of G is covered by V (S). Hence V (S) contains at
least one vertex from each edge of G. Thus V (S) is a vertex cover of G.

Since, T is a tree in G of cost ≤ b and V (S) is a vertex cover of graph G, T is a weighted
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tree cover of cost ≤ b of G.

Sufficiency. Assume that G has a weighted tree cover of cost≤ b, that is, there is tree T
in G of cost ≤ b and the vertex set V (S) that T contains is a vertex cover of graph G. We
now prove that G′ has a face-spanning subgraph H of cost ≤ b′, for a positive real number
b′. We take b = b′.

From the construction of G′ it is clear that all the vertices in V (S) and the edges of T
in G are also in G′. We take S′ as the set of edges of G′ which are in S and let H be the
subgraph induced by S. Then H contains all the edges of T and V (S′) contains all the
vertices in V (S). We now show that the subgraph H of G′ is (i) connected, (ii) cover all
faces of G′ and (iii) the cost of H is ≤ b′.

(i) From the construction it is obvious that all the vertices and edges of G are also in
G′. Since T is a tree in G and T = H, H is a tree in G′. Hence the subgraph H induced
by S′ in G′ is connected.

(ii) Since the subgraph T induced by S is a weighted tree cover of G, then for each edge
e = (vk, vl) ∈ E of G, V (S) contains either vk or vl or both. By the construction of G′

from G, G′ has an α-face for each edge e ∈ E of G. Thus V (S′) contains vk or vl or both
for each α-face of graph G′. Since each edge of G is covered by V (S), each α-face of graph
G′ is covered by V (S′). We now need to show that the β-faces of G′ are also covered by
V (S′). Since each β-face of G′ contains the original vertices of at least three α-faces and
V (S′) contains at least one original vertex from each α-face, V (S′) contains at least two
original vertices. Hence each β-face of G′ is covered by V (S′). Thus V (S′) covers all the
faces of G′, that means, the subgraph H induced by S′ in G′ cover all faces of G′.

(iii) The cost of T is ≤ b. Since T = H and b = b′, the cost of H is ≤ b′ in G′.

Proof of Lemma 3.3: Since the construction of G′ from G takes polynomial time,
Lemma 3.4 implies that the face-spanning subgraph problem is NP -hard.

By Lemma 3.2 and Lemma 3.3, the following theorem holds.

Theorem 3.5. The face-spanning subgraph problem is NP-complete.

4. Minimum-vertex face-spanning subgraph problem

In this section we consider a variation of the face-spanning subgraph problem, which
we call minimum-vertex face-spanning subgraph problem. The formal definition of the
problem is as follows:

Definition 4.1. (Minimum-Vertex Face-Spanning Subgraph Problem) Let G =
(V,E) be a connected plane graph , where V and E are the set of vertices and edges,
respectively, and let F be the set of faces of graph G. Then is there any set S ⊆ E such
that the subgraph H induced by S is connected, cover all faces of G and |V (H)| ≤ k, for
a given positive integer k ≤ |V |?
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The minimum-vertex face-spanning subgraph problem often arises in applications like
establishing base transceiver station in wireless networks, establishing power distribution
centers in a city etc where the setup cost for each establishment is huge. In these cases
the objective is to minimize the number of vertices instead of edge cost. Figure 7(a)
shows a face-spanning subgraph drawn by thick lines with 6 vertices whereas Figure 7(b)
shows a face-spanning subgraph drawn by thick lines with 7 vertices. To prove that the
minimum-vertex face-spanning subgraph problem is NP -complete, we use the well known
NP -complete problem “connected vertex cover” problem. The subgraph H be a connected
vertex cover of G if V (H) is a vertex cover of G and the subgraph H induced by V (H) is
connected. The formal definition of connected vertex cover problem is as follows [5].

(a) (b)

Figure 7: A simple graph with (a) a minimum-vertex face-spanning subgraph of 6 vertices,
and (b) another minimum-vertex face-spanning subgraph of 7 vertices.

Definition 4.2. (Connected Vertex Cover Problem) Given a plane graph G = (V,E)
and an integer k, does there exist a vertex cover V ′ ⊆ V satisfying |V ′| ≤ k and the
subgraph induced by V ′ is connected?

In the rest of this section we prove that the minimum-vertex face-spanning subgraph
problem is NP -complete. To prove that the minimum-vertex face-spanning subgraph
problem is NP -complete, we show that (i) the minimum-vertex face-spanning subgraph
problem is in NP and (ii) the minimum-vertex face-spanning subgraph problem is NP -
hard.

As the first step of the proof, we have the following lemma.

Lemma 4.3. The minimum-vertex face-spanning subgraph problem is in NP.

Proof. To prove that the minimum-vertex face-spanning subgraph problem is in NP, it is
sufficient to prove that for a given set S ⊆ E, we can verify in polynomial-time that the
subgraph H induced by S (i) is connected, (ii) cover all faces of G and (iii) |V (H)| ≤ k.
The verification can be done in linear-time using a method similar to one described in the
proof of Lemma 3.2.

We now prove the following lemma as the second part of the proof.
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Lemma 4.4. The minimum-vertex face-spanning subgraph problem is NP-hard.

Let G = (V,E) be a connected plane graph, where V and E are the set of vertices and
edges, respectively. Let F be the set of faces of graph G. We obtain a plane graph G′ from
G using the construction described in Section 3 as illustrated in Figure 5. Note that we do
not consider weight of the edges, since the graph is not weighted in the current problem.

We now have the following lemma.

Lemma 4.5. G′ has a minimum-vertex face-spanning subgraph H ′ with |V (H ′)| ≤ k′ if
and only if G has a connected vertex cover H with |V (H)| ≤ k, where k and k′ are two
positive integers.

Proof. Necessity. Assume that G′ has a face-spanning subgraph H ′ with |V (H ′)| ≤ k′,
that is, there is an edge set S′ ⊆ E′ of graph G′ such that the subgraph H ′ induced by S′

is connected, cover all faces of G′ and |V (H ′)| ≤ k′. We now prove that G has a connected
vertex cover H with |V (H)| ≤ k, for a positive integer k. Using a method similar to one
described in the necessity proof of Lemma 3.4, we can construct a subgraph H of G from
H ′ such that H is connected, |V (H)| ≤ k and V (S) is a vertex cover of graph G. Therefore
H is a connected vertex cover of G with |V (H)| ≤ k.

Sufficiency. Assume that G has a connected vertex cover H with |V (H)| ≤ k, that is,
there is a connected subgraph H in G with |V (H)| ≤ k and the vertex set V (S) that H
contains is a vertex cover of graph G. We now prove that G′ has a face-spanning subgraph
H ′ with |V (H ′)| ≤ k′, for a positive integer k′. We take k = k′.

From the construction of G′ it is clear that all the vertices in V (S) and the edges of
H in G are also in G′. We take S′ as the set of edges of G′ which are in S and let H ′ be
the subgraph induced by S. Then H ′ contains all the edges of H and V (S′) contains all
the vertices in V (S). One can easily show that the subgraph H ′ of G′ (i) is connected, (ii)
cover all faces of G′ and (iii) |V (H ′)| ≤ k′. Therefore G′ has a face-spanning subgraph H ′

with |V (H ′)| ≤ k′.

Proof of Lemma 4.4: Since the construction of G′ from G takes polynomial time,
Lemma 4.5 implies that the minimum-vertex face-spanning subgraph problem is NP -hard.

By Lemma 4.3 and Lemma 4.4, the following theorem holds.

Theorem 4.6. The minimum-vertex face-spanning subgraph problem is NP-complete.

5. Approximation algorithms

In this section we discuss some issues related to the approximation algorithms for finding
the minimum face-spanning subgraph and the minimum-vertex face-spanning subgraph.

In practical applications of the face-spanning subgraph problem like the gas pipelines
planning problem in Section 1, an input is often a plane graph G such that each vertex of
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G has degree three or more. We thus consider graphs of the minimum degree three in this
section for designing approximation algorithms. We also assume that G has no separating
set which contains only outer vertices.

We first establish a lower bound on the number of vertices of a face-spanning subgraph
of a plane graph. Let H be a face-spanning subgraph of G induced by edge set S ⊆ E. We
call H a minimal face-spanning subgraph of G if there is no edge set S′ ⊂ S such that the
subgraph induced by S′ is a face-spanning subgraph of G. Clearly a minimal face-spanning
subgraph is a tree. Figure 8 illustrates an example of minimal face-spanning subgraph.
The thick lines in Figure 8(a) is a minimal face-spanning subgraph. The thick lines in
Figure 8(b) is not a minimal face-spanning subgraph since the subset of this thick lines
can induce a face-spanning subgraph.

(b)(a)

Figure 8: Illustration of (a) a minimal face-spanning subgraph, and (b) a non-minimal
face-spanning subgraph.
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Figure 9: (a) A minimal face-spanning subgraph of cost 4, and (b) a minimal face-spanning
subgraph of cost 2.

A plane graph may have many minimal face-spanning subgraphs. In Figure 9(a), a
minimal face-spanning subgraph of cost 4 is drawn by thick lines and in Figure 9(b)
another minimal face-spanning subgraph of cost 2 is drawn by thick lines for the same
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graph. Note that a minimum face-spanning subgraph of G defined in Section 2 is one of
the minimal face-spanning subgraphs of G whose total edge weight is minimum among all
the minimal face-spanning subgraphs.

A minimum-vertex face-spanning subgraph H of G defined in Section 4 may not be
a minimal face-spanning subgraph of G, since the definition of a minimum-vertex face-
spanning subgraph allows cycles in H. However, there exists a minimal face-spanning
subgraph H ′ of G with the vertex set V (H), and H ′ can be obtained by removing an edge
from each cycle in H if H has any cycle. Figure 10 illustrates an example how to find a
minimal face-spanning subgraph from a minimum-vertex face-spanning subgraph. Figure
10(a) shows a simple graph with a minimum-vertex face-spanning subgraph H drawn by
thick lines and Figure 10(b) shows a minimal face-spanning subgraph H ′ drawn by thick
lines obtained by removing an edge e from each cycle of H in Figure 10(a).

(a)

H
e

H

(b)

Figure 10: (a) A minimum-vertex face-spanning subgraph H, and (b) a minimal face-
spanning subgraph H ′ obtained from H.

We now have the following lemma.

Lemma 5.6. Let G = (V,E) be a connected plane graph. Assume that each vertex of G
has degree three or more. Let H be a minimal face-spanning subgraph induced by S ⊆ E
of G. Then |V (S)| ≥ (f − 2)/(∆ − 2), where f is the number of faces of G.

Proof. Let G be a connected plane graph with maximum degree ∆ and f faces. Since each
vertex of G has degree three or more, ∆ ≥ 3. Let H be a minimal face-spanning subgraph
of G induced by S ⊆ E and S contains k edges. We prove the above claim using induction
on k.

If k = 1, then S contains exactly one edge and hence |V (S)| = 2. In this case S cover at
most 2∆− 2 faces. This implies (f − 2)/(∆− 2) ≤ 2 = |V (S)|. Therefore the claim holds.

Assume that k ≥ 2 and the claim holds for all connected plane graphs each of which
has a minimal face-spanning subgraph of fewer than k edges, and suppose that G has a
face-spanning subgraph of k edges. We remove an edge e from S such that the graph H ′

induced by S′ = S −{e} is connected. Since H ′ is connected, |V (S′)| = |V (S)|− 1. Let G′
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be the subgraph of G such that G′ contains all faces of G covered by S′ and H ′ is a minimal
face-spanning subgraph of G′. Let f ′ and ∆′ be the number of faces and the maximum
degree of G′, respectively. Then f ′ ≥ f − (∆− 2), since S can cover at most (∆− 2) faces
more than the faces covered by S′. Furthermore, ∆ ≥ ∆′. Since S′ has less than k edges,
by induction hypothesis |V (S′)| ≥ (f ′ − 2)/(∆′ − 2). Since f ′ ≥ f − (∆− 2), ∆ ≥ ∆′, and
|V (S′)| = |V (S)| − 1, the claim immediately follows from induction hypothesis.

We have a graph of 9 faces with ∆ = 3 as illustrated in Figure 11, for which the minimum
number of vertices required for a face-spanning subgraph is 7. Thus the example in Figure
11 attains the lower bound, and hence the bound is tight.

Figure 11: A graph of 9 faces with ∆ = 3 for which the minimum number of vertices
required for a face-spanning subgraph is 7.

(a)

G

G

H

v
v

o
o

(b)

Figure 12: Illustration of the transformation of G to G′: (a) a simple graph G and (b) G′

obtained from G with a minimal face-spanning subgraph H of G drawn by thick lines.

We now give an algorithm for finding a minimal face-spanning subgraph based on span-
ning tree. Let G = (V,E) be a connected plane graph, where V and E are the set of
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vertices and edges, respectively, and let F be the set of faces of G. Let v0 be an outer
vertex of G. Let G′ be the graph obtained from G by deleting all outer vertices of G except
v0. Let T be a spanning tree of G′. One can observe that T is a face-spanning subgraph of
G. We traverse the tree T and delete each leaf vertex v of T if each of the faces of G which
contains v is covered by any other vertex in T. Deletion of v from T may generate a new
leaf vertex of T. We repeat the operation above for all the leaf vertices of T including the
newly generated leaf vertices. The resulting tree T is our desired minimal face-spanning
subgraph H. Using a data structure similar to that described in Lemma 3.2 we can obtain
a minimal face-spanning subgraph mentioned above in linear time. We call the algorithm
described above Algorithm Find-Minimal-Subgraph. Figure 12 illustrates the trans-
formation of G to G′ along with a minimal face-spanning subgraph H of graph G drawn
by thick lines.

Clearly the following lemma holds on the upper bound of the number of vertices of a
minimal face-spanning subgraph produced by Algorithm Find-Minimal-Subgraph.

Lemma 5.7. Let G be a plane graph of n vertices, and let n0 be the number of outer
vertices of G. Assume that each vertex of G has degree three or more. Then Algorithm
Algorithm Find-Minimal-Subgraph produce a minimal face-spanning subgraph with at
most n − n0 + 1 vertices in linear time.

The upper bound in Lemma 5.7 is also tight, since we have an infinite number of
examples attaining the bound; one example is shown in Figure 13.

Figure 13: A graph of 7 faces with n = 10 and n0 = 6 for which the minimum number of
vertices required for a face-spanning subgraph is 5.

We can take a minimal face-spanning subgraph of a connected plane graph G produced
by Algorithm Algorithm Find-Minimal-Subgraph as an approximate solution of the
minimum-vertex face-spanning subgraph problem, then we have the following theorem.

Theorem 5.8. Let G = (V,E) be a connected plane graph such that each vertex of G
has degree three or more. Then the approximation ratio of Algorithm Find-Minimal-
Subgraph for finding a minimum-vertex face-spanning subgraph is 2(∆ − 2).

Proof. Algorithm Find-Minimal-Subgraph constructs a minimum-vertex face-
spanning subgraph of G with at most n − n0 + 1 vertices. By Lemma 5.6 a face-
spanning subgraph of G has at least (f − 2)/(∆ − 2) vertices. Hence approximation
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ratio is (n − n0 + 1)/{(f − 2)/(∆ − 2)}. From Euler’s Formula for planar graphs, we
have f − 2 = m − n. Since degree of any vertex in G is ≥ 3, 2m ≥ 3n. This im-
plies (m − n) ≥ n/2 and hence (f − 2) ≥ n/2. Therefore the approximation ratio is
(n−n0 +1)/{(f −2)/(∆−2)} ≤ (n−n0 +1)/{(n/2)/(∆−2)} = 2(n−n0 +1)(∆−2)/n ≤
2(∆ − 2).

A minimal face-spanning subgraph produced by Algorithm Find-Minimal-
Subgraph can also be taken as an approximate solution of the minimum face-
spanning subgraph problem. One can easily observe that approximation ratio of Al-
gorithm Find-Minimal-Subgraph for finding minimum face-spanning subgraph is
{(n − n0)emax}/{{(f − 2)/(∆ − 2) − 1}emin} = {(n − n0)(∆ − 2)emax}/{(f − ∆)emin},
where emax and emin denote the maximum and minimum weight of the edges of G.

6. Conclusion

In this paper we showed that the face-spanning subgraph problem and the minimum-
vertex face-spanning subgraph problem are NP -complete. Thus it is unlikely to develop
efficient algorithms for these problems. Since the problems arise from many practical ap-
plications, developing efficient approximation algorithms are essential. We have designed
approximation algorithms for both the minimum face-spanning subgraph problem and the
minimum-vertex face-spanning subgraph problem. We also analyzed the complexities and
approximation ratios of the designed approximation algorithms. We have shown a lower
bound for both the problems based on the number of vertices which is tight. We have
also shown a tight upper bound of the number of vertices of a minimal face-sppaning
subgraph. However, to design approximation algorithms with better approximation ratio
for the face-spanning subgraph problem and the minimum-vertex face-spanning subgraph
problem is left as open problems.
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