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Abstract-We present a probabilistic graphical framework 
for mobile device positioning. We study the performance of a 
positioning algorithm, which implements the message-passing 
paradigm, in an indoor environment where a mobile device 
measures fingerprints of received signals. The key innovation in 
our approach is a stochastic parametric model for the fingerprint 
map that is adaptively tuned using on-line position estimates. The 
framework naturally extends to enable cooperative positioning 
in a network of mobile devices and we study the case of vehicle 
positioning as an illustration. 

I. INTRODUCTION 

This paper presents some of the early investigations on 
mobile positioning (a.k.a localization) which is a subject of on
going research at NJRC. Our motivation for studying mobile 
positioning has been the development of FlashLinQ which is a 
novel device-to-device communication technology specifically 
designed to enable an efficient platform for the proximate 

Internet [1]. In a world where devices autonomously discover 
each other's presence, there is great cOlmnercial and social 
value in augmenting the basic RF proximity information with 
accurate position information about the discovered wireless 
devices. On the other hand, accurate self-localization is in it
self an important capability as it enables a host of applications, 
the most prominent one being user navigation. 

While GNSS receivers may give satisfactory accuracy in 
outdoor settings, it is not possible to rely on them in indoor and 
dense urban environments due to poor signal penetration. The 
main thrust of our paper will be the application of a general 
positioning framework, that we derive, to the problem of 
indoor positioning. We will present our approach as a unified 
framework, based on graphical models, that could potentially 
include all available sensor and radio inputs provided that a 
reasonable probabilistic model exists for them. 

Our general assumption will be that external signals are 
used, at least in part, for localization: the mobile device 
measures the characteristics of signals received from trans
mitters (a.k.a. anchors) whose locations are a priori known 
and compares them with a set of stored prediction values 
for those characteristics. This approach is known as signal 
"fingerprinting" in the positioning literature (see Chapter 12 

[4] for an excellent survey of the field). In the prototype indoor 
positioning system that we built, the external signals were 
WiFi beacons transmitted from access points inside a building. 

The accuracy of position estimation is highly sensitive to 
the accuracy of the underlying fingerprint map and obtain
ing/creating this map is one of the key challenges in indoor 

pOSltloning systems that rely on external signals. Existing 
methods use either exhaustive measurement campaigns (see 
Chapter 15 of [4]) or off-line calibrations of parametric models 
using partial surveys [5]. Our approach is to use a coarse ray
tracing model and a learning algorithm which adaptively tunes 
the parameters of the model based on-line position estimates. 
This unsupervised method of computing the fingerprint map 
is one of the main contributions of our work and it is 
conceptually similar to joint iterative channel estimation and 
decoding in communication receivers [3]. 

Reference SignlalS from anchors 
I I 

FLQ WiF1 Audio 

position 

Posterior 
parameter 
densities 

Fig. 1. A high-level block diagram of the joint positioning and learning 
algorithm. The Measurement Model is the fingerprint map which by ray
tracing in the case of indoor positioning. 

On-line learning of propagation parameters using the EM 
algorithm has been studied in the context of positioning for 
some simple path loss models [6]. The crucial novelty of our 
approach is in the treatment of model parameters as random 

variables whose distributions are learned and updated using 
the soft outputs of the positioning algorithm. As we will 
see, the stochastic parameters are highly useful in overcoming 
unavoidable inaccuracies in the structure of the ray-tracing 
model that would normally cause the positioning algorithm 
to get stuck in only locally optimal solutions. In essence, 
stochastic parametrization allows us to use a very coarse, low
dimensional ray-tracing model and still get high positioning 
accuracy. The overall framework of joint positioning and 
learning given the various possible input signals and motion 
constraints are depicted in Fig.l. 

The probabilistic graphical model framework enables a 
natural mechanism for performing cooperative positioning 
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amongst mobile devices. If multiple devices are performing 
positioning and are able to communicate their position esti
mates to each other, the positioning accuracy of the entire 
system can be enhanced. This fact has been recognized in the 
literature, and studied in the context of UWB radio positioning 
[2], [12] and distributed vehicle localization [lO]. In the final 
section, we briefly discuss the application of these ideas to 
the problem of improving on the GPS position accuracy in a 
network of vehicles. 

II. MOBILE POSITIONING AND LEARNING 

A. A probabilistic framework 

Consider a system formed by one or more nodes that we 
want to geographically localize. For simplicity, one may first 
want to think of the system as a single mobile device although, 
in full generality, it will represent a collection of mobile 
devices. Let S denote the position of the system and let Y 
denote the measurement, or observation, of a characteristic of 
an input signal. The input signal may be an external signal 
transmitted by an anchor node such a WiFi AP or any other 
type of radio/sensor reading. The signal characteristic that we 
will eventually focus on in this paper is the received signal 
power. 

Let the discrete time indices be t E {I"" ,T}, yT = 
(Yl, Y2, . . .  , YT) be the time sequence of measurements and 
sT = (SI' S2, . . .  , ST) be the time sequence of positions to 
be estimated. Suppose first that a genie gives the likelihood 
function p(yls) which describes the probability density of the 
measurement y a mobile device would collect at location s. 
The positioning task is to compute the Maximum A posteriori 

Probability (MAP) position estimate at time T, i.e., sT = 
argmaxsrP( ST lyT). 

The likelihood function is the signal "fingerprint" map 
discussed in Section I. In practice, the likelihood function is 
not a priori known with high accuracy and one of the key tasks 
that we address in this paper is how to efficiently estimate it. 
To model the uncertainty in our knowledge of the likelihood 
function, we introduce a parameter (or a vector of parameters) 
B and use the conditional likelihood function p(yls, B) in the 
positioning algorithm instead. One of our main contributions 
is the characterization of a low-dimensional parameter space, 
described in Section III-B, that is rich enough to be able to 
span a realistic set of realizations of the conditional likelihood 
function. The low-dimensionality of the space is important in 
that only few parameters must be estimated and the conditional 
likelihood function can be efficiently computed and stored. In 
the case where y corresponds to a received RF signal, the 
observation model depends on various electromagnetic prop
agation quantities such as path loss, wall loss and diffraction 
loss, which can be represented by the parameter B. 

As mentioned in the introduction, we treat B as a random 
variable whose distribution, initially given by the prior p( B), 
is estimated given the collected measurements. Then the 

Bayesian formulation 

T 
p(sT, yT, B) = IIp(StISt-d' p(YtISt, B) ·p(B) ·p(so) 

t=1 � � "-v--' motlOn model propagatlOn model priors 
(1) 

gives a framework not only to estimate the posItIOns but 
also to estimate the posterior distribution of the parameters. 
The later turns out to be very important in practice where 
model mismatch appears to be the first cause of positioning 
errors: we will turn to the question of modeling and parameter 
estimation in Section III-B. The graphical representation of 
the factorization of all relevant variables as shown in Eq.I is 
depicted in Fig.2 using the standard formalism [8]. 

a 

Fig. 2. Forney-Style Factor Graph for Joint Positioning and Parameter 
Estimation. 

The transition probabilities p( StHI St) represent the motion 

model between positions at two consecutive time instants. Note 
that we have implicitly assumed that this is a Markov chain 
which may seem restrictive at first but which we have found to 
be a good enough approximation of human mobility in indoor 
spaces. Instead of just the basic random walk, the motion 
model p( St+ 11 St) may further incorporate a velocity compo
nent p( Vt) such that p( stHI St) = J p( stHI St, Vt )dp( Vt); more 
generally, it will make use of inertial sensors (speed and/or 
direction indicator, accelerometer, gyroscope, compass, etc). 

B. The joint positioning and learning algorithm 

We are now ready to describe our algorithm which uses 
the sum-product algebra and standard message-passing rules 
on the graph of Fig. 2. Given the density p(yls, B) and a 
prior distribution on B, Po(B), a single iteration of both the 
positioning and the learning algorithm can indeed be stated as 
follows: 

1) Compute the likelihood function 

p(yIS) := lEe [p(yls, B)], (2) 

where the expectation is taken over p( B). If this is the 
first recursion, use p(B) := Po(B); 

2) Given a sequence of measurements yT, compute the 
MAP trajectory estimate sT and its probability p( sT) 



using the likelihood function p(y 1 s). The position esti
mate output of the algorithm is given by sr := ST; 

3) Compute the posterior distribution of the parameters as 
an integral over p(sT): 

(3) 

We first observe that step 2 is the positioning algorithm 
which is shared and coupled with the learning algorithm, 
which is captured in steps 1 and 3. Second, we observe 
that, unlike the positioning algorithm, the learning algorithm 
benefits from non-causal conditioning inherent in trajectory 
estimation, i.e., given yT, an estimate for Sk for some k E 
{I, 2, . . .  ,T} cannot be less accurate than an estimate for ST. 
Non-causal conditioning is a result of the fact that learning 
need not be done in real-time and can be performed using 
post-processing of a collection of measurements. I 

The MAP position estimation in step 2 can be implemented 
using a number of techniques. In Section III-A we will 
discretize the state space and run the sum-product algorithm 
on the resulting trellis. In Section IV we will use particle filters 
[9] instead. The choice of technique, in general, will depend 
on the size of the state space. 

The computation of the posterior parameter distribution in 
step 3 may be simplified by performing "hard-decisions" on 
the position estimates, i.e., approximating the densities p( sT) 
as point masses using an empirically derived threshold. This 
gets around the computationally intensive task of computing 
the integral. The computation of p(elyT, ST) can, in general, 
be a complex task. One possible approach to efficiently 
compute this quantity is shown in the Appendix. 

III. AN APPLICATION TO INDOOR POSITIONING 

A. State space and mobility model 

An important practical consideration is the choice of repre
sentation of the possible positions St of the mobile device 
and the associated probabilities p(St). Options here would 
be using a continuous state-space and Gaussian densities, 
a continuous state-space and sampling general continuous 
densities or by using a discrete state space and a probability 
mass function on that space. Algorithms corresponding to 
these representations would be Kalman filters, particle filters 
and message passing algorithms on a trellis, respectively (see 
[7] for a survey of all Bayesian filtering techniques). For the 
indoor positioning problem addressed in this section, we chose 
the latter mainly due to its simplicity, although for complexity 
reasons, sampling methods a la the particle filter would most 
likely be deployed in a final commercial product. 

Consider a system formed by a single mobile device moving 
through a 2-dimensional physical space. A typical example is 
the localization of a wireless device on the floor of a corporate 
building. As a running example for the exposition of our 
indoor positioning work, we use the 4-th floor of Qua1comm's 

I Furthermore, the positioning and learning tasks may be performed on 
different devices: the positioning may happen on the mobile device whereas 
the learning may occur at a central server which can benefit from collecting 
measurements from multiple devices. 

NJRC building. The red lines indicate the positions of the walls 
and this information is obtained from the building blueprint.2 

The planar state space is discretized according to a square 
lattice having a resolution of one meter as shown in the upper 
portion of Fig. 3, hence the set of all grid points is the set 
of possible positions for the mobile device. Let the set of 
all grid points be denoted by g. Then, St E 9 for all t. 
Given such a grid, the mobility model p( St 1 St-l) is formed 
by simultaneously satisfying two conditions: 

1) For any two states i, j E 9 p(ilJ) = 0 if a straight line 
joining i and j intersects a red line (wall) and p( ilj) = 1 
otherwise, and 

2) p( i Ij) = 0 if the distance between state i and j is greater 
than M and p(ilj) = 1 otherwise. 

Finally, the transition probabilities are normalized so that 
Li p( i IJ) = 1 for each j E g. Here M is the maximum 
distance between two states. Naturally, this maximum distance 
takes into account the rate of measurement update of the 
device. In our prototype the measurements update rate is one 
measurement per second. Taking into account the maximum 
velocity of a human user is two meters per second, we choose 
M = 2 in our experiments. 

Fig. 3. Quantization of the State Space: NJRC's 4-th Floor. 

B. The measurement model 

We assume that and the observations are time-wise indepen
dent power measurements (also known in the language of WiFi 
as Received Signal Strength Indicators or RSSIs) of signals 
transmitted by several WiFi Access Points. In our running 
example will use six WiFi APs which are well distributed 
over the floor. The distribution of the power measurements 
we assume to be Rayleigh, i.e., we model the conditional 
likelihood function p(yls, e) as exponentially distributed with 
the mean determined by the parametric ray-tracing model. 

Several ray-tracing tools have been developed in both 
the industry and academia, for example models based on 
a dominant path [11]. Because the ray-tracing model is at 

2Blueprints for office buildings and malls are easy to obtain. There are 
a number of companies such as Navteq (www.navteq.com) which maintain 
databases of a number of commerical buildings in the US. 



the heart of the learning algorithm (it is used to compute 
Eq. 3), we developed our own simplified, flexible and highly 
computationally efficient model. 

The idea behind the model is the observation that the 
discrete state-space motion model developed in Section III-A 
can be used for efficiently3 computing an approximation to 
the two dominant paths of electromagnetic propagation from 
a transmitter to every point on the floor. More precisely, a 
Viterbi algorithm can be used to find the "diffracted path", i.e., 
the path that bends around wall corners. The other path is the 
direct path from the transmitter that goes through obstructions. 
The two paths are illustrated in Fig. 4. 

Five global parameters: 

()= Wall loss 
Direct path loss exponent 
DIHraction Loss 

lTransmlt power 

Diffracted path loss exponen� 

Output of ray tracing for each AP: 
A weight vee or at each location s : 

r number of walls, 

W (s);;; distance of direct path, 
number of diffractions. 

l 
Ldistance of diffracted pat� 

Fig. 4. The parametric ray-tracing model based on two paths: the direct path 
that goes through obstructions and the diffracted path that goes around wall 
comers. 

The ray-tracing model has only five parameters which are 
captured by the vector e in Fig. 4. It is then straightforward 
to compute the mean of the conditional likelihood function 
p(yls, e) in terms of the parameter e and weight vector 
w(s), for every location s on the floor. This model is highly 
amenable to being used in the learning algorithm because 
it decouples the computation of the structure or form of 
the likelihood function from its evaluation for a particular 
distribution of the parameters e. In this way, whenever the 
learning algorithm produces a new update of the posterior 
distribution of e, the conditional likelihood functions do not 
need to be recomputed. 

C. Results from an experiment 

In this section we report some of the field test results of the 
joint positioning and learning algorithm. The algorithm was 
implemented on HTC incredible smartphone mobile devices 
running a version of the Android operating system. The 
experiment results that we show have been conducted on the 
4th floor of the NJRC building, as used in our running example 
throughout this paper. The external signals were beacon frames 

3It takes an Intel I7 CPU roughly 150 milliseconds to compute the entire 
conditional likelihood function w.r.t. an anchor. 

transmitted by six WiFi Access Points (APs) that have already 
been deployed in the building for WLAN access. The beacon 
frames were transmitted every 100 ms by each AP but the 
mobile device scanned the WiFi channel once per second. 
Within one second the mobile device was capable receiving a 
beacon frame from each AP that is within RF range. 

To highlight the benefits of our learning algorithm, we 
first illustrate the pitfalls of using non-adaptive, deterministic 
parameters in the ray-tracing model. We recall that the five 
parameters are listed in Fig. 4. The value of the parameters 
was chosen based on an off-line surveying campaign that was 
conducted in the same venue: we used the Least Squares 
metric to find the set of parameter values that best explained 
the collected measurements at the user-input positions. Once 
the values of the parameters were determined they were 
used directly in the positioning algorithm (Eq. 2) without the 
learning steps. The results of the experiment for a 180 meter 
trajectory taken by the mobile device are shown in Fig. 5. 

Fig. 5. The performance of the positioning algorithm using deterministic 
parameters. The green dots lie on the actual trajectory taken by the mobile and 
the blue squares represent the estimated trajectory. The estimated trajectory is 
color-coded to indicate the reliability associated with the estimated position 
as reported by the algorithm: the darker the color, the higher the reported 
reliability. The key point is that inaccurately estimated positions are reported 
as reliable by the algorithm, which is an artifact of model error. 

The key observation that we draw from this experiment 
is that inaccurately estimated positions are reported to be 
reliable (in other words, to be of high probability) by the 
algorithm. The reason for this is that the ray-tracing model, 
which is inherently a coarse approximation for electromag
netic propagation, creates an inaccurate likelihood function 
which traps the MAP position estimates into locally optimal 
solutions. The fact that the reliability metrics are themselves 

unreliable means that a learning algorithm that attempts to use 
the estimated positions will quickly diverge and produce even 
worse parameter estimates. 

Our method of overcoming this limitation is to model the 
parameters as random variables. By doing so, we establish a 
way of capturing the uncertainty about our knowledge of both 
the best parameter values for the model at hand, as well as the 



structure of the ray-tracing model itself. For instance, if we 
know nothing except the bounds on the range of the parameter 
values, we can simply choose a uniform distribution as a prior. 
The effect of choosing such a high-variance prior is that the 
conditional likelihood function p(yls, B) is smoothed and its 
support is enlarged by the integration in step 1, Eq. 2. This, 
in turn, reduces the probability that the positioning algorithm 
will get stuck in local optima. We have attempted this very 
experiment, using uniform parameter priors, and the result is 
shown in Fig. 6. 

Fig. 6. The performance of the positioning algorithm using stochastic 
parameters. In particular, the five global parameters are considered to be 
independent and uniformly distributed on a wide support. The key point to 
note is that the inaccurate position estimates are detected by the algorithm 
and labeled with low reliability metrics (the light-blue positions). 

From Fig. 6 we observe that, though the position estimates 
are only slightly more accurate, the reliability metrics are 
much more accurate: this is seen in the fact that the inaccurate 
position estimates are considered unreliable and given a lower 
probability than in the previous experiment. As a result, the 
learning algorithm in Eq. 3 can use the estimated positions, 
weighed with the correct reliability metrics, to compute the 
posterior parameter densities. We apply the learning algorithm 
and use the posterior parameter densities to run the positioning 
algorithm on a new set of measurements taken by another 
mobile at a later time. The result is shown in Fig. 7 

From Fig. 7 we can derive several observations. Firstly, 
using the uniform parameter priors has the effect of reduc
ing the tail of the CDF curve as compared to the case 
of deterministic parameters. The large positioning errors are 
removed because the positioning algorithm is able to correctly 
determine the reliability of the estimates that it generates. As 
a result, the outliers can be easily filtered out of the data 
set and the information displayed to the user. Secondly, the 
uniform priors cause an increase in the number of small errors 
in the positioning algorithm. This is because integration of 
the likelihood function with a high variance prior naturally 
disturbs position estimates that are already reasonably accurate 
even with deterministic parameters (there will always be such 

CDF of position error (one sided conditioning) 

Fig. 7. The cumulative distribution function of position error in meters. The 
blue curve was obtained using deterministic parameters, the red curve using 
uniform parameter priors and the green curve using the learned posterior 
parameter distributions. 

locations due to the power of motion constraints alone). 
Finally, as we expect, the learned posterior parameter densities 
yield the best positioning accuracy. 

IV. COOPERATIV E POSITIONING 

If the mobile devices are able to communicate, the position
ing accuracy of the overall system can be improved. If we view 
each mobile device in the network as a probabilistic anchor 

that is able to send and receive position distributions to/from 
other devices, we can ilmnediately see that the message 
passing paradigm naturally allows for the inclusion of such 
information in the computation of the marginal position distri
butions for every user. The individual factor graphs are coupled 

Fig. 8. The factor graph for cooperative positioning 

via the inter-device signal measurement likelihood function 
p(z, z'IB, s, s'), where (z, z') and (s, s') are the received 
inter-device signal measuremnents and positions of the two 
devices, respectively. One practical example of this function 
is a pairwise distance measurement function using Round
Trip-Time estimation (RTT), which could be represented by a 
Gaussian distribution centered around the Euclidean distance 
between sand s'. 



In this section we describe some of our early results of 
applying the cooperative positioning framework to the problem 
of vehicle positioning. 4 We assume that the vehicles are able 
to, amongst each other, communicate and observe RTT mea
surements using Direct Short Range Communication (DSRC) 
signaling. DSRC is an upcoming technology for inter-vehicle 
communication that is currently being standardized across the 
world. Vehicle communication and positioning are subjects of 
current research at NJRC. 

We choose the particle filter method largely due to the 
physical area of the positioning venue and the high position 
resolution requirements. For external signals, we use sim
ulated GPS measurements which are assumed to be time
independentS sequences of Gaussian densities with fluctuating 
variances. The model for inter-vehicle distance measurements 
is a mixture of a Gaussian density centered at the true distance 
and a uniform density which models multipath errors. The 
motion model is Markov and assumes that the vehicle can 
measure (via inertial sensors) a noisy displacement from its 
previous position (which is 1 second earlier): the noise is 
assumed to be a Gaussian random variable with zero mean 
and a variance of 1 meter. 

The results of the experiment are shown in Fig. 9. From 
the figure we observe that using the single-user positioning 
algorithm can already significantly improve the positioning 
accuracy over that of stand-alone GPS: errors as high as 30 

meters happen with a probability of 0.6, whereas the position
ing algorithm reduces this number to ten meters. Cooperative 
positioning can further reduce this number to five meters. 

Though these results are encouraging, they serve only as 
an illustration of the potential of cooperative positioning. 
Much further work is required to test the performance of 
the algorithm in more realistic scenarios, with more realistic 
models for the GPS measurements and the inertial sensors. 

ApPENDIX 

It is straightforward to show that the posterior density 
P (elyT, ST) can be iteratively computed using the relation 
p(elyT, sT) = CTP(YTle, ST)p(elyT-l, ST-l), where CT 
is a normalization constant, and yO, sO are defined to be the 
empty sets so that, by definition, p(elyO, sO) := po(e), where 
po(e) is the prior parameter density. By the independence of 
ray-tracing parameters p(ely, s) is a product of the individual 
p(eily, s), hence, the key to the overall posterior density 
computation is the computation of the single-letter quantity 
p( ei Iy, s). Since it does not admit a closed form expression, we 
approximate it using a Monte-Carlo simulation p (eily, s) = 

1 ",L p(yIBi,B,-"s) 
Th . bl eA-i. d L L..,l=l p(yls) . e vana e I IS a ran om vector 

4We emphasize that the results here are for purposes of illustration of the 
graphical model framework in the network context. The authors in [IO] have 
studied the slightly different problem using virtually the same approach: they 
have assumed a deployment of infrastructure anchors to aid the distributed 
algorithm, whereas we assume only that the vehicles have GPS. 

sThis assumption is not necessarily valid in practice in urban environments. 
The effects of mUlti-path and satellite geometry are spatially correlated due 
to the presence of large buildings and other obstructions. Our model is a first 
step towards understanding the performance of cooperative positioning. 

meters 

Fig. 9. The CDF of the vehicle position error, averaged over 20 vehicles. 

sampled from the joint prior distribution on the set of param
eters not including ei. Note that the term in the numerator is 
the conditional likelihood function and that it can be evaluated 
using the method described in Section III-B. The approximate 
total probability can evaluated as p(yls) = t Ll p(yIBI, s) 
where Bl is a random vector sampled from the joint prior 
distribution of all the parameters. It was found by experiment 
that L = 100 yields sufficiently accurate results. 
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