forum | developer Easy Viewing |

OCTOBER/NOVEMBER

Easy Viewing

Design Patterns in View

Using design patterns in development gives us a lot
of advantages. It promotes loose-coupling, eases

redevelopment,

allows code reuse, and so on.

However, improper use would give us ultra spaghetti
code as they are scattered into multiple objects. This
article demonstrates how design patterns can make
our lives easier in common head aching cases.

By Man-ping Grace Chau & Ka-hung Hui

Background: MVC Pattern
n this article, we shall look at why Mod-
I el-View-Controller (MVC) could be use-
ful. Let us look at two examples: course
registration and online XSL file generation
(see Fig. 1and 2).

In both cases, the applications repeat the
same processes, namely:

« Obtaining data from disk

« Optimising the data and generating an in-
put form for users

» Acquiring user input

» Processing user input and generating ac-
knowledgement

« Saving the data back to disk

This process is applicable to web applica-
tions, like online shopping and attendance
record systems.

Repetition of the processes is tantamount to
reuse. It would be tedious to rewrite entire ap-
plications when only the presentation of the
form and format of the dataset is changed.
There should be a way to reuse the applica-
tion’s framework’ only by altering parameters.
And, this is what breeds the idea of MVCs.

In a web application, the Controller is re-
sponsible for accepting user inputs and per-

forming error checking/correction. Based on
the user request, it determines which Model
and View should be used. While the Model is
responsible for business logic and accessing
data in disk, the View is solely for presenta-
tion purposes. In the example of course reg-
istration, the steps and the corresponding re-
sponsibilities of each object are as followed:

« The Model gets the data from the course
database

» The View is updated and course registra-
tion form is generated for students

« Students choose the course according to
the vacancy, and submit the form

« The Controller retrieves students’ inputs
and performs error detection

« The Model is informed of the students’ in-
puts, and it updates the course database

» The View to display the acknowledgement
is chosen, and registration result is dis-
played to the students

This relationship is detailed in Fig. 3.

While there may be similarities in the func-
tionalities of web applications, an efficient user
interface plays an integral role in its success. In
the following section, we will look into how de-
sign patterns can be employed in constructing
Views to deal with several common problems.
For example, how to avoid writing repetitive
codes by reusing presentation designs, enable
redevelopment by promoting loose-coupling

Fig. 1: Online XSL file generation

Fig. 2: Course registration

68 S/ hsia

| Easy Viewing

forum | developer

ISSUE 05.05 | OCTOBER/NOVEMBER 2005

between form compo-
nents, and minimise
classes spanned out by
choosing the right de-
sign pattern to use.

Different Imple-
mentation for the
Same Presentation
The need for different
implementation of the
same presentation orig-
inates from the popular
use of mobile devices;
while web browsers re-
quire HTML/XHTML,

Fig. 3: MVC

Listing 1:

WAP phones need
WML. Since the logic for building the form
is the same, only the implementation for the
form’s components differs as per the various
requirements of markup languages. In such
situations, the Bridge pattern enables separa-
tion of the implementation and logic.

In this example, there are two kinds of form
that we are interested in: the map quest form
and a course registration form. The logic in
constructing the forms is encapsulated in
the objects MapQuestBuilder and Register-
Builder. They require the same component,
Table, to build the form. In Listing 1, we as-
sume there is a certain way of learning about
the implementation the user requires. Based

Listing 2:

on that information, different Table objects
will be instantiated to build the form without
changing the logic of the Builder, since all the
Table objects share the same interface.

This example shows how to separate the im-
plementation from the logic, to enable easy
addition/reuse of components and switching
the implementation of components without
affecting the logic.

Fig. 4 shows that Builder can be added eas-
ilv, and all objects can share components to
construct different kinds of forms.

Maintaining States

Often, the user interface generated and the
actions to be performed depend on the state
of user; for example, whether a student has
enough points to register for a course. One way
to achieve this is to first perform state checking.
The simplest way to check states is to use if-else
statements. However, this type of checking in-
troduces too many if-else statements. Addition-
ally, if the number of possible states becomes
too large, it will be hard for developers to keep
track of the state transitions and the relation-
ship between different states. Using the State
pattern can solve this problem.

As shown in Listing 2, in State pattern, ac-
tions are performed according to the state of
the user. The transformation of state can be

ncToser/NovimaER 2005 SDMsa 69

forum | developer

www.sda-asia.com | OCTOBER/NOVEMBER 2005

Fig. 4: Bridge pattern

encapsulated in the State objects, so it is not
necessary to write out messy if-else blocks.
Also, by using State pattern, we can have a
clear picture on the state transitions.

Sometimes, an event might only trigger ac-
tions in a particular state. The State pattern
helps to alleviate the problem of having to
check the conditions in different states, by
subclassing all state classes from a generic
state class that provides default behaviours
to all events. Then, for each state subclass,
only the methods that respond to the events
handled in the state need to be overridden.
Listing 3 shows an example.

Double Dispatch

In the first example, the methods of Table are
fixed as tableStart, rowStart, and so on. In-
flexibility might arise if you want to add more
methods, since all the classes (including the
base class) need to be changed. The Visitor
pattern can be put to use in such situations
(see Fig. 5). The Visitar would be responsible
for the operation, and the component would
accept these Visitors when performing differ-
ent actions. Henee, when more actions are
added, all we need to do is to add a class of
type Visitor.

For the course registration example, we will
need to display different nodes, like course
and activity nodes, in the form. We started
with one Visitor — PrintVisitor, and each
node had a callback to the Visitor to perform
the print action. To add an action, say, to
perform searches on the Nodes, we just need
to add SearchVisitor. The Visitor pattern is
especially useful for separating objects from
unrelated operations. It is assumed that the
Node does not need to provide too much de-
tail about the operations; otherwise, it would
break the encapsulation rule.

70 SDAsia 0CTOBER/NOVEMBER 2005

Each visitor should identify the node type
so that corresponding actions can be carried
out. In PHP, this can be done by the new in-
stanceof keyword, as shown in Listing 4.

Of course, the disadvantage of using this ap-
proach would be introducing too many if-else
statements. This breaks the idea of encapsu-
lation as the Visitor knows too much about
the Node. The primary problem here is that
only single dispatch is supported in PHP,
meaning that the function to be run depends
on the function name and type of ohject as-
sociated with the called function.

The Visitor pattern helps alleviate this problem
by emulating “double dispatch”. In double dis-
patch, the function to be run also depends on
the type of object, which is passed to the func-
tion as an argument, in addition to the two cri-
teria mentioned. See Listing 5 for an example.

Inthe example, when CourseNode Accept() is
called, the node type is identified and passed
to PrintVisitor.Visit() via the “this” pointer.
When PrintVisitor.Visit() is called; the type
of node and visitor is identified before the
correct implementation is chosen.

Listing 3:

Easy Viewing |

To increase the number of states, the Visitor
pattern can be used together with the State
pattern, by providing a visitor-type param-
eter to the checkState() method, as shown
in Listing 6. The only inconvenience of this
approach is that all checkState() methods in
the state subclass must call the overridden
checkState() method in the base state class.

Complex Components

There are several patterns that enable us to
manipulate complex components. The sim-
plest method is by delegation, which distrib-
utes the heavyweight processes to other ob-
jeets. According to the Strategy pattern, each
object may share the same interface such that
the client using them is ignorant about the
change of objects.

The next task is to draw menus in table
cells in our first example with Table and
Builder. The responsibility of drawing the
menus can be encapsulated in different
Menu objects, which share the same inter-
face. In our case, more Menu objects can
be added by subclassing, and the Builder
can change the Menus without altering the
code.

The Command pattern (see Fig. 6) is also
employed in this example (see Listing 7). The
Builder fixes the menu content by param-
eterising the Menu object. The Menu abject
is passed to the Table, and $menw.Draw()
is called to draw the different Menu. Only
Builder, which controls the logic of the form,
knows about the content of Menu. This effec-

| Easy Viewi ng

forum | developer

Fig. 5: Visitor pattern

Fig. 6: Command pattern

tively ensures encapsulation, as the Table is
ignorant about how the Menu changes.

Additional flexibility can be introduced with
a string being used as a callback. As a result,
even the callback funetion call in Table can
be determined in Builder; such that Table re-
mains ignorant about the action to manipu-
late both Menu and the Menu content.

This could be applied to an application for
displaying library items, like books, CDs and
magazines. The Table will have noidea of what
itis displaying, since the Builder controls it.

To construct a form with even more complex
structure, Chain of Responsibility can be em-
ployed (see Fig, 7). This is done by delegating the
responsibilities in drawing a complex component
to multiple objects. All these components should
share the same interface, and the chain in per-

forming the action can be arranged by the Com-
pasite pattern. With Composite pattern, the same
container, such that recursive composition can be
used and any discrimination can be avoided.

As shown in Fig. 7, it is the Component, in-
stead of the Builder, which decides what oth-

Listing 4:

ISSUE 05.05 | OCTOBER/NOVEMBER 2005

Listing 5:

Listing 6:

OCTORER/NOVEMBER 2005 S ke 71

forum | developer

Easy Viewing |

www.sda-asia.com | OCTOBER/NOVEMBER 2005

Listing 7:

Listing 8:

72 SDAnsia 0cT08ER/NOVEMBER 2005

er components they would use to finish their
job. This adds loose coupling, since the ob-
jects that request the action would not know
how it is done. Besides, more flexibility is in-
troduced as the object used can be changed
at runtime and components can be added
easily by subclassing. One disadvantage of
this approach is that the interface of all com-
ponents must be the same, so the Composite
pattern treats them equally.

In Listing 8, Builder delegates the responsibil-
ity of drawing the entire table to Table. Table
notices that it would not be able to handle the
table content, and delegates the job to Menu.
Menu checks if it can finish the drawing by it-
self or it should further delegate the responsi-
bility to others. In this case, each action caller
can toss the unfinished job to the next object
without caring whether the job would be
thrown further. However, we have to ensure
there is a recipient at the end of every chain.

Creating by Prototype

Sometimes, we need to have an array of ob-
jects to keep track of different components in
the form. For example, one application may
need to keep track of a group of Library com-
ponents, while another keeps track of a group
of Supermarket components. The simplest
method is to have different factories for differ-
ent forms (see Fig. 8). But it would be wasteful
to have so many factories if the construction
logic of initiating the component is the same.

The Prototype pattern’s construction frame-
work can be used repeatedly for creating dif-
ferent components (see Fig. 9). The Form is
given the prototype objects and it can use the
same construction process with those objects
cloned to build the entire form. The prototype
object can be changed easily during runtime,

Listing 9:

| Easy Viewing

forum | developer

ISSUE 05.05 | OCTOBER/

Fig. 7: Chain of responsibility pattern

Fig. 8: Many factories

to allow for more dynamies. This is only pos-
sible with the new clone method in PHP 5.

Final Remarks on View

To transfer objects among Model, View, and
Controller, we can create an object, say, Da-
taTransfer with set/get methods to encap-
sulate all the data. This will help separate
the data structure from the logic so they can
be modified easily. This is especially true for
PHP with its increasing third-party library
list, and it is not surprising to see there are
new libraries that provide data structures
which fit the application better.

The DataTransfer object helps transfer data
between forms. Otherwise, we would have to
use Get/Post, which only deals with primitive
type data. We can put everything we want to
send in DataTransfer, serialise and register
it in session. In this case, other forms can
make use of the same object. Furthermore,
the serialised object can be saved in files for
logging or security use.

Constraints in View

There is one advantage of MVC that cannot
be applied to web applications. When new
information is injected into the Model, it can-

Scontent = Sthis->propotypeOne->_clone();
Seontent->setData(1,2);

Fig. 9: Prototype pattern

not update the View at once, because the web
browser will not request new information un-
less the user refreshes it, which is referred to as
the pull approach. However, the many advan-
tages of the MVC model are sufficient to make
it a valuable part of the development process.

Conclusion

In this article, we have introduced various
ways to utilise different design patterns to
ease the development of applications, like im-
plementing different interfaces for the same
presentation, maintaining states, building
complex components, and creating objects
by prototypes. These patterns, if used prop-
erly, help reduce development time, as well
as make extensions of existing applications
as easy as possible. g®

Man-ping Grace Chau and Ka-hung Hui are
year-three undergraduate students at the
Chinese University of Hong Kong, majoring
in Information Engineering. They are also
team mates of the school IT team, responsi-
ble for developing and maintaining over 10
systems in PHP for the entire school, includ-
ing all kinds of attendance record systems,
as well as school project databases.

Links & Literature

T P

+ phpPatterns’ Intro to MVC: hitp://
www.phppatterns.com/index.php/
article/articleview/11/
http://st-www.cs.uiuc.edu /users/
smarch/st-docs/mve.html

+ Ootips.com’s introduction to MVC:
http://ootips.org/mve-pattern.html

« Tony Marston’s introduction to MVC:
http://www.tonymarston.net/php-
mysgl/model-view-controller.html

= For more information about design
patterns, please refer to Design Pat-
terns — Element of Reusable Object
Oriented Software by Erich Gamma,
Richard Helm, Ralph Johnson and
John Vlissides, from Addison Wesley
(ISBN 0201633612)

r/NOVEMBER 2005 SID s 73

