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Abstract—This paper studies a problem frequently seen in
wireless networks: Every node wishes to broadcast information to
nodes within a single hop, which are referred to as its peers. We
call this problem mutual broadcast. A novel solution is proposed,
which exploits the multiaccess nature of the wireless medium
and addresses the half-duplex constraint at the fundamental
level. The defining feature of the scheme is to let all nodes send
their messages at the same time, where each node broadcasts a
codeword (selected from its unique codebook) consisting of on-
slots and off-slots, where it transmits only during its on-slots,
and listens to its peers through its own off-slots. Decoding can
be viewed as a problem of sparse support recovery based on
linear measurements. In case each message consists of a small
number of bits, an iterative message-passing algorithm based
on belief propagation is developed, the performance of which
is characterized using a state evolution formula in the limit
where each node has a large number of peers. Numerical results
demonstrate that, to achieve the same reliability for mutual
broadcast, the proposed scheme achieves three to five times the
rate of ALOHA and carrier-sensing multiple-access (CSMA) in
typical scenarios.

I. INTRODUCTION

Consider a frequent situation in wireless peer-to-peer net-
works, where every node wishes to broadcast messages to all
nodes within its one-hop neighborhood, called its peers. We
refer to this problem as mutual broadcast. Such broadcast traf-
fic can be dominant in many applications, such as messaging
or video conferencing of multiple parties in a spontaneous
social network, or on a site of disaster relief or battlefield.
Wireless mutual broadcast is also critical to efficient network
resource allocation, where messages are exchanged between
nodes about their demands and local states, such as queue
length, channel quality, code and modulation format, and
request for certain resources and services.

A major challenge in wireless networks is the half-duplex
constraint, namely affordable radio cannot receive useful sig-
nal at the same time over the same frequency band within
which it is transmitting. This is largely due to the limited
dynamic range of the radio frequency circuits, which is likely
to remain a physical restriction in the foreseeable future.
An important consequence of the half-duplex constraint in a
typical implementation of wireless networks is that, if two
peers transmit their packets at the same time, they do not
hear each other. To achieve reliable mutual broadcast using a
usual packet-based scheme, nodes have to repeat their packets
a number of times interleaved with random delays, so that
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peers can hear each other after enough retransmissions. This
leads to the ubiquitous random channel access solution.

A closer examination of the half-duplex constraint, however,
reveals that a node does not need to transmit an entire packet
before listening to the channel. An alternative solution is
conceivable: Let a frame (typically of a few thousand symbols)
be divided into some number of slots, where each node
transmits over a subset of the slots and assumes silence over
the remaining slots, then the node can receive useful signals
over those nontransmission slots. If nodes activate different
sets of on-slots, then nodes can all transmit information
during a frame and receive useful signals within the same
frame, and decode messages from peers as long as sufficiently
strong error-control codes are applied. In fact, reliable mutual
broadcast can be achieved using a single frame interval.

The on-off signaling described in above is called rapid
on-off-division duplex (RODD), which is originally proposed
in [1]. Not only is the signaling applicable to the mutual
broadcast problem, it can also be the basis of a clean-slate
design of the physical and medium access control (MAC)
layers of wireless peer-to-peer networks. Importantly, RODD
achieves virtual full-duplex communication using half-duplex
radios. RODD-based schemes have advantages over state-
of-the-art designs of MAC protocols, which either apply
ALOHA-type random access or use a mixture of random
access and scheduling/reservation. This is in part because
RODD eliminates retransmissions due to collisions.

In this paper, we focus on a special use of RODD signaling
and a special case of mutual broadcast, where each node has
a small number of bits to send to its peers. The goal here is
to provide a practical algorithm for encoding and decoding
the short messages to achieve reliable and efficient mutual
broadcast. Decoding is in fact a problem of support recovery
based on linear measurements, since the received signal is
basically a noisy superposition of peers’ codewords selected
from their respective codebooks. There are many algorithms
developed in the compressed sensing (or sparse recovery)
literature to solve the problem, the complexity of which is
often polynomial in the size of the codebook (see, e.g., [2]–
[6]). In this paper, an iterative message-passing algorithm
based on belief propagation (BP) with linear complexity is
developed. Its performance is characterized using a state evo-
lution formula in the large-system limit, where the number of
peers each node has tends to infinity. Numerical results show
that the proposed RODD scheme significantly outperforms
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ALOHA and CSMA-type random-access schemes in terms of
data rate. Moreover, as far as the scenarios studied numerically,
a fair comparison shows that the message-passing algorithm
outperforms two popular sparse recovery algorithms, namely,
compressive sampling matching pursuit (CoSaMP) [2] and
approximate message passing (AMP) [3].

The remainder of the paper is organized as follows. Sec-
tion II describes the proposed coding scheme. The message-
passing decoding algorithm is developed and analyzed in Sec-
tion III. In Section IV, competing random-access schemes are
studied. Numerical comparisons are presented in Section V.
Section VI concludes the paper.

II. ENCODING FOR MUTUAL BROADCAST

Suppose all transmissions use the same single carrier fre-
quency. Let time be slotted and all nodes be perfectly syn-
chronized.1 Each node k is assigned a unique codebook of
2l on-off signatures (codewords) of length Ms, denoted by
{Sk(1), . . . ,Sk(2l)}. For simplicity, let each element of each
signature be generated randomly and independently, which is
0 with probability 1 − q and 1 and −1 with probability q/2
each.

Node k broadcasts its l-bit message (or information index)
wk ∈ {1, . . . , 2l} by transmitting the codeword Sk(wk). For
simplicity, let us assume that the physical link between every
pair of neighboring nodes is an additive white Gaussian noise
channel of the same signal-to-noise ratio (SNR), denoted by γ.
Let the set of peers of node k be denoted byNk, the population
of which is its cardinality |Nk|. The received signal of node
k, if it could listen over the entire frame, is then described by

Ỹ k =
√
γ
∑
j∈Nk

Sj(wj) + W k (1)

where W k is Gaussian noise consisting of independent identi-
cally distributed (i.i.d.) entries of zero mean and unit variance.
For simplicity, transmissions from non-neighbors, if any, are
accounted for as part of the additive Gaussian noise.

Without loss of generality, we focus on the neighborhood
of node 0 and omit the subscript k in (1). Suppose |N0| = K
and the neighbors of node 0 are indexed by 1, . . . ,K. The
total number of signatures of all neighbors is N = 2lK.
Due to the half-duplex constraint, however, node 0 can only
listen during its off-slots, the number of which has binomial
distribution, denoted by M ∼ B(Ms, 1 − q), whose expected
value is E {M} = Ms(1 − q). Let the matrix S ∈ RM×N
consist of columns of the signatures from all neighbors of
node 0, observable during the M off-slots of node 0, and then
normalized by

√
Ms(1− q)q so that the expected value of

the l2 norm of each column in S is equal to 1. Based on (1),
the M -vector observed through all off-slots of node 0 can be
expressed as

Y =
√
γsSX + W (2)

1See [1] for a discussion of synchronization issues. In [7], cyclic codes are
proposed to resolve the user delays in a multiaccess channel.

where γs = γMs(1 − q)q, and X is a binary N -vector for
indicating which K signatures are selected to form the sum
in (1). Precisely, X(j−1)2l+i = 1{wj=i} for 1 ≤ j ≤ K and
1 ≤ i ≤ 2l. Note that the sparsity of X is exactly 2−l, which
can be very small. The average system load is defined as β =
N/
(
Ms(1− q)

)
.

In general, the decoding problem each node k faces is
to identify, out of a total of 2l|Nk| signatures from all its
neighbors, which |Nk| signatures were selected. This requires
every node to know the codebooks of all neighbors. One
solution is to let the codebook of each node be generated
using a pseudo-random number generator using its network
interface address (NIA) as the seed, so that it suffices to
acquire all neighbors’ NIAs. This, in turn, is a neighbor
discovery problem, which has been studied in [8]–[10]. The
discovery scheme proposed in [9], [10] uses similar on-off
signalling and also solves a compressed sensing problem.

III. SPARSE RECOVERY (DECODING) VIA MESSAGE
PASSING

The problem of recovering the support of the sparse input
X based on the observation Y has been intensively studied in
the compressed sensing literature. In this section, we develop
an iterative message-passing algorithm based on belief propa-
gation, and characterize its performance in a certain limit. The
computational complexity of the algorithm is in the order of
O(MNq), which is of the same order as the complexity of
CoSaMP and AMP.

A. The Message-Passing Algorithm

First we construct a Forney-style bipartite factor graph to
represent the model (2), which is rewritten as

yµ =
√
γs

N∑
k=1

sµkxk + wµ (3)

where µ = 1, . . . ,M and k = 1, . . . , N index the measure-
ments and the “input symbols,” respectively. For simplicity, we
ignore the dependence of the symbols {Xk} for now, which
shall be addressed toward the end of this section. Each Xk

then corresponds to a symbol node and each Yµ corresponds
to a measurement node. For every (µ, k), symbol node k and
measurement node µ are connected by an edge if sµk 6= 0.

For convenience, let ∂µ (resp. ∂k) denote the subset of
symbol nodes (resp. measurement nodes) connected directly
to measurement node µ (resp. symbol node k), called its
neighborhood. Also, let ∂µ\k denote the neighborhood of
measurement node µ excluding symbol node k and let ∂k\µ
be similarly defined.

The message-passing algorithm, which decodes the infor-
mation indexes w1, . . . , wK , is described as Algorithm 1. In
fact, Algorithm 1 can be derived from the original iterative BP
algorithm by certain Gaussian approximation. The computa-
tional complexity of the original BP algorithm is exponential
in |∂µ| = O(qN), which would be too high for the problem at
hand. However, since qN � 1, the computation carried out at
each measurement node admits a good approximation by using
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the central limit theorem. A similar technique has been used
in the CDMA detection problem, for fully-connected bipartite
graph in [11]–[13], and for a graph with large node degrees
in [14]. The derivation is omitted here due to space limitations.

Algorithm 1 Message-Passing Decoding Algorithm
1: Input: S,Y , γs, β, q.
2: Initialization:
3: Λ← − log(2l − 1), L←

∑
µ |∂µ|, L2 ←

∑
µ |∂µ|2

4: R← 2γ
−1/2
s Y − S · 1

5: m̂0
µk ← 0 for all µ, k

6: Main iterations:
7: for t = 1 to T − 1 do
8: for all µ, k with sµk 6= 0 do
9: mt

kµ ← tanh
(

Λ
2 +

∑
ν∈∂k\µ tanh−1 m̂t−1

νk

)
10: end for
11: Qt ← 1

L2

∑
µ |∂µ|

∑
j∈∂µ(mt

jµ)2

12: At ←
[

4
γs

+ βL2

NqL (1−Qt)
]−1

13: for all µ, k with sµk 6= 0 do
14: m̂t

µk ← tanh
(
Atsµk(rµ −

∑
j∈∂µ\k sµjm

t
jµ)
)

15: end for
16: end for
17: mk ← tanh

(
Λ
2 +

∑
ν∈∂k tanh−1 m̂T−1

νk

)
for all k

18: Output: ŵj = arg maxi=1,...,2l m(j−1)2l+i, j = 1, . . . ,K

We now revisit the assumption that X has independent
elements. In fact, X consists of K sub-vectors of length
2l, where the entries of each sub-vector are all zero except
for one position corresponding to the transmitted message.
Algorithm 1 outputs the position of the largest element of each
of the K sub-vectors of [m1, . . . ,mN ]. In fact, the factor graph
can be modified by including K additional nodes, each of
which puts a constraint on one sub-vector. Slight improvement
over Algorithm 1 can be obtained by carrying out message
passing on the modified graph.

B. Performance Characterization of Algorithm 1

The iterative decoding dynamics of Algorithm 1 can be
quantified using state evolution in the (large-system) limit,
where K,M → ∞ with the average system load β and all
other parameters kept constant. Recently, in the compressed
sensing literature, a rigorous foundation to state evolution for
sensing matrices with i.i.d Gaussian entries is provided in [15].
But it cannot be directly applied here due to the on-off nature
of the elements of S.

For simplicity, we declare decoding success if node 0
can correctly recover all the messages its peers transmitted;
otherwise it is regarded as a decoding error. The probability
of decoding error averaged over all realizations of all possible
messages, signatures and noise is denoted by Pes. The main
result of the large-system analysis is summarized in the
following proposition:

Proposition 1: In the large-system limit, with T − 1 itera-
tions of message-passing decoding described in Algorithm 1,

the decoding error probability Pes is given by

Pes =1−
(∫ ∞
−∞

e−
1
2 (x−

√
E)2
[
1−Q(x+

√
E)
]2l−1 dx√

2π

)K
(4)

where Q(x) =
∫∞
x

exp(−z2/2) dz/
√

2π and E = ηT γs/4 is
obtained using the following recursive equation with η0 = 0:

ηt+1 =
1

1 + 1
4γsβE

(
1
4γsη

t
) (5)

where we let r = tanh(Λ/2) and

E(E) = 1−
∑
x=±1

∫
1 + xr

2
√

2π
tanh

(
z
√
E + E +

xΛ

2

)
e

−z2

2 dz.

The proof of Proposition 1 makes use of the idea of
density evolution originally developed for analyzing graphical
error-control codes. A similar technique has also been used
in [11], [13], [14] to analyze CDMA systems. Proposition 1
is basically a single-letter characterization of the performance
in the large-system limit (cf. [16]). That is, from the view
point of an individual neighbor, the mutual broadcast system
with message-passing decoding is asymptotically equivalent
to sending a simplex code through a scalar Gaussian channel
with some degradation in the SNR, where the degradation
factor is determined from the iterative formula depending on
the number of iterations.

IV. RANDOM-ACCESS SCHEMES

In this section we describe two random-access schemes,
namely slotted ALOHA and CSMA, and provide lower bounds
on the minimum number of symbol transmissions required for
achieving a given error probability. The lower bounds shall be
compared to the performance of the RODD scheme.

Let each frame encode L bits including an l-bit message and
a few additional bits which identify the sender. A message is
assumed to be always decoded correctly if no collision occurs.
Each broadcast period consists of a number of frames to
allow for retransmissions. Without loss of generality, consider
node 0 and let K denote the number of its neighbors. An
error event is defined as the situation where node 0 does not
correctly receive all K messages from its neighbors until the
end of the broadcast period. We denote the total number of
symbol transmissions of ALOHA and CSMA by Ma and Mc,
respectively.

A. Slotted ALOHA

In slotted ALOHA, each node chooses independently with
the same probability p to transmit in every frame interval.
The error probability is lower bounded by the probability that
one particular peer cannot successfully transmitting its frame
without collision by the end of n frame intervals:

Pe ≥
[
1− p(1− p)K

]n ≥ [1− KK

(K + 1)K+1

]n
(6)

where the second inequality becomes equality if and only
if p = 1/(K + 1). Over the Gaussian channel with SNR
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γ, in order to send L bits reliably through the channel, the
number of symbols in a frame must exceed 2L/log2 (1 + γ).
Therefore, in order to achieve a given error probability Pe,
Ma must satisfy

Ma ≥
2L

log2(1 + γ)
· log Pe

log
(
1−KK(K + 1)−K−1

) . (7)

B. CSMA

As an improvement over ALOHA, CSMA lets nodes use
a brief contention period to negotiate a schedule in such a
way that nodes in a small neighborhood do not transmit data
simultaneously. Consider the following generic scheme: Each
node senses the channel continuously. If the channel is busy,
the node remains silent and disables its timer; as soon as the
channel becomes available, the node starts its timer with a
random offset, and waits till the timer expires to transmit
its frame. Clearly, the node whose timer expires first in its
neighborhood captures the channel and transmits its frame.

By using the Matérn hard core model [17], the performance
of CSMA can be characterized in the following result.

Proposition 2: If each node has K neighbors on average,
then

E(Mc) ≥
2L log 1

Pe

log2(1 + γ)

(
K − 3

√
3

4π

(
K − 1−K

))
. (8)

This lower bound underestimates the number of slots needed
by CSMA since the hidden terminal problem is neglected and
the contention overhead is also ignored.

V. NUMERICAL RESULTS

In order for a fair comparison, we assume the same power
constraint for both scheme based on sparse recovery and
random-access schemes, i.e., the average transmitted power
in each active slot (in which the node transmits energy) is the
same. Recall that, in the proposed scheme, where the frame
length is Ms, the SNR in the model (2) is γs = γMsq(1− q).

We compare the number of symbol transmissions required
by the three schemes, denoted by Ms, Ma and Mc, re-
spectively, for node 0 to achieve the same error probability.
We consider the special case where node 0 has K = K
neighbors, which is the average over all nodes. We always
choose q = 1/(K + 1) in the sparse-recovery-based scheme.

First consider a node with K = 4 peers, each with
a message of l = 10 bits. In random-access schemes, at
least 2 additional bits are needed to identify a sender, so
L = l + 2 = 12. In Fig. 1, the error performance of random-
access schemes computed from (7) and (8) are compared
with that of the proposed mutual broadcast scheme with
three different sparse recovery algorithms (message passing,
CoSaMP, and AMP). The sparse-recovery-based scheme with
message-passing decoding requires much fewer number of
symbol transmissions than ALOHA and CSMA to achieve the
same error probability. The simulation results show that the
message-passing decoding algorithm noticeably outperforms
CoSaMP and AMP at both SNRs, γ = 0 dB and γ = 10 dB.
Here, we have utilized in AMP the prior information that each
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Fig. 1. Performance comparison with 4 neighbors and 10 bits per node.
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Fig. 2. Performance comparison with 9 neighbors and 5 bits per node.

entry in input X is i.i.d. which is 1 with probability 2−l and 0
otherwise. At γ = 0 dB, we also make a comparison between
the simulation result and the large system approximation from
(4) for the message-passing algorithm. The approximation is
seen to provide a good characterization of the performance of
the message-passing algorithm. Note that the performance of
ALOHA is much worse than that of CSMA at γ = 10 dB and
is omitted to avoid clutter.

Fig. 2 repeats the simulation with the number of neighbors
changed to K = 9 and the message length changed to l =
5. In this case, random-access schemes require each node to
transmit at least 4 additional bits so that node 0 can identify
its sender. The relative performance of the different schemes
remains similar as in the previous case depicted in Fig. 1.

In the remainder of this section, we consider some system-
level experiments. Suppose there are 1000 nodes in a wireless
network, and they are uniformly distributed in a 100 × 100
square. Assume that each node has a sensing radius of R, then
each node has an average number of K = πR2/10 neighbors
by considering periodic boundary condition. We always choose
q = 1

K+1
in the sparse-recovery-based scheme. The metric
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Fig. 3. System-level performance comparison with 10 bits per node. (a)
K = 4, (b) K = 9

for performance comparison between different schemes is the
probability for one node to miss a given neighbor, averaged
over all pairs of neighbors in the network.

First we consider one realization of the network where each
node has K = 4 neighbors and each node has a message of
l = 10 bits. Suppose the identification overhead in random-
access schemes is ignored and L is set to 10. We still consider
γ = 0 dB and 10 dB. As shown in Fig. 3(a), in the same
system setting, the proposed sparse-recovery-based scheme
needs much less symbol transmissions than both ALOHA- and
CSMA-based random-access schemes. Similar results can be
observed in Fig. 3(b) when simulating one realization of the
network where K = 9 and l = 10 at 10 dB SNR. To achieve
the error rate of 0.01, the proposed scheme requires 200
symbol transmissions, whereas CSMA and ALOHA require
about 700 and 1,000 symbol transmissions, respectively.

VI. CONCLUDING REMARKS

The proposed scheme departs from the usual networking
solution where a highly-reliable, capacity-approaching, point-
to-point physical-layer code is paired with a rather unreliable
MAC layer. By treating the physical and MAC layers as a

whole, the proposed scheme achieves better overall reliability
at much higher efficiency.

The proposed scheme can serve as a highly desirable sub-
layer of any network protocol stack to provide the important
function of simultaneous peer-to-peer mutual broadcast. This
sub-layer provides the missing link in many advanced resource
allocation schemes, where it is often assumed that nodes are
provided the state and/or demand of their peers.

We have assumed that the channel between every pair of
nodes is Gaussian. Using a more realistic model by incorpo-
rating fading and path loss and addressing the near-far problem
are future research directions.
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