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Capacity of Gaussian Channels With Duty
Cycle and Power Constraints
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Abstract— In many wireless communication systems, radios
are subject to a duty cycle constraint, that is, a radio can
only actively transmit signals over a fraction of the time. For
example, it is desirable to have a small duty cycle in some low
power systems; a half-duplex radio cannot keep transmitting if
it wishes to receive useful signals; and a cognitive radio needs to
listen and detect primary users frequently. This paper studies the
capacity of point-to-point scalar discrete-time Gaussian channels
subject to a duty cycle constraint as well as an average transmit
power constraint. An idealized duty cycle constraint is first
studied, which can be regarded as a requirement on the minimum
fraction of nontransmissions or zero symbols in each codeword.
Independent input with a unique discrete distribution is shown
to achieve the channel capacity. In many situations, numerically
optimized on-off signaling can achieve much higher rate than
Gaussian signaling over a deterministic transmission schedule.
This is in part because the positions of nontransmissions in a
codeword can convey information. A more realistic duty cycle
constraint is also studied, where the extra cost of transitions
between transmissions and nontransmissions due to pulse shaping
is accounted for. The capacity-achieving input is correlated
over time and is hard to compute. A lower bound of the
achievable rate as a function of the input distribution is shown
to be maximized by a first-order Markov input process, whose
stationary distribution is also discrete and can be computed
efficiently. The results in this paper suggest that, under var-
ious duty cycle constraints, departing from the usual para-
digm of intermittent packet transmissions may yield substantial
gain.

Index Terms— Capacity-achieving input, channel capacity,
duty cycle, entropy rate, hidden Markov process (HMP), Markov
process, Monte Carlo method, mutual information.
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I. INTRODUCTION

IN MANY wireless communication systems, a radio is
designed to transmit actively only for a fraction of the

time, which is known as its duty cycle. For example, low
duty cycle signaling has been used to conserve power in some
wideband systems [1], [2]. The physical half-duplex constraint
also requires a radio to stop transmission over a frequency
band from time to time if it wishes to receive useful signals
over the same band. Thus wireless relays are subject to duty
cycle constraint, and so are cognitive radios which have to
listen to the channel frequently to avoid causing interference
to primary users. The de facto standard solution under duty
cycle constraint is to transmit sizable packets intermittently.

This work studies the fundamental question of what is
the optimal signaling for a Gaussian channel with a duty
cycle constraint as well as an average transmission power
constraint. An important observation is that the signaling in
nontransmission periods can be regarded as transmission of a
special zero signal. We first make a simplistic and idealized
assumption that the analog waveform corresponding to each
transmitted symbol spans exactly one symbol interval. We
restrict our attention to discrete-time scalar additive white
Gaussian noise (AWGN) channels for simplicity, where the
duty cycle constraint is equivalent to a requirement on the
minimum fraction of zero symbols in each transmitted code-
word, which is called the idealized duty cycle constraint.
We then consider the case where a practical pulse shaping
filter is used, e.g., for band-limited transmissions. As such,
during a transition between a zero symbol and a nonzero
symbol, the pulse waveform of the nonzero symbol leaks
into the interval of the zero symbol. A realistic duty cycle
constraint must include the extra cost incurred upon transitions
between zero and nonzero symbols. The mathematical model
of the preceding input-constrained channels is described in
Section II.

Determining the capacity of a channel subject to various
input constraints is a classical problem. It is well-known
that Gaussian signaling achieves the capacity of a Gaussian
channel with average input power constraint only. In addition,
Zamir [3] shows that the information rate of an additive
noise channel achievable using a white Gaussian input never
incurs a loss of more than half a bit per sample with respect
to the power constrained capacity. Furthermore, Smith [4]
investigated the capacity of a scalar AWGN channel under
both peak power constraint and average power constraint.
The input distribution that achieves the capacity is shown to
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be discrete with a finite number of probability mass points.
The discreteness of capacity-achieving distributions for var-
ious channels, including quadrature Gaussian channels, and
Rayleigh-fading channels is also established in [5]–[10]. Chan
et al. [11] studied the capacity-achieving input distribution for
conditional Gaussian channels which form a general channel
model for many practical communication systems.

The main results of this paper are summarized in Section III.
In the case of the idealized duty cycle constraint, because all
costs associated with the constraints can be decomposed into
per-letter costs, the optimal input distribution is independent
and identically distributed (i.i.d.) over time. Following [4]
and [11], we use tools in complex analysis to show that the
capacity-achieving input distribution for an AWGN channel
with the idealized duty cycle constraint and the average power
constraint is discrete. The absence of the peak power (i.e.,
bounded support) constraint and the additional duty cycle
constraint make the derivation harder. Unlike in [4] and [11],
the optimal distribution has an infinite number of probability
mass points, whereas only a finite number of the points
are found in every bounded interval. This allows efficient
numerical optimization of the input distribution.

The case of the realistic duty cycle constraint is more chal-
lenging. Because the constraint concerns symbol transitions,
the capacity-achieving input distribution is dependent over
time, and becomes hard to compute. We develop a lower bound
of the input-output mutual information as a function of the
input distribution. It is proved that, under the realistic duty
cycle constraint, a first-order Markov process maximizes the
lower bound, the distribution of which is also discrete and can
be computed efficiently. The main theorems for the cases of
the idealized and the realistic duty cycle constraints are proved
in Section IV and V, respectively.

We devote Section VI to the numerical methods and results.
In order to compute the achievable rate when the input
is a Markov Chain, a Monte Carlo method is introduced
in Section VI-A to numerically compute the differential
entropy rate of hidden Markov processes. Numerical results
in Section VI-B demonstrate that, in the case of the idealized
duty cycle constraint, using a numerically optimized discrete
signaling achieves higher rates than using Gaussian signaling
over a deterministic transmission schedule. For example, if the
radio is allowed to transmit no more than half the time, i.e.,
the duty cycle is no greater than 50%, a near-optimal discrete
input achieves 50% higher rate at 10 dB signal-to-noise ratio
(SNR). In the case of the realistic duty cycle constraint, numer-
ical results also show that the rate achieved by the Markov
process is substantially higher than that achieved by any i.i.d.
input. This suggests that, compared to intermittently trans-
mitting packets using Gaussian or Gaussian-like signaling, it
is more efficient to disperse nontransmission symbols within
each packet to form codewords, which results in a form of
on-off signaling.

One of the reasons for the superiority of on-off signaling
is that the positions of nontransmission symbols can be used
to convey information, the impact of which is particularly
significant in the case of low SNR or low duty cycle. This
has been observed in the past. For example, as shown in [12]

(see also [13] and [14]), time sharing or time-division duplex
(TDD) can fall considerably short of the theoretical limits in
a relay network: The capacity of a cascade of two noiseless
binary bit pipes through a half-duplex relay is 1.14 bits
per channel use, which far exceeds the 0.5 bit achieved by
TDD and even the 1 bit upper bound on the rate of binary
signaling.

This work is restricted to a directed link from one point
(say, T) to another point (say, R) where T is subject to the duty
cycle constraint. There is no constraint on, or interference to,
R’s receiver, so that R can listen to the channel continuously.
The reverse link from R to T, if it exists, does not interfere
with the forward link. (For example, the reverse link may use
a separate band.)

The situation where three or more nodes communicate
using on-off signaling over the same frequency band has been
studied in [15] and [16]. Under the half duplex constraint,
the received signal of a node is erased during symbol inter-
vals of its own active transmissions. Thus each node sees a
multiaccess channel with erasures. With suitable error control
coding, all nodes can communicate simultaneously over each
frame, accomplishing virtual full-duplex communication. The
reader is referred to [15] and [16] for an in-depth study of the
scheme, called rapid on-off-division duplex (RODD).

II. SYSTEM MODEL

Consider digital communication systems where coded data
is mapped to waveforms for transmission. Usually there is
a collection of pulse waveforms, where each pulse repre-
sents a symbol (or letter) from a discrete alphabet. We view
nontransmission over a symbol interval as transmitting the
all zero waveform. In other words, a symbol interval of
nontransmission is simply regarded as transmitting a special
symbol “0,” which carries no energy.

As far as the capacity-achieving input is concerned, it
suffices to consider the baseband discrete-time model for the
AWGN channel. The received signal over a block of n symbols
can be described by

Yi = Xi + Ni (1)

where i = 1, . . . , n, Xi denotes the transmitted symbol at time
i and N1, . . . , Nn are independent standard Gaussian random
variables. For simplicity, we assume that there is no inter-
symbol interference at the receiver. Each symbol modulates
a continuous-time pulse waveform for transmission. If the
width of all pulses were exactly one symbol interval, which
is denoted by T , the duty cycle is equal to the fraction of
nonzero symbols in a codeword. In practice, however, the
pulse is usually wider than T , so that the support of the
transmitted waveform is greater than the sum of the intervals
corresponding to nonzero symbols due to leakage into intervals
of adjacent zero symbols. To be specific, suppose the width
of a pulse is (1 + 2c)T , then each transition between zero
and nonzero symbols incurs an additional cost of up to c T in
terms of actual transmission time.

Let 1 − q denote the maximum duty cycle allowed. In this
paper, we only consider the non-trivial cases where 0 < q < 1,
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and require every codeword (x1, x2, · · · , xn) to satisfy

1

n

n∑

i=1

1{xi �=0} + 1

n
2c

(
1{xn=0,x1 �=0} +

n−1∑

i=1

1{xi=0,xi+1 �=0}

)

≤ 1 − q (2)

where 1{·} is the indicator function. Here the duty cycle is
defined in a cyclic manner, where a transition between xn

and x1 is also counted. This of course has vanishing impact
as n → ∞ and thus no impact on the capacity. Therefore,
the transition cost is twice that of zero-to-nonzero transitions,
because the number of nonzero-to-zero transitions and the
number of zero-to-nonzero transitions are equal under the
cyclic transition cost configuration. From now on, we refer to
(2) as the duty cycle constraint (q, c). Note that the idealized
duty cycle constraint is the special case (q, 0). If c ∈ [0, 1

2 ],
the left hand side of (2) is equal to the actual duty cycle. If
c > 1

2 , the left hand side of (2) is an overestimate of the duty
cycle. Nonetheless, we use constraint (2) for its simplicity. In
addition, we consider the usual average input power constraint,

1

n

n∑

i=1

x2
i ≤ γ. (3)

In many wireless systems, the transmitter’s activity is con-
strained in the frequency domain as well as in the time domain.
In principle, the results in this paper also apply to the more
general model where the duty cycle constraint is on the time-
frequency plane.

III. MAIN RESULTS

A. The Case of the Idealized Duty Cycle Constraint

Let μ denote the distribution of the channel input X . The
set of distributions with duty cycle constraint (q, 0) and power
constraint γ is denoted by

�(γ, q) = {
μ : μ({0}) ≥ q, Eμ

{
X2

} ≤ γ
}
. (4)

Although implicit in (4), it should be understood that μ is a
probability measure defined on the Borel algebra on the real
number set, denoted by B(R).

Theorem 1: The capacity of the additive white Gaussian
noise channel (1) with its idealized duty cycle no greater than
1 − q and the average power no greater than γ is

C(γ, q) = max
μ∈�(γ,q)

I (X; X + N) (5)

where X follows distribution μ and N is standard Gaussian
and independent of X . In particular, the following properties
hold:

a) the maximum of (5) is achieved by a unique (capacity-
achieving) distribution μ0 ∈ �(γ, q);

b) μ0 is symmetric about 0 and its second moment is exactly
equal to γ ; and

c) μ0 is discrete with an infinite number of probability mass
points, whereas the number of probability mass points in
any bounded interval is finite.

The proof of Theorem 1 is relegated to Section IV.
Property (b) suggests that the capacity-achieving input always

exhausts the power budget. Property (c) indicates that the
capacity-achieving input can be well approximated by some
discrete inputs with finite alphabet, which can be computed
using numerical methods. The achievable rate of numerically
optimized input distribution is studied in Section VI.

B. The Case of the Realistic Duty Cycle Constraint

Let Xn
k denote the subsequence (Xk, Xk+1, · · · , Xn), where

X∞
k = (Xk, Xk+1, · · · ). We also use shorthand Xn = Xn

1 .
Let μ denote the probability distribution of the process
X1, X2, · · · . We use μXi to denote the marginal distribution of
Xi , and μXi ,X j to denote the joint probability distribution of
(Xi , X j ). Denote the set of n-dimensional distributions which
satisfy duty cycle constraint (q, c) and power constraint γ by

�n(γ, q, c) =
{
μ : Eμ

{
1

n

n∑

i=1

X2
i

}
≤ γ,

1

n

n∑

i=1

[
μXi ({0}) − 2 c μXi ,X(i mod n)+1({0}×(R\{0}))]≥q

}
(6)

where

μXi ,X j ({0} × (R\{0})) = P(Xi = 0, X j �= 0) (7)

denotes the probability of a zero-to-nonzero transition and the
modular operation

i mod n =
{

i, if 1 ≤ i < n,

0, if i = n.
(8)

is used to express the cyclic transition cost configuration in (2).
The capacity of the AWGN channel (1) with duty cycle

constraint (q, c) and power constraint γ is

C(γ, q, c) = lim
n→∞

1
n max

μ∈�n(γ ,q,c)
I (Xn; Y n). (9)

The capacity is in fact achieved by a stationary input
process. This is justified in Section V-A by showing that any
nonstationary input process has a stationary counterpart with
equal or greater input-output mutual information per symbol.
Let us denote the set of stationary distributions which satisfy
duty cycle constraint (q, c) and power constraint γ by

�(γ, q, c) = {
μ : μ is stationary, Eμ

{
X2

1

}
≤ γ,

μX1({0})−2 c μX1,X2({0}×(R\{0}))≥q
}
. (10)

Theorem 2: For any μ ∈ �(γ, q, c), let

L(μ) = I (X1; X1 + N) − I (X1; X∞
2 ) (11)

where N is standard Gaussian and independent of X1. The
following properties hold:

a) L(μ) is a lower bound of the channel capacity;
b) The maximum of L(·) is achieved by a discrete first-order

Markov process, denoted by μ∗;
c) μ∗ satisfies the following property: Define Bi = 1{Xi �=0},

i = 1, 2, . . . . Then for every i , conditioned on Bi and
Bi+1, the variables Xi and Xi+1 are independent, and

L(μ∗) = I (X1; X1 + N) − I (B1; B2). (12)
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The proof of Theorem 2 is relegated to Section V. Evidently,
increasing the input power by scaling the input linearly not
only maintains its duty cycle, but also increases the mutual
information. Therefore, the optimal input distribution must
exhaust the power budget γ .

In the special case of no transition cost, i.e., c = 0, the
maximizer μ∗ of the lower bound L(·) in Theorem 2 requires
I (B1; B2) = 0, and is exactly the same as the capacity-
achieving distribution μ0 in Theorem 1.

IV. PROOF OF THEOREM 1 (THE CASE OF IDEALIZED

DUTY CYCLE CONSTRAINT)

This section is devoted to a proof of Theorem 1 for the case
of the idealized duty cycle constraint (q, 0). The conditional
probability density function (pdf) of the output given the input
of the AWGN channel (1) is

pY |X (y|x) = φ(y − x) (13)

where

φ(t) = 1√
2π

e− t2
2 (14)

is the standard Gaussian pdf.
With the idealized duty cycle constraint, the capacity of the

AWGN channel is achieved by an i.i.d. process and the duty
cycle constraint reduces to a per symbol cost constraint. For
given input distribution μ, the pdf of the output exists and is
expressed as

pY (y; μ) =
∫

pY |X (y|x) μ(dx) = Eμ {φ(y − X)} . (15)

Denote the relative entropy D
(

pY |X (·|x)‖pY (·; μ)
)

by
d(x; μ), which is expressed as

d(x; μ) =
∫ ∞

−∞
pY |X (y|x) log

pY |X (y|x)

pY (y; μ)
dy . (16)

The mutual information I (μ) = I (X; Y ) is then

I (μ) =
∫

d(x; μ) μ(dx) = Eμ {d(X; μ)} . (17)

The capacity of the AWGN channel under per-letter duty
cycle constraint and power constraint is evidently given by the
supremum of the mutual information I (μ) where μ ∈ �(γ, q).
The achievability and converse of this result can be established
using standard techniques in information theory.

The proof of property (a) is presented in Section IV-A.
Now suppose μ0 is the unique capacity-achieving distribu-
tion, property (b) is established as follows. Since the mirror
reflection of μ0 about 0 is evidently also a maximizer of (5),
the uniqueness requires μ0 to be symmetric. Note that linear
scaling of the input to increase its power maintains its duty
cycle and cannot reduce the mutual information, as the receiver
can add noise to maintain the same SNR. By the uniqueness
of the maximizer μ0, the power constraint must be binding,
i.e., the second moment of μ0 must be equal to γ . In order to
prove property (c), we first establish a sufficient and necessary
condition for μ0 in Section IV-B and then apply it to show
the discreteness of μ0 in Section IV-C.

A. Existence and Uniqueness of μ0

Let P denote the collection of all Borel probability measures
defined on (R,B(R)), which is a topological space with the
topology of weak convergence [17]. We first establish the
following lemma.

Lemma 1: �(γ, q) is compact in the topological space P .
Proof: According to [17], the topology of weak con-

vergence on P is metrizable. Therefore, by Prokhorov’s
theorem [18], in order to prove that �(γ, q) is compact in P ,
it suffices to show that it is both tight and closed.

For any ε > 0, there exits an aε > 0, such that for all
μ ∈ �(γ, q),

μ(|X | > aε) ≤ Eμ

{
X2

}

a2
ε

≤ γ

a2
ε

< ε (18)

by Chebyshev’s inequality. Choose Kε = [−aε, aε], then Kε

is compact in R and μ(Kε) ≥ 1 − ε for all μ ∈ �(γ, q), thus
�(γ, q) is tight.

Let Bm = [− 1
m , 1

m

]
for m = 1, 2, . . . . Let {μn}∞n=1

be a convergent sequence in �(γ, q) with limit μ0. Since
μn(Bm) ≥ q for every m, n, we have [17, Section 3.1]

q ≤ lim sup
n→∞

μn(Bm) ≤ μ0(Bm), (19)

and hence

μ0({0}) = μ0

( ∞⋂

m=1

Bm

)
= lim

m→∞ μ0(Bm) ≥ q. (20)

Moreover, let f (x) = x2 which is continuous and bounded
below. By weak convergence [17, Section 3.1], we have

Eμ0

{
X2

}
=
∫

f dμ0 ≤ lim inf
n→∞

∫
f dμn ≤ γ. (21)

Therefore, μ0 ∈ �(γ, q), i.e., �(γ, q) is closed, and the
compactness of �(γ, q) follows.

Since the mutual information I (μ) is continuous on
P [19, Theorem 9], it must achieve its maximum on the com-
pact set �(γ, q). Hence the capacity-achieving distribution μ0
exists.

According to [19, Corollary 2], the mutual information I (μ)
is strictly concave. It is easy to see that �(γ, q) is convex.
Hence the capacity-achieving distribution μ0 must be unique.

B. Sufficient and Necessary Conditions

Denote the finite-power set as

�(q) = ∪0≤γ<∞�(γ, q). (22)

We first establish the following sufficient and necessary con-
dition for the optimal input distribution.

Lemma 2: Let

fλ(x; μ) = d(x; μ) − I (μ) − λ(x2 − γ ). (23)

Then μ0 ∈ �(γ, q) achieves the capacity if and only if
there exists λ ≥ 0 such that λEμ0

{
X2 − γ

} = 0 and
Eμ { fλ(X; μ0)} ≤ 0 for all μ ∈ �(q).

We call x ∈ R a point of increase of a measure μ if
μ(O) > 0 for every open subset O of R containing x . Let Sμ
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be the set of points of increase of μ. Based on Lemma 2,
we establish another sufficient and necessary condition for
the optimal input distribution, which will be used to prove
Property (c) of Theorem 1 in Section IV-C.

Lemma 3: Let

gλ(x; μ) = q fλ(0; μ) + (1 − q) fλ(x; μ). (24)

Then μ0 ∈ �(γ, q) achieves the capacity if and only if there
exists λ ≥ 0 such that for every x ∈ R,

gλ(x; μ0) ≤ 0 . (25)

Furthermore, gλ(x; μ0) = 0 for every x ∈ Sμ0 \{0}.
In order to prove Lemma 2 and Lemma 3, we first derive

some auxiliary technical results as follows. Let φ(·) defined
in (14) be extended to the complex plane C. The relative
entropy d(x; μ) defined in (16) can be extended to the complex
plane C and has the following property:

Lemma 4: For any μ ∈ �(q) and z ∈ C,

d(z; μ) =
∫ ∞

−∞
φ(y − z) log

φ(y − z)

pY (y; μ)
dy (26)

is a holomorphic function of z on C. Consequently, d(x; μ)
is a continuous function of x on R.

Proof: It can be shown that
∫∞
−∞ φ(y−z) log φ(y−z)dy is

a constant, thus a holomorphic function of z on C. Therefore,
it remains to prove that

ξ(z) =
∫ ∞

−∞
φ(y − z) log pY (y; μ)dy (27)

is a holomorphic function of z on C.
First, by Jensen’s inequality, we have

pY (y; μ) = Eμ

{
1√
2π

e− (y−X)2

2

}
(28)

≥ 1√
2π

e− 1
2 Eμ

{
(y−X)2

}
(29)

= e− 1
2 y2−ay−b (30)

where a = −Eμ {X} and b = 1
2

(
Eμ

{
X2

} + log(2π)
)

are real
numbers due to the fact that μ ∈ �(q). Thus, pY (y; μ) ∈
[e− 1

2 y2−ay−b, 1], i.e.,

| log PY (y; μ)| ≤ 1

2
y2 + ay + b. (31)

As a result, we have

|φ(y − z) log pY (y; μ)|
≤ 1√

2π

∣∣∣∣e
− (y−z)2

2

∣∣∣∣
(

1

2
y2 + ay + b

)
(32)

= 1√
2π

e− (y−Re(z))2−Im2(z)
2

(
1

2
y2+ay+b

)
, (33)

which is integrable. (Here Re(z) and Im(z) represent the real
and imaginary parts of z, respectively.) It follows that ξ(z)
given by (27) exists for any μ ∈ �(q) and z ∈ C.

Suppose U is an open and bounded subset of C. There exists
an r > 0 such that |Re(z)| ≤ r and |Im(z)| ≤ r for all z ∈ U .

It is easy to check that

e− (y−Re(z))2

2 ≤ e− y2

2 +|yr | (34)

≤ e− y2

2 +yr + e− y2

2 −yr (35)

= e
r2
2

[
e− 1

2 (y−r)2 + e− 1
2 (y+r)2

]
. (36)

Combining (33) and (36) yields that

|φ(y − z) log pY (y; μ)|
≤ er2

√
2π

[
e− 1

2 (y−r)2 + e− 1
2 (y+r)2

](1

2
y2+ay+b

)
, (37)

which is integrable. Therefore, we can say that the integral∫∞
−∞ φ(y − z) log pY (y; μ)dy is uniformly convergent for all

z ∈ U . Moreover, φ(y − z) log pY (y; μ) is a holomorphic
function of z on U for each y ∈ R. According to the
differentiation lemma [20], ξ(z) is a holomorphic function of
z on U . It follows that ξ(z) is holomorphic on the whole
complex plane C. Lemma 4 is thus established.

Let F(μ) be a real-valued function defined on the convex
set �(q) and μ0 ∈ �(q). Define the weak derivative of F(μ)
at μ0 as

F ′
μ0

(μ) = lim
θ→0+

F ((1 − θ)μ0 + θμ) − F(μ0)

θ
(38)

whenever the limit exists. The following result, which finds
its parallel in [7], [10] and [11] gives the weak derivative of
the mutual information function I (μ).

Lemma 5: For μ ∈ �(q), the weak derivative of the mutual
information function I (μ) at μ0 is

I ′
μ0

(μ) =
∫

d(x; μ0) μ(dx) − I (μ0). (39)

Proof: Define μθ = (1 − θ)μ0 + θμ for all θ ∈ (0, 1]. It
can be shown that

1

θ
(I (μθ ) − I (μ0))

= 1

θ

∫
(d(x; μθ) − d(x; μ0)) μθ (dx)

+ 1

θ

(∫
d(x; μ0) μθ (dx) − I (μ0)

)
(40)

= − 1

θ

∫ ∞

−∞
pY (y; μθ) log

pY (y; μθ)

pY (y; μ0)
dy

+
∫

d(x; μ0) μ(dx) − I (μ0). (41)

Therefore, it suffices to show that

lim
θ→0+

∫ ∞

−∞
1

θ
pY (y; μθ) log

pY (y; μθ)

pY (y; μ0)
dy = 0. (42)

In the remainder of this proof, we find a function indepen-
dent of θ that dominates the integrand so that dominated con-
vergence theorem can be used to establish (42) by exchanging
the order of the limit and the integral therein.

Lemma 6: Let θ, a, b ∈ (0, 1]. Define

f (θ) = (1 − θ)a + θb

θ
log

(1 − θ)a + θb

a
, (43)
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then

| f (θ)| ≤ b + a − b log b − b log a . (44)

Proof: It is easy to check that f (1) = b log b
a , f (0+) =

b − a and

f ′(θ) = b − a

θ
− a

θ2 log

(
1 − θ + b

a
θ

)
. (45)

Define g(θ) = θ(b − a) − a log
(
1 − θ + b

a θ
)

for θ ∈ (0, 1],
then we have

g′(θ) = θ(b − a)2

(1 − θ)a + θb
≥ 0. (46)

Since g(0+) = 0, g(θ) ≥ 0 for all θ ∈ (0, 1]. According
to (45), we have f ′(θ) = g(θ)

θ2 ≥ 0. It follows that for all
θ ∈ (0, 1],

b − a = f (0+) ≤ f (θ) ≤ f (1) = b log
b

a
, (47)

and hence

| f (θ)| ≤ max

{
|b − a|,

∣∣∣∣b log
b

a

∣∣∣∣
}

(48)

≤ b + a − b log b − b log a. (49)

Lemma 6 is thus established.
Applying Lemma 6 with a = pY (y; μ0) and b = pY (y; μ),

we have
∣∣∣∣
1

θ
pY (y; μθ) log

pY (y; μθ)

pY (y; μ0)

∣∣∣∣ ≤ pY (y; μ) + pY (y; μ0)

−pY (y; μ) log pY (y; μ) − pY (y; μ) log pY (y; μ0) (50)

where the right hand side is an integrable function of y by
the result that − ∫∞

−∞ pY (y; μ2) log pY (y; μ1)dy < ∞ for any
μ1, μ2 ∈ �(q). In fact, as in the proof of Lemma 4 (see (31)),
there exist a, b ∈ R such that | log pY (y; μ1)| ≤ 1

2 y2 +ay +b.
Therefore,
∫ ∞

−∞
|pY (y; μ2) log pY (y; μ1)|dy

≤
∫ ∞

−∞
pY (y; μ2)

(
1

2
y2 + ay + b

)
dy (51)

= 1

2
Eμ2

{
X2

}
+ aEμ2 {X} + b + 1

2
(52)

< ∞ (53)

due to the assumption that μ2 ∈ �(q).
Therefore, the dominated convergence theorem provides

that

lim
θ→0+

1

θ

∫ ∞

−∞
pY (y; μθ) log

pY (y; μθ)

pY (y; μ0)
dy

=
∫ ∞

−∞
lim

θ→0+
1

θ
pY (y; μθ) log

pY (y; μθ)

pY (y; μ0)
dy (54)

=
∫ ∞

−∞
(pY (y; μ) − pY (y; μ0)) dy (55)

= 0. (56)

Lemma 5 is thus proved.
We next prove Lemmas 2 and 3.

Proof of Lemma 2: Define the Lagrangian

J (μ) = I (μ) − λEμ

{
X2 − γ

}
(57)

where λ is the Lagrange multiplier. Since �(q) defined in (22)
is a convex set and I (μ) < ∞ on �(q), μ0 is capacity-
achieving if and only if there exists λ ≥ 0 such that the
following conditions hold [21]:

(i) λEμ0

{
X2 − γ

} = 0;
(ii) for all μ ∈ �(q), J (μ0) ≥ J (μ).

Due to concavity of I (μ), J (μ) is also concave. Condition (ii)
is then equivalent to that the weak derivative J ′

μ0
(μ) ≤ 0 for

all μ ∈ �(q).
By Lemma 5, the linearity of Eμ

{
X2 − γ

}
with respect to

(w.r.t.) μ and Condition (i), J ′
μ0

(μ) can be easily calculated
as

J ′
μ0

(μ) = Eμ { fλ(X; μ0)} . (58)

Therefore, Condition (ii) is equivalent to Eμ { fλ(X; μ0)} ≤ 0
for all μ ∈ �(q). Thus Lemma 2 follows.

Up to this point, the results in Lemmas 2, 4 and 5 hold in
general with �(q) replaced by any set of distributions with
finite power. The duty cycle constraint is only used in the
proof of Lemma 3 in the following.

Proof of Lemma 3: The necessity part is shown as fol-
lows. Suppose μ0 achieves the capacity, then by Lemma 2,
there exists λ ≥ 0 such that λEμ0

{
X2 − γ

} = 0 and
Eμ { fλ(X; μ0)} ≤ 0 for all μ ∈ �(q). For any x ∈ R\{0},
choose μ such that μ({0}) = q and μ({x}) = 1 − q , so by the
fact that μ ∈ �(q), we have

0 ≥ Eμ { fλ(X; μ0)} = q fλ(0; μ0) + (1 − q) fλ(x; μ0). (59)

Due to the continuity of d(x; μ0) by Lemma 4, fλ(x; μ0)
is also continuous so that (59) holds for all x ∈ R, i.e.,
gλ(x; μ0) ≤ 0 for every x ∈ R.

To finish proving the necessity, it suffices to show that
gλ(x; μ0) = 0 for all x ∈ Sμ0 \{0}. Evidently, gλ(0; μ0) =
fλ(0; μ0) and by (17) and λEμ0

{
X2 − γ

} = 0,
∫

fλ(x; μ0) μ0(dx) = 0 . (60)

Hence,
∫

R\{0}
gλ(x; μ0) μ0(dx)

=
∫

gλ(x; μ0) μ0(dx) − gλ(0; μ0)μ0({0}) (61)

≥ q fλ(0; μ0)+(1 − q)

∫
fλ(x; μ0) μ0(dx)−q fλ(0; μ0) (62)

= 0. (63)

Since gλ(x; μ0) ≤ 0 for every x ∈ R, (63) implies that on
R\{0}, gλ(x; μ0) = 0 μ0-almost surely, so that gλ(x; μ0) = 0
for all x ∈ Sμ0\{0} follows immediately.

The sufficiency part of Lemma 3 is established as follows.
Suppose gλ(x; μ0) ≤ 0 for every x ∈ R. By integrating
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gλ(x; μ0) w.r.t. μ0, we have

qgλ(0; μ0) ≥
∫

gλ(x; μ0) μ0(dx) (64)

= qgλ(0; μ0) − (1 − q)λEμ0{X2 − γ } (65)

≥ qgλ(0; μ0) (66)

where (65) is due to (17) and gλ(0; μ0) = fλ(0; μ0), and (66)
follows from Eμ0

{
X2

} ≤ γ since μ0 ∈ �(γ, q). Hence,
λEμ0

{
X2 − γ

} = 0 due to the fact that q < 1. Furthermore,
for any μ ∈ �(q), by integrating gλ(x; μ0) w.r.t. μ, we have

qgλ(0; μ0) ≥
∫

gλ(x; μ0) μ(dx) (67)

= q fλ(0; μ0) + (1 − q)Eμ { fλ(x; μ0)} . (68)

Because gλ(0; μ0) = fλ(0; μ0) and q < 1, we have
Eμ { fλ(X; μ0)} ≤ 0. Together with λEμ0

{
X2 − γ

} = 0 and
Lemma 2, this implies that μ0 must be capacity-achieving.

C. Discreteness of μ0

With Lemma 3 established, we now prove Property (c) in
Theorem 1.

Let λ ≥ 0 satisfy condition (25) and d(z; μ) be defined
in (26). We extend functions fλ(x; μ) in Lemma 2 and
gλ(x; μ) in Lemma 3 to be defined on the whole complex
plane C as (23) and (24), respectively, with x replaced by
z ∈ C. By Lemma 4, d(z; μ) is a holomorphic function of
z on C, hence so is gλ(z; μ). According to Lemma 3, each
element in the set Sμ0\{0} is a zero of the function gλ(z; μ0).

Next we show that for any bounded interval L of R, Sμ0

⋂
L

is a finite set. Suppose, to the contrary, Sμ0

⋂
L is infinite,

then it has a limit point in R by the Bolzano-Weierstrass
Theorem [20] and hence, gλ(z; μ0) = 0 on the whole complex
plane C by the Identity Theorem [22]. Then, by (16), (23)
and (24), for every x ∈ R,∫ ∞

−∞
φ(y − x)r(y)dy = 0 (69)

where

r(y) = log pY (y; μ0) + λy2 + c (70)

and c = 1
2 log(2πe)+ 1

1−q (I (μ0) − qd(0; μ0) − λγ ) −λ is a
constant.

As in the proof of Lemma 4, there exist a, b ∈ R such
that | log pY (y; μ0)| ≤ 1

2 y2 + ay + b. As a result, there
exist some α, β > 0 such that |r(y)| ≤ αy2 + β. Since
the convolution of r(y) and the Gaussian density is equal to
the zero function by (69), r(y) must be the zero function
according to [11, Corollary 9]. This requires the capacity-
achieving output distribution pY (y; μ0) be Gaussian, which
cannot be true unless X is Gaussian, which contradicts the
assumption that X has a probability mass at 0. Therefore,
Sμ0

⋂
L must be a finite set for any bounded interval L, which

further implies that Sμ0 is at most countable.
Finally, we show that Sμ0 is countably infinite. Suppose, to

the contrary, Sμ0 = {xi }M
i=1 is a finite set with μ0({xi }) = pi

and |xi | ≤ B1 for all i = 1, 2, . . . , N . For any y > B1,

pY (y; μ0) =
M∑

i=1

piφ(y − xi ) ≤ e− (y−B1)2

2 . (71)

For any ε > 0, choose B2 > 0 such that
∫ B2
−B2

φ(x)dx > 1−ε.
By (16), (23), (24) and (25), for any x > B1 + B2, we have

0 ≥ −
∫ ∞

−∞
φ(y − x) log pY (y; μ0)dy − λx2 − (c + λ) (72)

≥
∫ x+B2

x−B2

φ(y − x)
1

2
(y − B1)

2dy − λx2 − (c + λ) (73)

=
∫ B2

−B2

φ(t)
1

2
(x − B1 + t)2dt − λx2 − (c + λ) (74)

≥ 1

2
(x − B1)

2(1 − ε) − λx2 − (c + λ). (75)

For (75) to hold for large x , λ must satisfy λ ≥ 1
2 .

To finish the proof, it suffices to show that λ < 1/2
for any γ > 0, so that contradiction arises, which implies
that Sμ0 must be countably infinite. For fixed q ∈ (0, 1),
denote the Lagrange multiplier in (25) as λ(γ ). Denote
CG(γ ) = 1/2 log(1 + γ ), which is the channel capacity of a
Gaussian channel with the average power constraint only. By
the envelope theorem [21], λ(γ ) is the derivative of C(γ, q)
w.r.t. γ . Since C(0, q) = CG(0) = 0 and the derivative of
CG(γ ) at γ = 0 is 1/2, we have λ(0) ≤ 1/2, otherwise
we could find a small enough γ such that C(γ, q) would
exceed CG(γ ) which is obviously impossible. Next we show
that C(γ, q) is strictly concave for γ ≥ 0. Suppose μ1 and
μ2 are the capacity-achieving input distributions of (5) for
different power constraints γ1 and γ2, respectively. Due to
Property (b) in Theorem 1, μ1 and μ2 must be different. Define
μθ = θμ1 + (1 − θ)μ2 for θ ∈ (0, 1). It is easy to see that μθ

satisfies that the duty cycle is no greater than 1 − q and the
average input power is no greater than θγ1 + (1 − θ)γ2. Now
we have

C(θγ1 + (1 − θ)γ2, q) ≥ I (μθ ) (76)

> θ I (μ1) + (1 − θ)I (μ2) (77)

= θC(γ1, q) + (1 − θ)C(γ2, q), (78)

where (77) is due to the strict concavity of I (μ). Therefore, the
strict concavity of C(γ, q) for γ ≥ 0 follows, which implies
that λ(γ ) < λ(0) ≤ 1/2 for all γ > 0.

V. PROOF OF THEOREM 2 (THE CASE OF REALISTIC

DUTY CYCLE CONSTRAINT)

A. Stationarity of the Capacity-Achieving Input Distribution

We first establish the fact that a stationary distribution
achieves the capacity of the AWGN channel (1) with the
realistic duty cycle constraint and power constraint.

Proposition 1: A stationary distribution1 achieves

max
μ∈�n (γ ,q,c)

I (Xn; Y n). (79)

1The stationarity of distribution ν on Xn satisfies

νXs ,··· ,Xt = νXs+k ,··· ,Xt+k

for any index s, t, k satisfied

1 ≤ s ≤ t ≤ n 1 ≤ s + k ≤ t + k ≤ n
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Proof: Let Tk(·) as a k-cyclic-shift operator on μ ∈
�n(γ, q, c), defined as

Tk(μ) = μXk+1,··· ,Xn,X1,···Xk (80)

where k = 1, · · · , n − 1, and specifically T0(μ) = μ. For any
distribution μ in �n(γ, q, c), a distribution ν on Xn can be
defined as

ν = 1

n

n−1∑

k=0

Tk(μ). (81)

According the concavity of the mutual information I (·),

I (ν) = I

(
1

n

n−1∑

k=0

Tk(μ)

)
(82)

≥ 1

n

n−1∑

k=0

I (Tk(μ)) (83)

= I (μ) (84)

where I (Tk(μ)) = I (μ) since the AWGN channel (1) is
memoryless and time-invariant. Obviously ν is a stationary
distribution and satisfies the duty cycle constraint and power
constraint, i.e., ν ∈ �n(γ, q, c), hence Proposition 1 is
established.

According to Proposition 1, for any n, I (Xn; Y n) is maxi-
mized by a stationary distribution. Therefore as n → ∞, the
capacity in (9) is achieved by a stationary input distribution.

B. Input-output Mutual Information

Proposition 2: Let the input follow a stationary distribution
μ ∈ �(γ, q, c). The limit of the input-output mutual informa-
tion per symbol as a function of μ can be expressed as

I (μ) = I (X; Y ) − h(Y ) + h(Y ) (85)

where I (X; Y ) is the mutual information of the AWGN chan-
nel between the input X , which follows distribution μX1 and
the corresponding output Y , h(Y ) is the differential entropy
of Y and h(Y ) is the differential entropy rate of output
process {Yi }.

Proof: The mutual information between Xn and Y n can
be expressed using relative entropies

I (Xn; Y n) = D(PY n |Xn ‖PY n |PXn ) (86)

= D(PY n |Xn ‖PY1 × · · · × PYn |PXn )

−D(PY n ‖PY1 × · · · × PYn ) (87)

=
n∑

k=1

D(PYk |Xk ‖PYk |PXn )

−E

{
log PY n (Y n) −

n∑

i=1

log PYi (Yi )

}
(88)

= nI (X; Y ) − nh(Y ) + h(Y n). (89)

Then

I (μ) = lim
n→∞

1

n
I (Xn; Y n) (90)

= I (X; Y ) − h(Y ) + lim
n→∞

1

n
h(Y n) (91)

= I (X; Y ) − h(Y ) + h(Y ). (92)

Proposition 2 is established.
When the input is an i.i.d. random process, the output

process is also i.i.d., h(Y ) = h(Y ). This implies the following
corollary.

Corollary 1: Among all i.i.d. distributions, the one that
maximizes the mutual information under duty cycle constraint
(q, c) and average power constraint γ can be solved from the
following optimization:

maximize
PX

I (X; Y ) (93)

subject to PX (0) − 2cPX (0)(1 − PX (0)) ≥ q, (94)

E
{

X2
}

≤ γ. (95)

In the special case of no transition cost, i.e., c = 0, the result
of (93) is equal to that of (5).

C. Proof of Theorem 2

The mutual information expressed by (85) is hard to opti-
mize, even if the input is restricted to Markov processes. To
simplify the matter, we introduce a lower bound of I (μ),
which is given by L(μ) in (11). In order to finish the proof of
Theorem 2, we separate Property (b) into three parts: 1) the
achievability part, i.e., the maximum of L(·) is achieved by
some input distribution in �(γ, q, c), denoted by μ∗; 2) the
Markov part, i.e., μ∗ is a first-order Markov process; and
3) the discrete part, i.e., the stationary distribution of μ∗ is
discrete. In the following, the proof of Property (a) is first
presented, then, assuming the existence of the maximizer μ∗,
we show that it must be a discrete first-order Markov chain
with Property (c), and finally the existence of μ∗ is established
to complete the proof of Theorem 2.

Property (a): Using the fact that processing reduces
relative entropy and μ is specified as a stationary probability
distribution, we have

1

n
D(PY n ‖PY1 ×PY2 ×· · ·×PYn )

≤ 1

n
D(PXn ‖PX1 ×PX2 ×· · ·×PXn ) (96)

= 1

n

n−1∑

k=1

D(PXk |Xn
k+1

‖PXk |PXn
k+1

) (97)

= 1

n

n∑

k=2

I (X1; Xk
2). (98)

Therefore

lim
n→∞

1

n
D(PY n ‖PY1 ×PY2 ×· · ·×PYn ) ≤ I (X1; X∞

2 ) (99)

using the fact that the Cesáro mean of sequence I (X1, Xk
2) is

I (X1; X∞
2 ). Applying (85), (87) and (99),

L(μ) = I (X; Y ) − I (X1; X∞
2 ) ≤ I (μ) ≤ C(γ, q, c). (100)

Thus Property (a) is established.
In the following, we assume that the maximum of the lower

bound L(·) is achieved, the proof of which is deferred to the
end of this section.
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The Markov part in Property (b): For any μ ∈ �(γ, q, c),
which is not Markov in general, its first-order Markov coun-
terpart ν is defined by

νX1,··· ,Xn = μX1μX2|X1μX3|X2 · · · μXn |Xn−1 . (101)

Evidently, ν and μ have identical marginal distributions:
νXi = μXi , and also identical joint distributions of all
consecutive pairs: νXi ,Xi+1 = μXi ,Xi+1 . Therefore

νXi ({0}) = μXi ({0}) (102)

and

νXi ,Xi+1 ({xi = 0, xi+1 �= 0})
= μXi ,Xi+1({xi = 0, xi+1 �= 0}). (103)

Since μ ∈ �(γ, q, c), we have ν ∈ �(γ, q, c). Let {Xi } follow
distribution μ and {Zi } follow distribution ν. Then

I (Z1; Z∞
2 ) = I (Z1; Z2) + I (Z1; Z∞

3 |Z2) (104)

= I (Z1; Z2) (105)

= I (X1; X2) (106)

≤ I (X1; X∞
2 ) (107)

where equality holds if and only if {Xi } is a first-order Markov
process. By (11) and (107), L(ν) ≥ L(μ). So for any μ
which maximizes L(μ), ν can be generated from μ by (101)
with L(ν) ≥ L(μ). Therefore, the maximum of L(μ) can be
achieved by a first-order Markov process.

Property (c): Suppose ν is a stationary first-order Markov
process, and it can be sufficiently denoted as ν = {X , PX2|X1},
where X is the state space of ν and PX2|X1 is the transi-
tion probability distribution. Define a new first-order Markov
process ν̄ from ν as follows.

Definition 1: Let ν̄, defined on the same state space X as ν,
be a first-order Markov process denoted by (X , PZ2|Z1), where

PZ2|Z1(z2|z1) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

α z1 = 0 z2 = 0,

1 − β z1 �= 0 z2 = 0,
1 − α

η
PX (z2) z1 = 0 z2 �= 0,

β

η
PX (z2) z1 �= 0 z2 �= 0,

(108)

where

S1 = X \ {0} (109)

and

α = PX2|X1(0|0) (110)

β = P(X2 ∈ S1|X1 ∈ S1) (111)

η = P(X ∈ S1). (112)

The process ν̄ is described by (X , α, β, PX ), where PX is
the stationary distribution of ν. It is easy to prove that the
stationary distribution PZ of ν̄ is equal to PX . Moreover, ν̄
satisfies the same power and duty cycle constraint ν satisfies,
i.e., ν̄ ∈ �(γ, q, c). Furthermore, let Bi = 1{Zi �=0}, then

PB2|B1(0|0) = α (113)

PB2|B1(1|1) = β. (114)

From (108) to (114) we have,

PZ2|Z1(z2|z1) = PB2|B1(b2|b1)
PZ2(z2)

PB2(b2)
, (115)

so Zi and Zi+1 are independent given Bi and Bi+1.
Based on (115), it is easy to see that

I (Z1; Z2) = E
{

log
PZ2|Z1(z2|z1)

PZ2(z2)

}
(116)

= E
{

log
PB2|B1(b2|b1)

PB2(b2)

}
(117)

= I (B1; B2) (118)

≤ I (X1; X2). (119)

The inequality in (119) follows since X1 → X2 → B2
forms a Markov chain then I (X1; B2) ≤ I (X1; X2) [23]
and B2 → X1 → B1 also forms a Markov chain then
I (B2; B1) ≤ I (B2; X1).

Therefore, by (11), we have L(ν̄) ≥ L(ν). So for any ν
which maximizes L(ν), ν̄ can be generated from ν by (108)
with L(ν̄) ≥ L(ν). Therefore, the maximum of L(μ) can be
achieved by a first-order Markov process with Property (c).

The discreteness part in Property (b): The discreteness
of the optimized input distribution which maximizes L(·)
is proved in the following. According to the Markov part
in Property (b) and Property (c), the lower bound L(·) is
maximized by a first-order Markov process, the transition
probability distribution of which PX2|X1 can be expressed as

PX2|X1(x2|x1) = PB2|B1(b2|b1)
PX (x2)

PB2(b2)
(120)

where Bi = 1{Xi �=0}. Then the maximum of L(μ) can be
achieved by the following optimization

maximize
q0

IX (q0) − IB(q0) (121)

subject to IX (q0) = max
PX

I (X; Y ) (122)

IB(q0) = min
P(B2|B1)

I (B1; B2) (123)

PX (0) = PB1(0) = PB2(0) = q0 (124)

q0 − 2cq0 PB2|B1(1|0) ≥ q. (125)

Since given any q0 ≥ q > 0, IX (q0) − IB(q0) can be
maximized by the maximum of IX (q0) and the minimum
of IB(q0), respectively. Suppose the maximum of (121) is
achieved by q0 = q∗

0 . Obviously if q∗
0 = 1, the input

distribution has only one probability mass at zero which is
discrete. In the following, we consider the case q∗

0 < 1.
The maximum of (121) must be achieved by PX , which
maximizes I (X; Y ) for q0 = q∗

0 . Therefore, the maximization
in (122) is similar to the problem in Theorem 1. The difference
to Theorem 1 is that the distribution PX in (122) satisfies
PX (0) = q∗

0 , whereas in Theorem 1 the distribution PX

satisfies PX (0) ≥ q . Define

�0(γ, q∗
0 ) = {

μ : μ({0}) = q∗
0 , Eμ

{
X2

} ≤ γ
}

(126)

where μ is the marginal input distribution of the first-
order Markov process. We can establish the following
lemma.



1624 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 3, MARCH 2014

Lemma 7: �0(γ, q∗
0 ) is compact in the topological space P .

Proof: As mentioned in Lemma 1, the topology of
weak convergence on P is metrizable with the Lévy-Prohorov
metric [17] and defined as

π(μ, ν) = inf
{
δ : μ(A) ≤ ν(A(δ)) + δ and

ν(A) ≤ μ(A(δ)) + δ for all A ⊆ B} (127)

for any μ, ν ∈ P , where

A(δ) =
{∅, A = ∅;

{x : infa∈A |x − a| < δ} , otherwise.
(128)

Similarly as in the proof of Lemma 1, it suffices to show
that �0(γ, q∗

0 ) is both tight and closed in P . The tightness
can be shown by the same arguments as in Lemma 1. In the
following, we prove that �0(γ, q∗

0 ) is closed in P .
Let Bm = [−1/m, 1/m] for m = 1, 2, . . . . Let {μn}∞n=1 be

a convergent sequence in �0(γ, q∗
0 ) with limit μ0. For any

m ∈ N, there exists an n(m) such that π(μn, μ0) < 1/m for
all n > n(m). By the definition of π in (127), we have for
any m ∈ N and n > n(m),

μ0({0}) ≤ μn(Bm) + 1

m
, (129)

and

μn({0}) ≤ μ0(Bm) + 1

m
. (130)

For any n ∈ N
⋃{0}, we have

μn({0}) = μn

( ∞⋂

m=1

Bm

)
= lim

m→∞ μn(Bm), (131)

so for any m ∈ N, there exists an n′(m) such that μn(Bm) ≤
μn({0}) + 1

m for all n > n′(m). Therefore, according
to (129), (130) and the fact that μn({0}) = q∗

0 for n ∈ N,
for all m ∈ N and n > max{n(m), n′(m)},

q∗
0 − 2

m
≤ μ0({0}) ≤ q∗

0 + 2

m
. (132)

Thus we have μ0({0}) = q∗
0 by letting m → ∞.

Moreover, let f (x) = x2 which is continuous and bounded
below. By weak convergence [17, Section 3.1], we have

Eμ0

{
X2

}
=
∫

f dμ0 ≤ lim inf
n→∞

∫
f dμn ≤ γ. (133)

Together with μ0({0}) = q∗
0 , we have μ0 ∈ �0(γ, q∗

0 ),
i.e., �0(γ, q∗

0 ) is closed, and the compactness of �0(γ, q∗
0 )

follows.
Now PX can be proved to be discrete by following the same

development as in the proof of Theorem 1 with Lemma 1 sub-
stituted by Lemma 7. Because PX is the stationary distribution
of the Markov process, the maximum of the lower bound L(·)
is achieved by a discrete first-order Markov process.

The achievability part of Property (b): As shown above,
the maximum of L(μ) is achieved by the optimization problem
in (121) to (125). In the following, we prove that IX (q0)
in (122) and IB(q0) in (123) are continuous functions of q0
on closed interval [q, 1].

First we show that IX (q0) is continuous on [q, 1]. As in
Section IV, define the mutual information I (μ) = I (X; Y )
for all μ ∈ P . For fixed γ , we rewrite �0(γ, q0) in (126) as
�(q0), which is a compact-valued correspondence from [q, 1]
to P according to Lemma 7. Since I (μ) is continuous on P
[19, Theorem 9], I (μ) is also a continuous function defined
on [q, 1] × P . In order to apply the maximum theorem
[24, Theorem 9.14] to establish the continuity of IX (q0), it
suffices to show that the correspondence � is continuous (i.e.,
both upper and lower hemicontinuous) on [q, 1].

We first prove that � is upper hemicontinuous. To this
end, assume that qn

0 → q0
0 holds in [q, 1] and μn ∈

�(qn
0 ) for each n = 1, 2, . . . . It suffices to show that there

exists a subsequence {μnk }∞k=1 of {μn}∞n=1 that converges to
some point μ0 ∈ �(q0

0 ) [24, Proposition 9.8]. Since μn ∈{
μ : Eμ

{
X2

} ≤ γ
}

which is compact in P by similar proof
as in Lemma 1, it has a convergent subsequence {μnk }∞k=1
with limit μ0 satisfying Eμ0

{
X2

} ≤ γ . Therefore, it remains
to show that μ0({0}) = q0

0 to complete the proof of the
upper hemicontinuity of �. Similarly as in Lemma 7, let
Bm = [− 1

m , 1
m

]
for m = 1, 2, . . . . For any m ∈ N, there

exists an n(m) such that π(μnk , μ0) < 1
m for all nk > n(m),

where π is defined in (127). Therefore, we have for any m ∈ N

and nk > n(m),

μ0({0}) ≤ μnk (Bm) + 1

m
, (134)

and

μnk ({0}) ≤ μ0(Bm) + 1

m
. (135)

For any n ∈ {nk}∞k=1

⋃{0}, we have

μn({0}) = μn

( ∞⋂

m=1

Bm

)
= lim

m→∞ μn(Bm), (136)

so for any m ∈ N, there exists an n′(m) such that μn(Bm) ≤
μn({0}) + 1

m for all n > n′(m). Therefore, according to (134)
and (135), for all m ∈ N and nk > max{n(m), n′(m)},

qnk
0 − 2

m
≤ μ0({0}) ≤ qnk

0 + 2

m
. (137)

Thus, due to the assumption that qnk
0 → q0

0 , we have
μ0({0}) = q0

0 by letting m → ∞.
Next we establish the lower hemicontinuity of �. To this

end, assume that qn
0 → q0

0 holds in [q, 1] and μ0 ∈ �(q0
0 ).

It suffices to show that there exists a subsequence {qnk
0 }∞k=1

of {qn
0 }∞n=1 and μnk ∈ �(qnk

0 ) for each k = 1, 2, . . . such that
μnk converges to μ0 in P [24, Proposition 9.9]. Let ν1, ν2 ∈ P
satisfy ν1({0}) = 1 and ν2({0}) = q, ν2({√γ }) = 1 − q ,
respectively. For all n = 1, 2, . . . , define

μn =

⎧
⎪⎨

⎪⎩

1−qn
0

1−q0
0
μ0 + qn

0 −q0
0

1−q0
0

ν1, qn
0 ≥ q0

0 , q0
0 < 1;

qn
0 −q

q0
0−q

μ0 + q0
0 −qn

0
q0

0−q
ν2, qn

0 ≤ q0
0 , q0

0 > q.
(138)



ZHANG et al.: CAPACITY OF GAUSSIAN CHANNELS WITH DUTY CYCLE AND POWER CONSTRAINTS 1625

It is easy to check that Eμn

{
X2

} ≤ γ and μn({0}) = qn
0 ,

thus μn ∈ �(qn
0 ). It is also easy to check that

∫
f dμn →∫

f dμ0 for any bounded and continuous function f . Thus
μn weakly converges to μ0 [17, Section 3.1], and the lower
hemicontinuity of � follows.

Next we show that IB(q0) in (123) is continuous on [q, 1].
Define τ = PB2|B1(1|0). By the stationary property and (125),
τ must satisfy

0 ≤ τ ≤ min

{
1,

q0 − q

2cq0
,

1 − q0

q0

}
. (139)

Denote a compact-valued correspondence � from [q, 1] to R

such that �(q0) =
[
0, min

{
1, q0−q

2cq0
, 1−q0

q0

}]
. � is a continu-

ous correspondence on [q, 1] according to [25, Theorem A.1].
Define a continuous function H̄2(·) on R which extends the
binary entropy function as follows:

H̄2(x)=
{

−x log(x)−(1−x) log(1−x), 0< x <1;
0, otherwise.

(140)

Define function f (q0, τ ) on [q, 1] × R as

f (q0, τ )

=
{
H̄2(q0) − q0 H̄2(τ )−(1 − q0)H̄2

(
τq0
1−q0

)
, q0 <1;

0, q0 =1.
(141)

It is easy to see that f (q0, τ ) is continuous on [q, 1]× R and
I (B1; B2) in (123) equals to f (q0, τ ) whenever q0 ∈ [q, 1]
and τ satisfies (139). The continuity of IB(q0) on [q, 1] then
follows by the maximum theorem [24, Theorem 9.14].

Because IX (q0) and IB(q0) are continuous on [q, 1], the
maximum of (121) can be achieved by some q∗

0 ∈ [q, 1].
Also from the derivation above, IX (q∗

0 ) is achieved by some
distribution μ∗ ∈ �(q∗

0 ) since I (X; Y ) = I (μ) is continuous
on the compact set �(q∗

0 ). Similarly, IB(q∗
0 ) is achieved by

some τ ∗ ∈ �(q∗
0 ) since I (B1; B2) = f (q∗

0 , τ ) is continuous
on the compact set �(q∗

0 ). Thus the achievability part of
Property (b) follows.

Based on Theorem 2, in order to find the lower bound of
the capacity, we can maximize L(μ) and obtain an optimized
discrete first-order Markov input μ∗ = {X , α, β, PX } in
�(γ, q, c). Let μ0 denote the capacity-achieving distribution,
then

I (μ0) ≥ I (μ∗) ≥ L(μ∗). (142)

In Section VI-A, we develop a computationally efficient
scheme to determine μ∗, the rate achieved by which is an
approximation of the capacity.

VI. NUMERICAL METHODS AND RESULTS

A. Computation of the Entropy of Hidden Markov Processes

In order to numerically calculate the mutual informa-
tion (85), it is important to compute the differential entropy
rate of a HMP generated by Markov input through the AWGN
channel. Computing the (differential) entropy rate of HMPs
is a hard problem. Most works in this area focus on the
entropy rate of the binary Markov input through various

channels. Reference [26] solves a linear system for the sta-
tionary distribution of the quantized Markov process to obtain
a good approximation of the entropy rate for the HMP output
generated by binary Markov input through a binary symmetric
channel. In [27], the entropy rate of HMP generated by
binary-symmetric Markov input through arbitrary memoryless
channels is studied and a numerical method is presented based
on quantizing a fixed-point functional equation. Based on
these existing studies, a Monte Carlo algorithm is provided
in this paper to compute the differential entropy rate of HMPs
generated from a m-state Markov chain (m ≥ 3) through the
AWGN channel. We sketch the main ideas in our algorithm
for computing the differential entropy rate in this subsection.

Based on Blackwell’s work [28], the entropy of HMPs
can be expressed as an expectation on the distribution of
the conditional distribution of X0 given the past observations
Y 0−∞. In order to estimate PX0|Y 0−∞ , first define the log-
likelihood ratio:

L(i)
n = log

PXn |Y n (x (i)
∣∣Y n)

PXn |Y n (x (0)
∣∣Y n)

, i = 0, 1, · · · , m − 1 (143)

where m is the number of the states of Markov Chain,
x (i) ∈ X is the i th state and X is the state space of
Markov Chain. It is obviously that L(0)

n = 0. Then given
Ln =

(
L(0)

n , L(1)
n , · · · , L(m−1)

n

)
, PXn |Y n can be calculated as

PXn |Y n (x (i)
∣∣Y n) = eL(i)

n

∑m−1
i=0 eL(i)

n

(144)

and when n → ∞, (144) converges to PX0|Y 0−∞ .

In addition, L(i)
n+1 can be calculated from Ln iteratively as

L(i)
n+1 = log

PXn+1|Y n+1
1

(x (i)
∣∣Y n+1

1 )

PXn+1|Y n+1
1

(x (0)
∣∣Y n+1

1 )
(145)

= log
PYn+1|Xn+1(Yn+1

∣∣x (i))

PYn+1|Xn+1(Yn+1
∣∣x (0))

+ log

∑m−1
k=0 PX2|X1(x (i)

∣∣x (k))PXn |Y n
1
(x (k)

∣∣Y n
1 )

∑m−1
k=0 PX2|X1(x (0)

∣∣x (k))PXn |Y n
1
(x (k)

∣∣Y n
1 )

(146)

= log
PYn+1|Xn+1(Yn+1

∣∣x (i))

PYn+1|Xn+1(Yn+1
∣∣x (0))

+ F (i)(Ln) (147)

= R(i)(Yn+1) + F (i)(Ln) (148)

where

R(i)(Yn+1) = (x (i) − x (0)) Yn+1 − 1

2

(
(x (i))2 − (x (0))2

)
, (149)

F (i)(Ln) = log

∑m−1
k=0 PX2|X1(x (i)

∣∣x (k)) eL(k)
n

∑m−1
k=0 PX2|X1(x (0)

∣∣x (k)) eL(k)
n

. (150)

For the HMPs observed through the AWGN channel (1),
the differential entropy can be computed as [28]:

h(Y ) = lim
n→∞ −

∫∫
r(y, ln) log r(y, ln) dy d PLn(ln) (151)
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where

r(y, Ln) =
m−1∑

i=0

φ(y − x (i))
∑m−1

j=0 eL( j)
n

m−1∑

k=0

eL(k)
n PX2|X1(x (i)|x (k)). (152)

In order to compute the entropy rate of HMPs based
on (151), the key is to estimate the distribution of Ln , PLn .
In [26], for binary Markov input and the binary symmet-
ric channel, Ln is considered as a one-dimensional M-state
Markov chain by quantizing the dynamic system expressed
in (148). Then the distribution of L∞ is the stationary
distribution of the quantized Markov process and can be
computed easily through eigenvector solving method. In this
paper, because the number of states of the Markov input m is
larger than 2 and the HMPs is observed through the AWGN
channel, directly quantizing the dynamic system (148) will
generate a quantized Markov chain with Mm−1 states, which
is very difficult to deal with when large M is selected for good
estimation precision.

According to (148), since Ln+1 is only dependent on Ln and
Yn+1, {Ln} can be considered as a Markov process. In order to
compute the stationary probability distribution PL∞ , we can
evolve the distribution of Ln based on (148) from any initial
distribution PL0 . When n is large enough, the distribution PLn

converges to PL∞ . A Monte Carlo algorithm for approximating
h(Y ) is introduced as follows:

1) Initialize M particles {L0,1, · · · , L0,M }, L0,k =(
0, L(1)

0,k, · · · , L(m−1)
0,k

)
can be simply sampled from

the (m − 1)-dimensional uniform distribution with each
dimension on

[− max(x (i)), max(x (i))
]
, i = 1, . . . , m − 1;

2) For n = 0, 1, 2, · · · , N , iteratively evolve the particles
{Ln,1, · · · , Ln,M } based on (148), where each yn+1,k is
sampled according to r(y, Ln,k);

3) When N is large enough, {LN,k } can be used to estimate
h(Y ) as

h(Y ) ≈ − 1

M

M∑

k=1

∫
r(y, LN,k ) log r(y, LN,k ) dy. (153)

When M is very large, the histogram method can be used
to describe LN,k in order to reduce the computational load.

B. Numerical Results

1) Idealized Duty Cycle Constraint (q, 0): One implication
of Theorem 1 is that directly computing the capacity-achieving
input distribution requires solving an optimization problem
with infinite number of variables which is prohibitive. Assum-
ing any upper bound on the number of probability mass points,
however, a numerical optimization over the mutual information
can yield a suboptimal input distribution and a lower bound
on the channel capacity. As we increase the number of mass
points, the lower bound can be further refined. We take this
approach to numerically compute a good approximation of
the channel capacity by optimizing over a sufficient number
of probability mass points.

Given the duty cycle and power constraints, we first numer-
ically optimize the mutual information by a 3-point input
distribution (including a mass at 0), then increase the number

Fig. 1. Suboptimal input distribution for PX (0) ≥ q = 0.3.

Fig. 2. Achievable rates under duty cycle constraint for 0 dB and 10 dB
SNRs.

of probability mass points by 2 at a time to improve the mutual
information, until the improvement is less than 10−3.

First consider the case that the duty cycle is no greater than
70%, i.e., PX (0) ≥ q = 0.3. For different SNRs, the mass
points of the near-optimal input distribution with finite support
along with the corresponding probability masses are shown in
Fig. 1. Due to symmetry, only the positive half of the input dis-
tribution is plotted. We can see that as the SNR increases, more
masses are put on higher-amplitude points, whereas the prob-
ability mass at zero achieves its lower bound 0.3 eventually.

In Fig. 2, we compare the rate achieved by the near-optimal
input distribution and the rate achieved by a conventional
scheme using Gaussian signaling over a deterministic sched-
ule, which is (1 − q) times the Gaussian channel capacity
without duty cycle constraint. It is shown in the figure that
there is substantial gain for both 0 dB and 10 dB SNRs by
using discrete input over Gaussian signaling with a deter-
ministic schedule. For example, when the SNR is 10 dB,
given the duty cycle is no more than 50%, the discrete input
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TABLE I

PX2|X1 AND PX FOR q = 0.5, c = 1.0, SNR = 8dB

Fig. 3. The marginal distribution of the stationary Markov input. Duty cycle
≤ 0.5, transition cost c = 1.0.

distribution achieves 50% higher rate. Hence departing from
the usual paradigm of intermittent packet transmissions may
yield significant gains.

We also plot in Fig 2 the achievable rate by a superposition
coding, where the input distribution is a mixture of Gaussian
and a point mass at 0. We first decode the support of the input
to find out the positions of nonzero symbols, and then the
Gaussian codeword conditioned on the support. It is shown in
the figure that the near-optimal discrete input achieves higher
rate compared with the mixture input.

2) Realistic Duty Cycle Constraint (q, c): In this subsec-
tion, numerical results of the lower bound of channel capacity
and the suboptimal input distribution are provided based on
the results in Section V and VI-A.

We first seek a discrete Markov chain with finite alphabet
that maximizes the objective L(μ) defined in (11). Once the
optimal Markov distribution μ∗ is determined, we compute
the achievable rate I (μ∗) according to (85).

In this paper μ∗ = (X , α, β, PX ) is used to approximate
the optimum distribution μ0 through maximizing L(·). It is
obvious that the optimized μ∗ is symmetric about 0. Table I
is the transition probability matrix PX2|X1 and stationary
probability PX for q = 0.5, c = 1.0 and SNR = 8 dB.
The symmetry of the transition probability matrix is evident,
as conditioned on indications whether the two consecutive
symbols are zero or nonzero, they are independent.

Fig. 3 shows the stationary (marginal) distribution for sub-
optimal Markov input. In order to compensate the transition

Fig. 4. The achievable rate vs. the SNR. Duty cycle ≤ 0.5, transition cost
c = 1.0.

Fig. 5. The achievable rate vs. the duty cycle, SNR = 10 dB and transition
cost c = 1.0.

cost, additional fraction of zero symbol should be transmitted,
i.e., PX (0) > q . As the SNR increases, more and more weights
are put on distant constellation points, where less and less
weights are put on the zero letter.

In Fig. 4, the rates achieved by various optimized input
distributions are plotted against the SNR. The rate achieved
by the optimized Markov input μ∗ is compared with the
capacity of AWGN channel with only power constraint, the
rate achieved by i.i.d. input with idealized duty cycle constraint
(q, 0), i.e., μ0 in Theorem 1, the rate achieved by i.i.d. input
with duty cycle constraint (q, c) calculated from (93) which
is the optimal i.i.d. input distribution in terms of achievable
rate, and the lower bound L(μ∗). It is observed that the opti-
mized Markov input achieves higher rate than the i.i.d. input
distribution under duty cycle constraint (q, c).

Figs. 5 and 6 demonstrate the sensitivity of the achievable
rates to the duty cycle parameter q and the transition cost c,
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Fig. 6. The achievable rate vs. transition cost, with SNR = 10 dB and
q = 0.5.

respectively. The performance of Markov inputs is superior to
i.i.d. inputs as well as Gaussian signaling with a deterministic
schedule. Fig. 5 shows that the performance of i.i.d. input is
similar to the deterministic schedule, which implies that dif-
ferent from the case under the idealized duty cycle constraint,
i.i.d. input is not a good choice under the realistic duty cycle
constraint.

VII. CONCLUDING REMARKS

In this paper we have studied the impact of the duty
cycle constraint on the capacity of AWGN channels. Under
the idealized constraint, the optimal distribution has a finite
number of probability mass points in a bounded interval. This
allows efficient numerical optimization of the input distribu-
tion. Under the realistic duty cycle constraint, the capacity-
achieving input is harder to compute. We develop techniques
for computing a near-optimal input distribution. This input
takes the form of a discrete first-order Markov process, which
matches the “Markov” nature of the duty cycle constraint. The
numerical results show that under the duty cycle constraint,
departing from the usual paradigm of intermittent packet
transmissions may yield substantial gain.
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