
NAFIPS 2005 - 2005 Annual Meeting of the North American Fuzzy Information Processing Society

A Modified Competitive Agglomeration
for Relational Data Algorithm

Lisa Gandy, Shahram Rahimi, Bidyut Gupta
Department ofComputer Science

Southern Illinois University Carbondale
Carbondale, IL 62901, USA

[Igandy, Rahimi, bidyut]jcs.siu.edu

Abstract - Clustering algorithms are invaluable methods for
organizing data into useful information. The CARD Algorithm
[11 is one such algorithm that is designed to organize user
sessions into profiles, where each profile would highlight a
particular type of user. The CARD algorithm is a viable
candidate for web clustering. However it does have linitations
such as long execution time. In addition, the data preparation for
the algorithm's requirements employs concepts that are
incomplete. These limitations of the algorithm will be explored
and modified to yield a more practical and efficient algorithm.

I. INTRODUCTION

As the World Wide Web has grown in size, an immense
amount of data has been produced. If this data is not
retrieved and organized correctly then the information that the
data can provide is essentially wasted. Users often become
frustrated because they are certain that the information that
they are looking for is on a particular website, but the website
is so large that it is almost impossible to find the information.
In this case, an adaptive website can become very helpful.
This website would follow the clickstream of the user. That
is, the website will keep account of web pages that the user is
looking at, and recommend other pages that previous users
found useful.

The website will implement this adaptability by having a
database of typical user profiles. A user profile is defined as
an "abstract model that summarizes the relevance of each
URL on a site relative to a group of users sharing a similar
interest [2]." The user profile will be characterized by
previous user sessions. A user session is a set of web pages
that a user examined within a specified time period. To
organize the user sessions into profiles, the website
administrator could examine each user session and manually
place them into profiles. However, this is unrealistic for many
reasons, for instance, many web sites have millions of users
accessing it daily and it is impossible to find patterns by mere
manual examination. Therefore, we can easily see that an
unsupervised clustering algorithm is an attractive choice for
clustering user sessions into profiles of several types of typical
users since it relies on user access patterns and is capable of
examining large amounts of data in a fairly reasonable amount
of time [1].

Although the CARD algorithm has found useful user
profiles in prior publications, there are several assumptions
made during the implementation of the algorithm that are
questionable [1]. For example, when the relational data is

being formed, URL paths of HTML documents are compared.
When forming similarity data the authors assume that similar
web pages will be in similar folders. Ideally this might be the
case, but generally the World Wide Web can be quite
disorganized and pages that are in the same folder might not
have the same purpose. We propose comparing web pages
with an algorithm that will scan the title of the page, and then
scan for keywords. The keywords of the two documents will
then be compared and a similarity in the range of [0, 1] will be
found. A comparison will then be implemented to find
whether the new clusters that result from the modified data are
more valid.

In addition, the original algorithm takes a large amount of
time to run. From our initial experiments with 1800 web
sessions, the algorithm took approximately 6 hours to run.
This of course could be done offline, but if actually used, it
would take an entire night to formulate user profiles. If the
number of web sessions grow, then the time to execute will
grow exponentially and quickly become very unreasonable.
Therefore we will analyze methods to decrease the execution
time of the algorithm when run serially, and also implement
the algorithm in a parallel computing environment. The
algorithm easily lends itself to parallel computation since it is
primarily based on matrix mathematics.

II. COMPETITIVE AGGLOMERATION FOR RELATIONAL DATA
ALGORITHM

The CARD algorithm is characterized by (1):

J (U,B; X) = jj(u)2d2(x/5) - CFN12
1=]=1

i IU
(1)

subject to for j E I 1C, N IN
i=l

where X = {xI j= 1,...N} is a set ofN vectors and B=(.
c) corresponds to C-tuple prototypes, where each prototype
characterizes a cluster. In (1), d2(xj,) represents the distance
from the feature vector x; to the cluster and u, represents the
membership of the point xj to the cluster . The first term
given in the equation controls the size and the shape of the
clusters. The second term controls the number of clusters [1].

The clustering algorithm can be used for feature vectors -
in this case it is simply known as the CA (Competitive
Agglomeration) algorithm. However for several reasons, as
discussed in [1], clustering user sessions requires the use of

0-7803-9187-X/05/$20.00 02005 IEEE. 210

relational data, which can be represented by a matrix of
similarities between each session to all other sessions.

To define the similarity matrix of size Nsx Ms(where Ns is
the number of user sessions) we first assume that each session
is defined by a vector known as s which has size Nun (where
Nurl is the number of URLs) Each entry contained in the
vector can either contain a 1 or 0 depending on whether ih
URL was visited during the particular user session. Thus, the
relation between two user sessions can be found by applying
(2), which is essentially then number of identical URLs
between the two sessions related to the number of URLs used
in both sessions [1].

5lrk= Er S (k)5 (1) fork=JLN, l=k.. N (2)
u-I

Zs(k) s
1

Equation (2) relies on the fact that only identical URLs
between sessions are considered. However, two web pages
might not have the same URL but may have quite similar
content or usage. Past research has suggested that the
syntactic similarity of two URLs should be considered. This
syntactic similarity will be known as Su, and is displayed in (3)
[1].

S.(i,j) = min r m P) P 1) (3)
max (1,max QP i1,| |) - 1)))J

This similarity will lie between [0,1]. For instance the
web page www.cs.siu.edu/-cs491-3/index.html and the web
page www.cs.siu.edu/materials.html would have a syntactic
similarity of 0.5. This syntactic similarity is then incorporated
into the intersession similarity equation to form the updated
(4) [1].

N INu,l

i,=I j=1 (4)
S (k)sjl) (,

Si s

i=l j=l

However, it can be shown that when the syntactic
similarities are low S, is a better approximation of session
similarity and then the syntactic similarities are high S, is a
better approximation. Therefore to get the optimal similarity
measure past research suggests that the maximal result of the
two equations should be taken as Si,, as shown in (5) [1].

SUk = max(S1',,S2,) (5)

For further information concerning the CARD algorithm
please refer to [1].

III. IMPROVING CLUSTERING: THE FIRST MODIHCATION

A. Theoiy

As stated previously, finding S. by comparing URL paths
can be problematic, in the sense that simply because two web
pages are in the same directory structure does not guarantee
that they will have similar content. I proposed comparing
each document to all other documents and finding a keyword
similarity that will be added to the similarity found in (3).
The proposed keyword similarity is given in (6)~~~~~~~~~(6)

L' (keYk("1eyk((6))
NkQj)=-)

kw (S E key(j)

UniqKey identifies the number of matching keywords between
two documents i and j. The identifier keyk,'1 represents the
number of occurrences of keyword k in document i. Therefore
in the numerator of (6), a running total of the minimum
occurrences of matching keywords in the compared
documents is taken. The denominator of (6) is simply the
number of occurrences of all keywords occurring in
documents i and]. This equation has the attractive property
that Sj'i,i) = I and Sk,(iji) = Ske,(j,i) and S,k,(ij) = [O.. 1].

The use of min in the numerator deserves some thoughtful
consideration. The idea is that if a keyword occurs very
seldom in one document and very frequently in another
document then the two documents must not be very similar in
general. In this case it is better to take the smaller value of
keyword frequency to reflect this dissimilarity. If the average
was taken then the fact that one document might have a small
frequency for one keyword and the compared document has a
large frequency might be masked.

Once the keyword similarity is found it is added to the
similarity found in (5) to find a new similarity measure given
below in (7). When the combined values of S and S,., exceed
1, we simply choose 1 as the maximum value. Notice that S*ev
has been given a weight of two thirds and S has been given a
weight of one thirds. In previous trials Ske was simply added
to S, however at these times, the clusters formed were too
large, because all pages had very high similarity measures. At
the same instance, however, we want the keyword similarity to
have more weight than the URL similarity so that when
comparing using only URL weights and URLs and keywords
weights combined, we see a noticeable difference in cluster
size and shape.

Suky=min(6 +Skey*2)/3,1) (7)

B. Implementation
During keyword parsing the Porter Stemming Algorithm

is used. The purpose of this algorithm is to remove suffixes
that can cause keywords to seem different when they actually
have the same meaning. By using this algorithm the
performance of the keyword system will improve, and will
also be less complex, because there will be less keywords per
document [7]. The algorithm used is taken from the URL
http://www.tartarus.org/-martin/PorterStemmer/Java.txt. After
all keywords are found, keyword similarity is generated and
added to the URL similarity mentioned previously.

211

We should keep in mind that the keyword algorithm that
was used is not the most state of the art keyword processing
algorithm that can be found. It simply considers words
between certain html tags (such as <p>, <a>, <title>, and
<i>), gleans out words such as possessives, articles and
commonly found scripting terms and then stems these words.
No document term frequency is found. More advanced
keyword processing was not possible due to time constraints.
However with further research enhanced keyword processing
should give enhanced results.

C. Results
1) Perfionnance: One of the key points of concern when

adding keyword similarity to the generation of similarity data
using URL syntactic similarity is that this process will add too
much execution time to the overall algorithm. Although this
computation did incur additional execution time, this time was
negligible. For instance before intersession similarity can be
found using keywords, the actual keywords must be parsed
from the html documents that have been referenced by the
users. With 1116 user sessions and 2151 html documents it
took approximately 40 seconds to find all keywords. Fig. 1
illustrates the amounts of time that it took to find keywords for
varying numbers of user sessions. After all keywords have
been found, then the keywords can be used to find intersession
similarity. The time between finding intersession similarity
when using just URLs and when using URLs and keywords to
generate intersession similarity is also low. For instance with
1116 user sessions and 2151 URLs it took approximately 58
seconds to find similarity using URLs and approximately 66
seconds to find similarity using URLs and keywords. Fig. 2
illustrates the time differences between using URLs and URLs
and keywords for different numbers of user sessions.

2) Cluster Validity: Before results of using URL
similarity and combined URL and keyword similarity can be
examined, the proper validity measures must be chosen. For
this paper, the equation that finds clusters is given in (8).

X-{= () SdeId < djt V].t- i; for 1<i<C (8)

Once we find the clusters using (8), then we find the intra-
cluster similarity. This is a cluster validity measure that gives
the approximate distance between all pairs of sessions in a
cluster. The formula used to find the intra-cluster distance is
given in (9) [1].

Dwi =E (K)eX IS(I)EX l*k di/Xi(jX1I -1) (9)

Another useful validity measure for clusters is that of
URL probability per profile, given in (10) [1].

P0 =pw(s5= l set) E xi)I= Xi, , where X0 =is5() ExX (k) >0)} (10)

P. represents the probability that URL j will occur in cluster i,
where cluster i is represented by Xi. For cluster validity, we
tend to favor clusters where the intra-cluster distance is low

and the majority ofURL probabilities per cluster are high. If
the URL probabilities are high then there is a frequent pattern
ofURL access. A "bad" cluster will generally have high intra-
cluster distance and low URL probabilities.

45000

40000

35000/

30000
E26000

E 20000
/

150D0

1:0000
5000

100 300 500 700 900 118s
Numberof uor osibno

Fig. 1 Time to find keywords for
varying number of user sessions

7000 .----.- -....-.- _.. _.

6000 URL similarity

Keyword andURL
E 000

500 simlrilty A

E 4000

*g3000-

2000

1000

100 300 500 700 900 1116

Number of user sessions

Fig. 2 Time to find intersession similarity using
just URLs and URLs and keywords

3) Discussion
The settings for the CARD) algorithm to obtain the results

were following: at the beginning of the algorithm 50 rows of
the membership matrix were chosen randomly to be the
centers of clusters. The time constant T was set to 10, the
decay constant no was set to 0.0002. A cluster was discarded
if its cardinality (Ni) was less than 22.0.

When using URL similarity only, five clusters were
generated. In the results obtained, cluster 0 is primarily
referring to Dr. McGlinn's pages, cluster 12 is primarily
referring to the CS pages and in some instances the cs200b
web site, cluster 13 is referring to a combination of Dr.
Wainer's 485 class, and Mr. Fong's cs3l1 and cs220 classes,
cluster 25 is referring to a UNIX description page and cluster
34 is referring to primarily the cs220 pages. All of the clusters
are valid clusters, in the sense that their intra-cluster similarity
(DWi) is low and that inside the clusters the general URL access
pattern is high.

The only cluster that seems questionable is cluster 25,
where the URL access patterns are very low. Because of the
unusually low URL access pattern this cluster could be
characterized as a collection of unrelated pages, more like the
leftovers from the other clusters.

When using URL and keyword similarity together, seven
clusters are generated. It seems that the clusters from just

212

using URL similarity have been broken down into more
identifiable clusters when incorporating keyword similarity.
For example when using URL similarity alone, cluster 0 is
primarily composed of Dr. McGlinn's pages and all other
clusters do not reference these pages. However when
keyword similarity, clusters 1, 8, and 12 all reference Dr.
McGlinn's pages.

The URLs that cause these three clusters to deviate, are
the following: in cluster 1, the url
/-mcglinn/Courses/cs2O2/McGlinnSlides/index.html is
present, in cluster 8 the two urls /-mcglinn/home.html and
/-mcglinn/index.html are present, and in cluster 12, the two
urls -mcglinn/Courses/cs202/JavaInformation/index.html and
/-mcglinn/Courses/cs202/omework/index.html are present.
Table 1 shows the URL access probabilities for the five
previously mentioned urls in cluster 0 when using URL
similarity only and clusters 1,8 and 12 when incorporating
keyword similarity as well.

What appears to be happening is that when using keyword
similarity the similarity of the URLs given in Table I is
increasing, since these pages share a common theme with the
other pages in Dr. McGlinn's web site.

This increased similarity gives these URLs a chance to
compete when the clusters are being formed and lend enough
similarity that they help delineate the one cluster referring to
Dr. McGlinn's web site in Table I into three separate clusters
in Table 2.

Another interesting development is that when using URL
similarity the URLs for cs200b class were simply part of a
cluster that primarily referred to several types of computer
science pages in cluster 12, however when incorporating
keyword similarity the cs200b class has been assigned its own
cluster.

However, using keywords has rewards as well as
problems. If we examine the results further, we see that when
incorporating keyword similarity we often see low URL
probabilities. Also, in cluster 0, the url probability for URLs
index.html and -cs200b-l/index.html the URL probability is
reasonable, but the other URLs in the cluster do not have very
high URL probability. One very possible reason for this is
that we were unable to parse keywords from all documents.
The session data was obtained in Fall 2004 but the CARD
Algorithm was not fully tested until early Spring 2005.
Therefore several web pages were already taken off the web,
rendering them impossible to parse. In addition, several pages
were password protected and due to time constraints we were
not able to gather all of the passwords, therefore we could not
obtain the HTML source for these pages for parsing.
Therefore, these pages had no added keyword similarity.
However, keep in mind that the URL similarity was factored
in. Therefore in some instances, course web pages will still be
found together, for instance, although Mr. Fong's 220 class
was inaccessible for keywords, the pages were still clustered
together.

TABLEI
URL ACCESS PROBABILITIES WHEN USING ONLY URL SIMILARITY AND

WHEN INCORPORATING KEYWORD SIMILARITY

IV. PERFORMANCE IMPROVEMENT: THE SECOND
MODIFICATION

A. Parallel Implementation
When clustering user sessions into profiles, the actual

CARD algorithm is relatively fast. Most of the time spent in
execution is during the early data preparation phase. For
example (2) and (4), where the session similarity is computed,
take the majority of time to execute. However (2) and (4) can
be simply executed by using for loops. This combination of
for loops and matrix mathematics make the algorithm easy to
implement in parallel.

If we look closely at (2) and (4), we can observe that
s[i][j] = s[j][i]. For example if we find the similarity
between session 0 and all other sessions yielding the row
S[O][O..N,,-1] then on subsequent iterations we will not need
to find any other session's similarity to session 0 because this
has already been computed. In general when using (2) and (4)
on a serial computation we only need an answer matrix S
which has the following number of elements exhibited in (11).

NIs-

numElements = N * (N- i) (II)
i=O

Therefore when we compute (2) and (4) we only compare
session 0 to sessions 1 through Ns, session 1 to sessions 2
through N, and so on. In general with each new session we do
one less comparison with the other sessions. If we could
envision what the matrix looks like when we do this
computation it could be illustrated by Fig. 3.

Na*Hd e* .li .NUII

Fig.3 Computation during iterations 1, N, /2 and N.

In a parallel computation, where we will denote Npas the
number of processors available, it would seem most
appropiate that each processor should calculate the similarity
of N,! N number of sessions to all other sessions. For
example if there are 1116 sessions and 9 processors then each
processor will calculate the intersession similarity for 124
sessions. If the number of sessions does not evenly divide by
the number of processors, then we add one session per
processor, until all remaining sessions have been distributed.

213

To begin the parallel computation the root node in the
parallel cluster reads in a matrix s of dimensions N x Nun. It
then distributes to each processor a beginID and a endID. The
beginID and endlD are the ids of the sessions for which each
processor will compute intersession similarity. For example if
there are 1116 sessions and 9 processors, then processor 0 will
compute intersession similarity for sessions 0-123, as will
processor 1 for sessions 124-147 and so on until processor 8
will compute intersession similarity for sessions 992-1115.
Once each processor has received its beginID and endID, then
the root node will distribute the row beginID through the N,-]
row to each processor.

Before each processor can compute (2) and (4) it must
allocate space in which to hold its intersession similarity. If
we define Nk,,, as the number of sessions per processor then
the number of elements for the matrix S per processor would
be found in (12).

Nrows -1I(2num_matrixS elements = Nrows * E (Nr,.-i) (12)
i=O

Once the answer matrix S has been formed, (2) can be
computed. The modified equation, (2) for parallel will simply
find intersession similarity for sessions beginID through
endID as related to sessions beginID+1 through Ns. Similarly.
a modified equation, (4) can be computed, this equation also
finds intersession similarity for sessions beginID through
endID as related to sessions beginID+1 through Ns

B. Results and evaluationt
The computational complexity of finding the intersession

similarity is 0(n4). We will consider p to be the total number
processing nodes available for the computation. Therefore,
we can define the efficiency (E) as the time for the serial
algorithm (referred to as T) divided by the product of the
parallel time (TI) and p [8]:

E =
pTp

(13)

And the speed up to be [8]:
T

S= Tc (14)
T

An efficiency of 1 implies that the scalability of the
system is unlimited as the problem size grows. Moreover not
considering the main memory and cache limitation effects in a
single computing node; speedup is bounded by a threshold
value subject to Amdahl's law [8].

For implementation and evaluation of the concepts
presented, a dedicated OSCAR cluster [9] of nine nodes was
utilized. All compilations were done using the LAM MPI
libraries, packaged with the OSCAR middleware. Each of the
computational nodes consists of a single Pentium 4 class
processor, with 786 megabytes of memory, a clock speed of
2.0 gigahertz and a 8 KB on board cache. The computer that
was used for serial computation had a Pentium 4 class
processor, with 512 megabytes of memory, a clock speed of
2.0 gigahertz and 512 KB on board cache.

The data that was used in testing ranged from 100 to 11 16
user sessions. The serial and parallel runtimes are presented in

Fig. 4. The speedup of the parallel implementation is
illustrated in Fig. 5 and its efficiency is shown in Fig. 6.

The speedup and efficiency seem to reach a peak level at
about 500 user sessions and then the speedup levels to about 4.
In general we have sped up the algorithm by about 3.5 times.
Although this may seem modest, if we look at Fig. 4 we can
see that with 1116 user sessions it originally took 4.4 hours to
find the session similarity when using serial computation and
when using parallel computation we have decreased this time
to 1.25 hours.

The suggested use of this parallel computation is to first
use the serial algorithm to find the similarity of all URLs to
each other, and the occurrence of each URL in each session.
This would give us two input files, urlSimilaritytxt, which
would contain a matrix of size Nirl x Nr, and
urlOccurrence.txt, which would also contain a matrix of size
N, x N",. These files could then be sent to the OSCAR cluster
and the session similarity could then be computed on the
cluster. After the session similarity has been computed, the
cluster will output a file called sessionVsSessionSimilarity.txt
which would be size NV x N,. This file could then be fed back
into the serial computation so that the CARD algorithm can
complete.

One relatively simple way to speed up the parallel
computation further is to reduce the times that matrices are
being sent from the root node to the other nodes. In general in
the computation discussed, when the root node sends the
similarity matrix to each matrix, this could be stopped, and
instead each matrix could read in its portion of the similarity
matrix from a file. In this way the time to send the matrix is
completely diminished and all that is left is file access time
and data retrieval from the file, which is quite fast when using
the C programming language. However, this implementation
was not performed due to time constraints.

V. CONCLUSION AND FUTURE WORK

Clustering algorithms have become an invaluable way to
form user sessions into profiles. Once these profiles have
been formed, then a recommendation engine can use these
profiles to give user's suggestions on which URLs will be of
interest to them. This can not only be useful, but profitable.
For example a company who is selling items can use the
profiles to make suggestions to a user about other items that
they are interested in. Improvements in clustering are being
made very quickly and these algorithms are becoming faster
and more reliable.

In Section 2 we have shown that incorporating keyword
similarity into URL similarity creates some clusters which
have greater intra-cluster similarity. These clusters also show
high URL probability rates. However, when incorporating
keywords we have also seen that results are not perfect and
that some clusters are formed with low intra-cluster similarity.
A probable reason for this discrepancy is HTML documents
that are offline and therefore cannot be parsed for keywords.
In Section 3 we have shown that there can be a large speedup
in overall computation when we find similarity using parallel
computing.

214

Suggested improvements are to test modifications 1 and 2
on larger data sets. Another improvement would be to change
the dataset from a computer science web site to a larger and
more diverse website. Also, for the sake of using keywords,
one should make sure that the majority of referenced HTML
documents are online and if password protected all passwords
are known so that the HTML source can be retrieved. In this
way, also we think that a more diverse, complete and/or a
larger dataset would demonstrate a more marked improvement
due to the modifications. Also, when finding updated
similarity the keyword similarity is given a weight of 2/3 and
the URL similarity is given a weight of 1/3. It would be
interesting to modify these weights and find the weights that
give the best clustering outcome.

300

--serial
250 -- parallel

,200
I

1 0 _ *
100 u300 500 70ss0o11

P~~~~~ubro srssin

REFERENCES

[1] 0. Nasroui, R. Krishnapuram et al. "Extracting web user profiles using
relational competitive fuzzy clustering" International Journal on Artificial
Intelligence Tools, Vol. 9, No. 4, 2000, pp. 509-526.
[2] 0. Nasraoui, C. Petenes, "An intelligent web recommendation engine
based on fuzzy approximate reasoning" 12th IEEE International Conference
on Fuzzy Systems, Vol. 2, May 2003, pp. 1116 - 1121.
[3] R. Krishnapuram, A. Joshi et al, "Low-complexity fuzzy relational
clustering algorithms for Web mining," IEEE Transactions on Fuzzy
Systems, Vol. 9, No. 4, Aug. 2001, pp. 595-607.
[4] M. Vazirgiannis, "Data Mining: Concepts and Techniques," Tutorial
Paper, Proc. ADBIS 2001, Vilnius, Lithuania.
[5] F. Heylighen, "Collaborative filtering," website:
http://pespmcl.vub.ac.be/COLLFILT.html, March 2001.
[6] G. Linden, B. Smith, and J. York, "Amazon.com Recommendations: item-
to-item collaborative filtering", IEEE Internet Computing, Vol. 7, No. 1,
Jan/Feb 2003, pp. 76-80
[7] M. F. Porter, "The Porter Stemming Algorithm," Program, Vol. 14, No. 3,
1980, pp. 130-137.
[8] A. Grama, Introduction to parallel computing 2Md edition, Addison Wesley,
2003.
[9] "OSCAR (Open source cluster application resources)," website:
http://oscar.openclustergroup.org.

Fig. 4 Serial and parallel run times when finding session similarity

4

3.5

3

2.5
a ~ ~ ~~~~/ Speedup (Parallel

q 2)Time/Serial Time
'q 1.5

0.5

0
100 300 50 700 900 1116

Number of user sessions

Fig. 5 Speedup Graph

0.45
0.4-

0.35 -

0.3-
025-

,0.2 -

0.15 - / Efbficncy (SerilTrre/(#Paralbl Nodes 'PeraieslTs7)
0.1

0.05-
0 -

1 2 3 4 5 6
Number of user sessions

Fig. 6 Efficiency Graph

215

